A UNIX® BASED VIRTUAL TREE MACHINE

Marius Olafsson
T.A. Marsland

Department of Computing Science
University of Alberta
Edmonton T6G 2H1

For presentation at the CIPS Conf., Montreal, 4 June 1985.

ABSTRACT

The paper describes an environment for performing experiments in dis-
tributed processing. Our system offers researchers an easy way to design, imple-
ment and test parallel algorithms. It provides software tools which make possible
a variety of tree-structured connections between processes. These process struc-
tures are said to form a "Virtual Tree Machine" (implemented on a local area net-
work of VAX 11/780°s and SUN-2 processors). We show how these tools have
been used both to aid parallel algorithm development and to explore different
computer interconnection methods.

RESUME

On décrit un environnment qui convient aux expériences du procédé réparti de la
computation. Notre systeme offre au chercheur un moyen facile de préparer,
d’executer et de vérifier des algorithmes paralleéles, en fournissant les mécha-
nismes pour décrire les configurations variées sur un réseau d’ordinateurs. Le
systeme se laisse adapter notamment aux interconnections en forme d’arbre; en
consequence nous appelons I’environment une "Virtual Tree Machine." (Le
systeme est realisé sur un réseau d’ordinateurs VAX 11/780 et Sun-2). On
démontre dans les examples 1’utilisation de ces facilités pour développer des
algorithmes paralleles et pour étudier I’architecture des réseaux d’ordinateurs.

1. Introduction

Parallelism may be applied in several ways to increase the processing power available to
the execution of a program. These approaches can be broadly categorized into two groups: use of
closely coupled or synchronized processors, and loosely coupled or distributed systems. Closely
coupled systems have traditionally been more popular since they can be used to speed existing
algorithms and even existing programs. For example, powerful vector processors are now well

2-

established and most contemporary systems use some degree of pipelining.

One reason for limited progress in experimental Computer Science is the cost and special
purpose nature of the equipment. Specifically, in distributed systems researchers have managed
with a collection of connected processors, each with little or no I/O capability, rudimentary oper-
ating system support and a small memory. On such systems experiment management is often
difficult and the lack of flexibility restricts experiment design. With the widespread use of local
area networks, experimenters can take advantage of existing computing facilities, can draw upon
the services of a powerful operating system (with such capabilities as virtual memory manage-
ment) at each node, and can design their distributed algorithms in high-level programming lan-
guages. Debugging and monitoring the execution of a distributed program can be improved by
using the services provided by the operating system, such as its drivers for various display equip-
ment and its file system. Naturally, all this places certain restrictions on the experiment design
and forces careful interpretation of the results, but often these restrictions are not serious and are
offset by the advantages.

Another problem with parallel processing in general is the tradeoff between communica-
tion speed and the complexity of the connection structure [4]. Tree-structured topologies have
been proposed to reduce the connections between processors in distributed systems [3]. The
advantage of the tree machine is that the number of links only increases logarithmically with the
number of processors, thus making possible the construction of systems with thousands of pro-
cessors without a prohibitively expensive interconnection network [1]. Another advantage of this
architecture is that many problems map naturally into a tree structure. These include NP-com-
plete problems such as various combinatorial methods requiring exhaustive search [5] and tree-
searching algorithms [7, 8].

2. The Virtual Tree Machine

This paper describes an environment designed and built to do experiments in distributed
processing, using standard equipment and the services of a contemporary operating system to
reduce hardware and software costs and to simplify experiment management. We call this envi-
ronment a Virtual Tree Machine. It is implemented on a network of VAX-11/780’s and SUN-2
processors each running the 4.2BSD UNIX operating system, see Figure 1. In addition, the sys-
tem includes six standalone Motorola 68000’s, without operating system support for use when
critical timing measurements must be made. Since these processors can be connected in a tree
structured fashion, they are collectively referred to as a Processor Tree Machine (ptm). The only
restriction on their usage as a part of the VIM environment is that they do not support more than
one process per physical processor.

sunevere sunnybrook sunwapta sunshine sundance sundre
Sun-2 Sun-2 Sun-2 Sun-2 Sun-2 Sun-2
10 Mbit ETHERNET
six H
11/780 11/780 11/780 11/780
MC68000 H
jasper cadomin cavell alberta ptm

Figure 1. Computing Facilities

The word "virtual" is used here to emphasize that, as opposed to a Tree Machine proper, physical
processing elements are replaced by processes under operating system control, while wired con-
nections are replaced by virtual communication paths. The experimenter views the machine as a
collection of processing elements - each with ample memory, disks and other I/O devices, and a
communication path with its parent and with each of its children. In reality, a VIM is a collec-
tion of procedures callable from ordinary user programs and a collection of "node-servers", one
on each physical machine. These node-servers receive requests to create nodes of the tree-
machine according to the description provided by the user. During development the whole
machine might reside on one physical processor before being distributed over the selected physi-
cal machines for productive use.

The interface to the VITM is a collection of user procedures callable from application pro-
grams. These procedures handle connection establishment, connection initialization, exchange of
messages, interrupt handling as well as providing information on the configuration and layout of
the virtual machine being used. The most important of these routines are described below:

fanout = Nodelnit(name, file)

which is used to give a name to the VIM and establish communications between a parent and its
children. Nodelnit creates descendant nodes, recursively from a high-level description of the
desired interconnection topology received from the parent. In the root node, this description is
read from a file named by the second parameter. Once all communication paths have been cre-
ated, Nodelnit returns control to the user’s application. In each node, fanout specifies the number
of children created. Later, a parent may send/receive message to/from its children via the follow-
ing procedures:

Csend(child, message, length, interrupt, trace)
Creceive(child, message, length, trace)

Similarly a child communicates with its parent with the following:

Psend(message, length, interrupt, trace)
Preceive(message, length, trace)

Messages may be specified to interrupt their destination on arrival via the interrupt parameter.
The trace argument is used to enable the debugging and message tracing facilities available in
the VTM environment. In addition, facilities exist for enabling and disabling interrupts, to poll
descendants and the parent for outstanding messages and to add and delete nodes from the tree.
More information on these routines is found in our report [10].

3. Implementation

The VIM environment is built on top of the UNIX networking primitives. These primitives
allow processes to communicate via a variety of protocols and connection strategies [6]. The
current implementation of the VTM uses reliable two-way communication channels (called
stream-sockets). The semantics of the stream-sockets are similar to UNIX pipes, except that the
communicating processes need not reside on the same physical machine. There are two main
aspects of the UNIX networking primitives that make them a good basis for implementing a vir-
tual processor system. First, the UNIX inter-process communication model is internally consis-
tent; no distinction is made between interprocess communication and interprocessor communica-
tion. That is, the communication processes use the same mechanisms, irrespective of whether
they both reside on the same processor or not. Secondly, the client/server model cleanly incorpo-
rates the VIM node-server so that no special administrative consideration needs to be given the
VTM over other servers on a particular machine. Thus, the user views the VTM as a reconfig-
urable tree of virtual processors (arbitrary depth and fanout possible) each with a large amount of
memory, running under the control of an operating system that provides access to various periph-
erals.

As an example, consider the creation of a VITM to execute the configuration of processes
depicted in Figure 2.

Figure 2. Process Tree

First this configuration must be mapped onto the hardware. There are no restrictions on the num-
ber of physical machines that must be available, but for clarity here we map the nodes one per
physical machine:

R on sunshine

N; on cavell

N, on alberta

Nj; on sunwapta
Nj, on sunnybrook
N,, on sundre

That is, the root resides on a SUN-2 processor, called sunshine, the interior nodes are on
VAX-11/780 processors and the leaf nodes on SUN’s. The mapping between the virtual machine
and the physical hardware is described in configuration file. Each line in the configuration file
represents a virtual node in the tree and contains seven fields separated by semicolons. The first
four fields are: the name of the physical machine on which the node is to run (the host); the num-
ber of descendants of the node; an integer whose bits provide information to individual nodes
(e.g. debug specifications); and the name of the file containing the node’s executable code. The
other three fields contain the names of files to be opened as the node’s standard input, standard
output and standard error.

The following configuration file is used to map the virtual processor tree in Figure 2 to the
available hardware.

sunshine;2;0
cavell;2;0; node I;; outl; errl;
sunnybrook;0;0; node L;; outll; errll;
sunwapta;0;0; node L;; outl2; errl2;
alberta;1;0; node I;; out2; err2;
sundre;0;0; node L;; out22; err22;

When the root process on sunshine is started it sends a service request to the node-server on
cavell. The server executes the file node (from the fourth field in the configuration entry for the

-6-

process on cavell, prepended with the users home directory), gives it the execution parameter "I"
(indicating internal node), and returns to listen for additional service requests. The node process
on cavell receives the configuration from sunshine and sees that it has two children. It therefore
transmits two requests, one to the server on sunnybrook and the other to the server on sunwapta.
Both nodes see that they have no children and so respond that they were successfully started.
The interior node on cavell then tells the root that all went well. The root now knows that the left
branch is complete and transmits a request to the node-server on alberta to start up the right
branch. Finally, Nodelnit returns and the application is ready to start work, since all communica-
tion paths have now been established. The VTM created is shown in Figure 3. With this facility
several different experiments can be performed at the same time. The Ethernet serves as a shared
communication path and processes from different applications could share the same processor.

sunevere sunnybrook sunwapta sunshine sundance sundre

ORONO ()

AN

T T+
\
N \ 1o //
\ \ l \ ,
\ \ I \ /
XX \
e Y - t \ C C
\
. \ I \ y
N \ | . ,
\ \ I \ /
\ \ i \ /

jasper cadomin cavell alberta ptm

------ Virtual communication paths
O Node processes

Figure 3. Mapping of Processor Tree onto Hardware Configuration

-7-

To illustrate the communication and connection establishment features provided in the
VTM environment, the following skeletal code segment from an arbitrary interior node is pre-
sented below:

fanout = Nodelnit(name, cfile);
..éénnection has been made between
the parent and 'fanout’ children
ﬁ&&éh@(buf, n, TRACE);
..é;ocess data from parent and
prepare to send on to children
&&.i from 1 to fanout
..ééepare data for child # i
é;e.n.d(i, buf, length, NOINTS, TRACE);
..é;rry out intended application
ﬁ&.i from 1 to fanout
Creceive (i, buf, length, TRACE);
..ééocess message from child # i

prepare a reply to parent

Psend (buf, length, NOINTS, TRACE);

The process containing the above code segment is invoked by the node-server on its host
machine. After invocation, Nodelnit waits for the parent to send the configuration of its tree
branch. Once received, Nodelnit transmits requests to start this node’s children (if any). When
Nodelnit returns, communication has been established with the parent (from which the node
receives its work via Preceive) and its children (to which it sends some units of work via Csend).
When this node has finished its work, it receives the results from its descendants (via Creceive)
and finally transmits its results to its parent (via Psend). The parameter NOINTS specifies that no
interrupts are generated, and TRACE is used to specify a string included in a message trace gen-
erated by these calls (if any).

This code will be identical on all nodes in the VTM (except the root where communication
with the parent would be replaced with user interaction). Thus, every call to Preceive has a cor-
responding Csend call in the parent node and every call to Psend corresponds to a Creceive call
in the parent.

4. Debugging

Debugging parallel programs in a distributed environment is more difficult than sequential
programs running on a conventional machine. The primary source of this added difficulty is the
asynchronous sharing of information in the distributed environment. This sharing (via message
passing) between processors with different clocks introduces a time-dependence into the dis-
tributed program. The execution characteristics of the program are no longer solely decided by
its inputs, but are influenced unpredictably by interactions between autonomous processors, the
physical characteristics of the communication medium and by the behavior of other programs
sharing these resources. Bugs manifest themselves sporadically and often are not reproducible.
Programs can no longer be instrumented to collect information on their execution environment,
because this now changes their timing characteristics and thus their behavior.

A typical development cycle of an application in the VIM environment involves first
designing and testing the code with the whole virtual machine residing on one physical proces-
sor. This eases the task of monitoring and keeping track of output from all nodes, and eliminates
most of the timing dependencies mentioned above since the communication is now all driven by
the same clock. The code may be instrumented for debugging without changing its execution
behavior. Once the program runs bug-free on one clock, it can be distributed over several physi-
cal processors. Any anomalous behavior that is now detected must be caused by timing prob-
lems. This change from a single clock to a truly distributed execution may not involve any
recompilation or relinking of the code, but simply a change to the configuration file describing
the mapping of the virtual machine.

Problems with timing must still be found and corrected, and for the reasons mentioned
above, this must be done with minimal effect on the timing characteristics. One way to do this is
to dedicate a separate processor to the task of monitoring all processes. This processor can be
programmed to condense and abstract information from the other processors in the system, and
prepare it for human consumption. This is done by a "debug-server" residing on a processor with
a graphical display. The user has complete control over the information that is sent to the debug-
server as well as how this information is interpreted and presented. In essence, the users write
their own debug-servers using the primitives provided [10]. The use of such visual representa-
tion of the execution and communication characteristics of distributed programs provides a more
intuitive understanding of the behavior of parallel algorithms, an understanding that is difficult to
obtain simply by analyzing the results.

Another technique that has proven useful, is to design timing discrepancy tolerance into
the algorithms. One example of this is a uniform message format. A node, expecting a message
of a particular type, may receive a message of an unexpected type because of delays or other tim-
ing-related problems. If all messages are typed, the receiving node can determine what action to
take upon receiving the unexpected message. An example is a message about a piece of work
already completed. The parent say, has not yet noticed that a child has completed its work and
sends it some additional information. The child is waiting for more work, and if the message is
typed it will simply be discarded as opposed to being interpreted as new work.

Polling is one technique that should be considered as an alternative to interrupt-driven
code. In the VTM environment polling is used to eliminate the danger of deadlock because of a
lost interrupt. On an interrupt polling must be used to determine from which of the children (or
the parent) the message originated. When this is done all communication paths are polled and all
outstanding messages read. This eliminates the danger of deadlock should interrupts be lost when

9.

two or more messages arrive simultaneously. In some applications, polling can replace inter-
rupts, since polling can be made less expensive (no state-change or context-switch involved).
However, one must poll often enough to minimize communication delays, and yet not so often
that excessive time is spent on the polling function.

5. Applications

The facilities described in this paper have been used primarily in experiments with parallel
tree-searching algorithms. The vehicle for these experiments are two chess programs, Parabelle
[9] and ParaPhoenix [11].

Parabelle was used to explore the effect of using local and global memory to share infor-
mation about the subtrees seen by different processors. Such information sharing can reduce the
search times substantially. With tree machines it is common that one processor has far more
memory than the others, and so is used to hold shared information. However, considerable pro-
cessing time may be lost when several processors must await access to global tables. Conversely,
local tables may become overloaded during a search, and so lose their effectiveness. The fore-
runner of our present VIM system was used to explore the tradeoffs in local/global memory
usage [9]. Parabelle itself consisted of a processor tree of depth 1 and fanout f. Thus the trees
were searched in a special way, using the PVsplit algorithm [9], with f processors. One of these
processors was called the master and had extra duties, such as allocating work to itself and other
processors, and polling them at convenient intervals for their results. Parabelle has now been
implemented as a VITM and is currently being used to explore the power of different processor
tree configurations (depth and fanout) to determine what control over the synchronization losses
may be possible by this means.

ParaPhoenix, on the other hand, was the first major VIM application. It used the same
search tree splitting algorithm and processor tree architecture as Parabelle, but a separate process
was named the master. Since the master only manages the other processors it had ample time to
measure their activity and effective CPU speed. Thus ParaPhoenix was used to measure accu-
rately the synchronization losses of the system, and to identify the serious nature of this over-
head. Even so the master had little to do, so the VIM configuration also allocated a tree-search
process to that machine.

Other applications include a parallel implementation of the branch-and-bound algorithm
for the traveling salesman problem, which is being used to investigate the tradeoff between com-
munication overhead and synchronization overhead. In the planning stage is real time animation
application [2]. The VTM facilities have also been used for teaching purposes, specifically in
parallel processing and operating systems courses.

These experiments attempt to measure experimentally some of the costs and overheads
involved in distributed processing. Theoretical investigations into parallel algorithms rarely take
into account the losses attributed to communications or synchronization overhead. This is under-
standable, since they are difficult to formulate in the theoretical model of the computation. It is
therefore important to have access to facilities to measure these and other poorly understood
aspects of parallel algorithms.

6. Conclusions

With the proliferation of low-cost but powerful processing elements it becomes increas-
ingly important to address the question of how to best deploy many such processors in a single

-10-

system. There is no one correct method of doing so. It is necessary to evaluate different alterna-
tives, and facilities must exist to experiment with different algorithms and different programming
techniques. While it is relatively easy to build distributed systems hardware, it is difficult to pro-
gram and use such a system. This difficulty is often compounded in research systems by the lack
of operating system support for the design and development phase, and the lack of run time sup-
port.

The facilities described here make it possible to develop and test distributed algorithms
under near normal conditions. As long as the results are interpreted correctly, virtual machine
architectures can provide valuable insight into the behavior of non-existing, new, or unavailable
real machines [1]. Algorithms for execution on these architectures can be developed, tested and
debugged using this facility. While the primary purpose of the VTM architecture is to apply sev-
eral processors to a single application, it can also be used to model large multi-processor systems
and study their processor synchronization and communication delay properties.

Future plans for expanding this facility include providing virtual environments for inter-
connection methods other than a tree (such as a hyper-cubes[12] and simple bus structures), and
providing simpler and faster communication protocols, thus making the virtual environment
competitive with tightly coupled systems, while retaining all the advantages of operating system
support procedures.

Acknowledgements: The hardware support by Steve Sutphen and the UNIX networking soft-
ware support from Dick Foster is gratefully appreciated. Jonathan Schaeffer, Steve Sutphen and
Alexander Reinefeld provided constructive criticism on the earlier drafts of this paper. Financial
support from the Natural Sciences and Engineering Research Council of Canada in the form of
equipment grant E5722 and operating grant a7902 was vital to the success of this research
project.

References

Myrias 4000 System Description, Myrias Research Corporation, Edmonton, May 1984.

2. W.W. Armstrong and M. Green, "The Dynamics of Articulated Rigid Bodies for Purposes
of Animation," fo appear Graphics Interface ’85, 1985.

3. S. A. Browning, “A Tree Machine,” Lambda 6,31-36 (1980).
F. W. Burton and M. Huntbach, “Virtual Tree Machines,” IEEE Transactions on Comput-
ers C-33,3,278-280 (1984).

5. C.Lam, B. C. Desai, J. W. Atwood, S. Cabilio, P. Grogono and J. Opatrny, "A Multipro-
cessor Project for Combinatorial Computing," CIPS Session 82, Saskatoon, May 1982,
325-329.

6. S. J. Leffler, R. S. Fabry and W. J. Joy, A 4.2BSD Interprocess Communication Primer
(DRAFT), Computer System Research Group, Univ. of California, Berkeley, December
1983.

7. G. Lindstrom, The Key Node Method: A Highly-Parallel Alpha-Beta Algorithm, Tech.
Rep. UUCS 83-101, Dept. of Computer Science, Univ. of Utah, Salt Lake City, March

10.

11.

12.

-11-

1983.

T. A. Marsland and M. Campbell, “Parallel Search of Strongly Ordered Game Trees,”
Computing Surveys 14,533-551 (1982).

T. A. Marsland and F. Popowich, "Parallel Game-tree Search," to appear IEEE Transac-
tions on PAMI, May 1985.

M. Olafsson and T. A. Marsland, Implementation of Virtual Tree Machines, Technical
Report (in preparation), Computing Science Dept., Univ. of Alberta, Edmonton.

J. Schaeffer, M. Olafsson and T. A. Marsland, Experiments in Distributed Tree-Search,
Tech. Rep. 84-4, Computing Science Dept., Univ. of Alberta, Edmonton, June 1984.

C. L. Seitz, “The Cosmic Cube,” Communications of the ACM 28(1), 22-33 (January
1985).

