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ABSTRACT

Current game-playing programs have
developed numerous move ordering and
search reduction techniques in order to
improve the effectiveness of the alpha-
beta algorithm. A critical review of these
search modifications is provided, and a
recursive formula to estimate the search
time is proposed, one which reflects the
characteristics of the strongly ordered
trees produced through use of improved
search enhancements.

I. THE ALPHA-BETA ALGORITHM

With few exceptions [NEWB], much of
the existing theoretical work on
sequential game tree searching -has been
restricted to random trees. However, in
practice, truly random trees are quite
uncommon. In addition, special techniques
have been developed to improve the
effectiveness of the principal searching
method, the alpha-beta algorithm. Thus, we
will assess these enhancements and show
why strongly ordered trees are more
realistic, and possess properties that can
be exploited

A complete description of the alpha-
beta algorithm can be found elsewhere
[KNUT]. Rather than duplicate that work we
will simply clarify some relevant facts
and terminology used in our paper. A
typical procedure heading might be
alphabeta(p, alpha, beta, depth), where p
represents a position, (alpha,beta) the
search window or range of values over
which the search is to be made, and depth
the intended length of the search path.
The basic structure of the depth-1limited
alpha-beta algorithm can be seen in the
following procedure.
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alphabetal{p, alpha, beta, depth)
position p;
{int alpha, beta, depth;
int w, m, i, t;
if (depth < 0) return(evaluate(p));
w = generate(p);
/* determine successor positions */

/* p.i . p.w and return number */
/* of moves as function value */
if (w == 0) /* no 1e?al moves */
return(evaluate(p));
m = alpha;
for i = 1 tow do
{ t = -alphabeta(p.i,-beta,-m,depth-1);
ifF(t>m m=t;
if (m >= beta) /* cutoff =/
return{m);
return{m);

For purposes of analysis, it is
convenient to study the performance of the
minimax and alpha-beta algorithms on
uniform trees of depth D and constant
width W. It is also usual to measure the
relative efficiency of tree-searching
algorithms in terms of the number of
terminal nodes scored. The minimax
algorithm will always examine.

M(W,D) = Wx*xD terminal nodes, while under
ideal conditions the alpha-beta algorithm,
under ideal conditions, scores only

B(W,D) = wxx|D/2] + Wes|D/2] - 1 nodes.

Thus the potential efficiency of the
alpha-beta algorithm is very good,
examining close to the square root of the
maximum number of nodes while still
enerating the same solution path
?principal variation) from the root node.
However, optimal performance is achieved
only when the first move considered at
each node is the best one. Under more
realistic assumptions, we can define the
following quantities.
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D=3 B A R M
8 71 105 (21) 181 (38) 512
W 16 271 405 (64) 786 (114) 4096
24 599 857 (115) 1752 (250) 13824

D=4 B A R M
8 127 281 (88) 690 (153) 4096
W 16 511 1286 (430) 4125 (875) 65536
24 1151 2946 (1013) 10425 (18391) 331776

Table 1: Expected search costs for trees
of width W and depth D.

R(W,D) average number of terminal
nodes scored in a random
uniform game tree

average number of terminal
nodes scored in a strongly
ordered uniform game tree

For the purposes of this paper, we
will define a tres to be strongly ordered
if the search finds (1) the first branch
from each node best 70% of the time, and
(2) the best move in the first 25% of the
branches 90% of the time. Of course, this
definition is totally arbitrary, but it is
meant to produce trees similar in
character to those generated by
contemporary chess programs using search
enhancements.

While the performance of alpha-beta on
random trees has a solid theoretical basis
[FULL], at present only empirical evidence
is available for strongly ordered trees.
Nevertheless, on a statistical basis, it
seems clear that we have the relation
B(W,D) < A{W,D) << R{W,D) << M(w,D)
Relative values for these terms can be
seen from our Monte Carlo simulation
results, presented in Table 1. The
simulations were carried out on trees of
depths up to 5 and width W, with scores in
the range 0 - 127. To estimate R, the
values were assigned randomly to the
terminal nodes, while the calculation of A
relied on branch-dependent scores. The
bracketed numbers represent the standard
deviation for 100 independent search
trials. Table 1 will be used later to
s?ppogt a proposed formula which estimates
A(W,D

II.

A(W,D)

WxxD

ENHANCEMENTS TO ALPHA-BETA SEARCHING

Many of the following techniques have
been developed in efficiency-conscious
full-width chess programs. The basic
methods, however, are applicable to most
programs that use the alpha-beta
algorithm.

A. Aspiration search: The interval
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enclosed by (alpha, beta) is referred to
as the alpha-beta window. For the alpha-
beta algorithm to be effective, the
minimax score of the root position must
lie within the initial window. Generally
speaking, however, the narrower the
initial window, the better the algorithm’s
performance. In many problem domains such
as chess, there are reliable methods to
estimate the score that will be returned
by the search. Thus, instead of using an
initial window of (-INF, +INF) (where INF
is a number larger than evaluate() will
return), one can use (V-e,V+e), where V is
the estimated score, and e the expected
error. There are three possible outcomes
of this so-called aspiration search,
depending on $, the actual! (minimax) score
of a position p.

1.

if § <= V-e,
alphabeta(p,V-e,V+e,D) <= V-e

2. if S >= V+e,
alphabeta(p,V-e,V+e,D) >z V+e
3. if V-e < § < V+e,

alphabeta(p,V-e,V+e,D) S

Cases 1 and 2 are referred to as
failing low and failing high respectively
[FISH]. Only in case 3 is the true score
of the position p found, using a smaller
search space -- bounded by B(W,D) and
A{W,D).

In the failed low case, it is neces-
sary for the search to show that each al-
ternative from the root is iess than V-e.
Assuming perfect ordering,

W ok* [D/Q] nodes must be examined.

In the failed high case, it is sufficient
for the search-to show one alternative
greater than V+e. Again under perfect
ordering conditions, only

W= [D/QJ nodes need be examined.

Either way the search must be repeated,
for example alphabeta(p,V+e,+INF,D) for
the failed high case. Empirical evidence
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has shown aspiration searches to be very
effective; in TECH?, search time
reductions averaging 23% were noted
[GIL2]. This result is confirmed by Baudet
by adapting his results for parallel tree
search to the sequential case [BAUD!}.

B. Transposition Table: In carrying
out a search of a chess game tree, it is
not uncommon for positions to recur in
numerous places throughout the tree.
Rather than rebuild the subtrees
associated with the transposed positions,
it may be possible to simply retrieve the
results stored in a table by a previous
search. A transposition table is a large
hash table, with each entry representing a
position. For game modelling nearly
perfect hashing functions can be
produced[Z0BR]. Although there are many
table management problems which must be
solved, the technique has very low
overhead for the large potential gains.

A typical hash index generation method
is the one proposed by Zobrist[ZOBR], who
observed that a chess position constitutes
ptacement of up to 12 different piece
types {K,Q,R,B,N,P,-K ... -P} onto a 64-
square board. Thus a set of 12x84 integers
(plus a few for enpassant and castling
privileges), {Ri}, may be used to
represent all the possible piece/square
combinations. An index of the position may
be given by

Pj = Ra xor Rb xor ... xor Rw
where the Ra etc. are integers associated
with the piece placements for the
particular position under consideration.
Movement of a piece from a square
associated with Rf to the piece/square
associated with Rt yields a new index

Pk = (Pj xor Rf) xor Rt
More importantly, if the Ri are uniformly
distributed in the interval [0,2**N], then
so are the Pk. Typically N is 32 and so
2+xxN is too large for direct use of PK as
an index into a transposition table,
rather
HK = PK mod T is used, where T << 2%=*N,
Clearly, all the possible chess positions
cannot be represented uniquely by HK, but
even so this is quite sufficient as a
basis for a successful entry point. A
minimal table entry could have the
following format:

lock | move score flag len prio

lock to ensure the table position
is identical to the tree
position,

move best move in the position,
determined from previous
search,

score of subtree computed
previously,

flag indicating whether score is
upper bound, lower bound or
true score,

len length of subtree that score

is based on,
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prio used in table management, to
select entries for
deletion.
When a position reached during a
search is located in the table (i.e. the

lock matches), there are a number of
possible actions:
(1) If len is less than remaining length
to be searched, score is ignored and
the search is carried out as usual.
However move is tried first in the
position. The main advantage of this
is that it saves a move generation,
and also, since move has previously
(in a shallower search) proven best,
it is likely to be so again.
Furthermore, move will direct the
search toward positions that have
been seen before, hence increasing
the effectiveness of the table.
if len >= remaining length to be
searched
{a) if score was the true score,
value is returned without
further searching
(b) otherwise, score is used to
adjust the current alpha-beta
bounds. This could either cause
an immediate cutoff, or allow
the search to continue with a
reduced window. If a search must
be done, move will be tried
first.
There are also further enhancements
possible. For example, DUCHESSS maintains
both upper and lower bounds on the
position score, with separate lengths for
each.

Transposition tables are most
effective in chess endgames, where there
are fewer pieces and more reversible
moves. Gains of a factor of 5 or more are
typical, and in certain types of king and
pawn endings, experiments with BLITZ? and
BELLE2 have produced trees of more than 30
ply, representing speedups of well over a
hundred-fold. Even in complex middlegames,
however, significant performance
improvement is observed. An implementation
of alpha-beta employing a transposition
table is presented in the Appendix.

C. Killer Heuristics: The Killer
heuristic is based on the premise that if
move My ‘'refutes’ move Mx, it is more
1ikely that My (the ‘killer’) will be
effective in other positions. Any move
which causes a cutoff at level N is said
to have refuted the move at level N-1.
There are many ways of using this
information. For example, the program
CHESS* maintains a short list of Killers
at each level in the tree, and attempts to
apply them early in the search in the hope
of producing a quick cutoff. A further
advantage of the killer heuristic is that
it tends to increase the usefulness of the
transposition table. By continually
suggesting the same moves, there is a
greater possibility of reaching a position
already in the table.

In its full generality,

(2)

this

the Killer
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heuristic can be used to dynamically
reorder moves as the search progresses.
For example, if a move My at level N
refutes a move at level N-1, and My
remains to be searched at level N-2, it is
worth considering next. An additional
method, used by AWIT', seeks out defensive
moves at ply N-1 which counteract Killers
from level N. The idea behind the
generalized killer heuristic mechanism is
to allow information gathered deep in the
tree to be redistributed to shallower
levels. This is not usually done by the
full-width programs, however, since it is
not yet clear that the potential gains
exceed the overhead.

The actual search reductions produced
by the Killer heuristic are not clear. In
TECH7, no improvement WFS noted, but
CHESS4, DUCHESS® and BLITZ? continue to
employ the mechanism.

D. Iterative Deepening: Iterative
deepening refers to the procedure of using
an N-1 ply search to prepare for an N ply
search. The cost of such a search is given
by an equation of the form

A{W,D) = A(W,D-1) + E(W,D),
where E(W,D) is the expected cost of an
alpha-beta search given the first D-1
moves of the principal variation. This
technique has certain immediately obvious
advantages.

(1) It can be used as a method for
controlling the time spent in a
search. In the simplest case, new
iterations can be tried until a
preset time threshold is passed.

(2) An N-1 ply search can provide a
principal continuation which, with
high probability, contains a prefix
of the N ply principal continuation.
This allows the alpha-beta search to
proceed more quickly.

(3) The score returned from a N-1 ply
search can be used as the center of
an alpha-beta window for the N ply
search. It is probable that this
window will contain the N ply score,
thus increasing search speed.

These last two points, though
significant, are not really complete
justifications for the use of iterative
deepening from a tree searching point of
view. In fact, in experiments with
checkers game trees [FISH], it was found
that iterative deepening increased the
number of nodes searched by 20%
(apparently only using point (2},
however). In addition, studies with TECH?
using a generalized version of (2), but
not ?3), noted a 5% increase in search
times when iterative deepening was applied
[GIL2]. It appears that a strong initial
move ordering, together with a good alpha-
beta window estimate, can approximately
match iterative deepening. The real
searching advantage of iterative deepening
is:

(4) The transposition table and Killer
lists are filled with useful values
and moves.
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The importance of this fact is
illustrated by the performance of the
BELLE? chess machine. Typical chess
middlegame positions have branching
factors of 35-40. It has been found that
in such positions, it normally costs BELLE
a factor of 5 - 6 to go one further ply,
i.e. less than the expected cost of
optimal alpha-beta.

A variation of this basic scheme, one
which is especially appropriate if
transposition tables are not used, is
employed by L'EXCENTRIQUES. A 2 or 4-ply
minimax search is first performed to
obtain W move-pairs (moves and their best
refutation). These are then sorted and a
6, 8, 10 etc -ply iterative deepening
cycle initiated. The rationale behind two
ply increments is to preserve a consistent
theme between iterations, so that the
principal variation will not flip-flop
between attacking and defensive lines. To
our knowledge, no analytical comparison
between this and conventional iterative
deepening has been done.

However, we do hypothesize that the
incremental cost is of the form

E(W,D) = B(W,D) + (W-1)*F(W-1,D-2)

A study of Table 1 leads us to refine the
function F to fit the available data and
to propose that the recurrence relation
A(W,D) =:= A(W,D-1) + B{W,D)

+ (W-1)*B(wW-1,D-2)
be valid for trees of the type searched by
chess programs, using iterative deepening
in conjunction with transposition tables.
From the above equation, and the data in
Table 1, the estimated value for A(24,4)
is 3066 while the experimental value was
2946. Similarly, the value for A(24,5)
from the recurrence relationship is 30018
and the experimental value from fifty
Monte Carlo trials was about 28500. For
typical values of W and D,
(W-1)*B(wW-1,D-2) is approximately equal to
B(W,D) and A(W,D-1) is small in '
comparison. Hence we may say that

A(W,D) =:= 2*B(W,D)

;o; 2trong]y ordered trees with W > 20 and

111. MODIFICATIONS TO THE ALPHA-BETA
ALGORITHM

A number of modifications to the
alpha-beta algorithm have been proposed
[FISH]. They are examined here mainly for
compatibility with the other search
enhancements discussed.

Falphabeta, for ‘fail-soft alphabeta’,
is useful when aspiration searching is
employed. Though always examining the same
nodes as alpha-beta, falphabeta can give a
tighter bound on the true score of the
tree when the search fails high or low.
Although falphabeta requires a slight
constant overhead, any system which uses
aspiration searches should find the
technique a practical one. The concept of
a minimal window, an alpha-beta window of
(-m-1,-m) where m is the best score so
far, was introduced and used to search the
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last subtree [FISH]. Slight searching
improvement was noted for no cost.
Palphabeta is an interesting
modification of alpha-beta which operates
only on nodes along the principal
variation. Once a candidate principal
variation is obtained, the balance of the
tree is searched with a minimal window.
However, each subtree that is better than
its elder siblings must be searched twice,
if the tree is poorly ordered. Hence there
is some risk that palphabeta will examine
more nodes than alpha-beta. Iterative
deepening provides a principal variation
with reasonable reliability, and makes
this technique more feasible. The fol-
lowing code has been adapted from [FISH].

?alphabeta(position p, int depth)
int w, m, i,

if (depth < 0)’return(eva1uate(p));
w = generate(p);

1f {(w == 0} return(evaluate(p));
~m = -palphabeta(p.1, depth-1);
for i = 2 to w do
{ t = -falphabeta(p.i,-m-1,-m,depth-1};
if (t > m)
m = -alphabeta(p.i,-INF,-t,depth-1);
return(m};

It could also be pointed out that it
is not necessary to carry palphabeta all
the way to the terminal nodes. In fact,
since only the first few moves of a
principal continuation are usually
reliable, carrying palphabeta to, say, N-2
ply on an N ply iteration may be
sufficient. Another objection could be
made on the grounds that, for programs
employing transposition tables, the values
that will be stored in the table are
rather loose bounds, and hence less likely
to cause later cutoffs. The effects of
this are not clear.

SCOUT [PEAR] is a further
generalization of paiphabeta,
call to alphabeta is replaced by

m = -palphabeta(p.i, depth-1};
In its original form, SCOUT does not use
the minimal window idea, but rather an
equivalent test procedure. Our initial
simulation results indicate that
palphabeta out-performs SCOUT on strongly
ordered trees.

IV. CONCLUSIONS

in which the

A number of techniques for improving
the searching performance of the alpha-
beta algorithm have been discussed. The
experiences of current game playing
programs have demonstrated the
effectiveness of aspiration searches,
transposition tables, the Killer heuristic
and iterative deepening. Modifications
like palphabeta and SCOUT deserve further
attention in programs that search strongly
ordered trees, particularly to determine
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their interaction with the other searching
enhancements. There is also growing
interest in parallel implementations of
alpha-beta [BAUD], [MARS], and it is
important that these para]]e] me thods
retain the advantages obtained in the
sequential case.
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~NOB_WN —

AB(position p, int alpha, int beta, int depth)
int i, t, w, type, score, flag;
position p.opt;
type = retrievelp, depth, score, flag, p.opt);
/* type < 0 - position not in table
type == 0 - position in table, but length < depth
/ type > 0 - position in table, length >= depth
%k
if (type > 0)
{ if (flag == VALID) goto done;
if (flag == LBOUND)
alpha = max(alpha, score);
else /* flag == UBOUND */
beta = min(beta, score);
if {score >= beta) goto done;

/* Note beneficial update of alpha or beta
bound assumes full width search.
Score in table insufficient to terminate search
so continue as usual, but try p.opt (from table)
; before generating other moves, if p is non-terminal.
*
score = alpha;
if ({type >= 0) and (p.opt != NULL))
{ t = -AB(p.opt, -beta, -score, depth-1);
if (t > score) score = t;
if (score >= beta) goto done;

}
/7 no cutoff. Generate moves, put p.opt first.
*
w = generate(p);
if (w == 0) /* mate or stalemate */
{ p.opt = NULL;
score = evaluate(p);
goto done;

for i = 2 to w do

if (depth == 0)
t = evaluate(p.i);
else
t = -AB(p.i, -beta, -score, depth-1);
if (t > score)
{ score = t;
p.opt = p.i; /* note best successor */
\ if (score >= beta) goto done;

}
done:
flag = VALID;
if ?score <= alpha) flag = UBOUND;
if (score >= beta) flag = LBOUND;
store(p, depth, score, flag, p.opt);
return{score);

Appendix: Alpha-beta implementation using transposition table
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