

EVALUATION FUNCTION TUNING VIA
ORDINAL CORRELATION

D. Gomboc, T. A. Marsland, M. Buro
Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada
{dave,tony,mburo}@cs.ualberta.ca, http://www.cs.ualberta.ca/~games/

Abstract Heuristic search effectiveness depends directly upon the quality of heuristic
evaluations of states in the search space. We show why ordinal correlation is
relevant to heuristic search, present a metric for assessing the quality of a static
evaluation function, and apply it to learn feature weights for a computer chess
program.

Keywords: ordinal correlation, Kendall’s � (tau), static evaluation function, heuristic
search, computer chess

1. Introduction

Inspiration for this research came while reflecting on how evaluation
functions for today’s computer chess programs are usually developed.
Typically, evaluation functions are refined over many years, based upon
careful observation of their performance. During this time, engine authors
will tweak feature weights repeatedly by hand in search of proper balance
between terms. This ad hoc process is used because the principal way to
measure the utility of changes to a program is to play many games against
other programs and interpret the results. The process of evaluation function
development would be considerably assisted by the presence of a metric that
could reliably indicate a tuning improvement. But what would such a metric
be like?

The critical operation of minimax game-tree searches (Shannon, 1950)
and all its derivatives (Marsland, 1983; Plaat, 1996) is the asking of a single
question: is position B better than position A? Note that it is not “How much
better?” , but simply “ Is it better?” . In minimax, instead of propagating
values one could propagate the positions instead, and, as humans do, choose
between them directly without using values as an intermediary.

2 D. Gomboc, T.A. Marsland, M. Buro

Consequently, we need only pairwise comparisons that tell us whether B is
preferable to A. Plausibly, then, the metric we seek will assess how well an
evaluation function orders positions in relation to each other, without placing
importance on the relative differences in the values of the assessed positions
– that is, it will be ordinal in nature.

While at shallow depths some resemblance between positions compared
by a minimax-based search will be evident, this does not hold true at the
search depths typically reached today. The positions that are being compared
are frequently completely different in character, suggesting that our mystery
metric ought to compare pairs of positions not merely from local pockets of
the search space but globally.

Consideration was also given to harnessing the great deal of recorded
experience of human chess for developing a static evaluation function.
Researchers have tried to make their machines play designated moves from
test positions, but we focus on judgments about the relative worth of
positions, reasoning that if these are correct then strong moves will emerge
as a consequence. But how does one compute a correlation between the
(ordinal) human assessment symbols, given in Table 1, with machine
assessments? A literature review identified that a statistical measure known
as Kendall’s � might be exactly what is needed.

After a brief overview of prior work
on the automated tuning of static
evaluation functions, we describe
Kendall’s � , and our novel algorithm to
implement it efficiently. We then
discuss the materials used for our
experiments, followed by details of our
software implementation. Experimental
results are provided in Section 6. After
drawing some conclusions, we suggest
further investigations to the interested
researcher.

2. Pr ior Work

The precursor of modern machine learning in games is the work done by
Samuel (1959, 1967). By fixing the value for a checker advantage, while
letting other weights float, he iteratively tuned the weights of evaluation

symbol meaning
��� white is winning � white has a clear advantage �

 white has an edge
� the position is equal �
 black has an edge � black has a clear advantage

�	� black is winning

Table 1. Symbols for chess position
assessment.1

1 Two other assessment symbols,
 (the position is unclear) and � (a player has positional
compensation for a material deficit) are also frequently encountered. Unfortunately, the
usage of these two symbols is not consistent throughout chess literature. Accordingly, we
ignore positions labeled with these assessments.

Evaluation Function Tuning via Ordinal Correlation 3

function features so that the assessments of predecessor positions became
more similar to the assessments of successor positions.

Hartmann (1989) developed the “Dap Tap” to determine the relative
influence of various evaluation feature categories, or notions, on the
outcome of chess games. Using 62,965 positions from grandmaster
tournament and match games, he found that “ the most important notions
yield a clear difference between winners and losers of the games” .
Unsurprisingly, the notion of material was predominant; the combination of
other notions contribute roughly the same proportion to the win as material
did alone. He further concluded that the threshold for one side to possess a
decisive advantage is 1.5 pawns.

The DEEP THOUGHT (later DEEP BLUE) team applied least squares fitting
to the moves of the winners of 868 grandmaster games to tune their
evaluation function parameters as early as 1987 (Nowatzyk, 2000). They
found that tuning to maximize agreement between their program’s preferred
choice of move and the grandmaster’s was “not really the same thing” as
playing more strongly. Amongst other interesting observations, they
discovered that conducting deeper searches while tuning led to superior
weight vectors being reached.

Tesauro (1995) initially configured a neural network to represent the
backgammon state in an efficient manner, and trained it via temporal
difference learning (Sutton, 1988). After 300,000 self-play games, the
program reached strong amateur level. Subsequent versions also contained
hidden units representing specialized backgammon knowledge and used
minimax search. TD-GAMMON is now a world-class backgammon player.

Beal and Smith (1997) applied temporal difference learning to determine
piece values for a chess program that included material, but not positional,
terms. Program versions using weights resulting from five randomized self-
play learning trials each won a match versus a sixth program version that
used the conventional weights given in most introductory chess texts. They
have since extended their reach to include piece-square tables for chess (Beal
and Smith, 1999a) and piece values for Shogi (Beal and Smith, 1999b).

Baxter, Tridgell, and Weaver (1998) applied temporal difference learning
to the leaves of the principal variations returned by alpha-beta searches to
learn feature weights for their program KNIGHTCAP. Through online play
against humans, KNIGHTCAP’s skill level improved from beginner to strong
master. The authors credit this to: the guidance given to the learner by the
varying strength of its pool of opponents, which improved as it did; the
exploration of the state space forced by stronger opponents who took
advantage of KNIGHTCAP’s mistakes; the initialization of material values to
reasonable settings, locating KNIGHTCAP’s weight vector “close in
parameter space to many far superior parameter settings” .

4 D. Gomboc, T.A. Marsland, M. Buro

Buro (1995) estimated feature weights by performing logistic regression
on win/loss/draw-classified Othello positions. The underlying log-linear
model is well suited for constructing evaluation functions for approximating
winning probabilities. In that application, it was also shown that the
evaluation function based on logistic regression can perform better than
those based on linear and quadratic discriminant functions. Later, Buro
(1999) presented a much superior approach, using linear regression and
positions labeled with the final disc differential to optimize the weights of
thousands of binary pattern features.

Kendall and Whitwell (2001) evolved intermediate-strength players from
a population of poor players by applying crossover and mutation operators to
generate new weight vectors, while discarding vectors that performed poorly.

3. Kendall’s Tau

Concordance, or agreement, occurs where items are ranked in the same
order. Kendall's � is all about the similarities and differences in the ordering
of ordered pairs. Consider two pairs, (xi, yi) and (xk, yk). Compare both the x
values and the y values. Table 2 defines the relationship between the pairs.

relationship
between xi and xk

relationship
between yi and yk

relationship between
(xi, yi) and (xk, yk)

xi < xk yi < yk Concordant
xi < xk yi > yk Discordant
xi > xk yi < yk Discordant
xi > xk yi > yk Concordant
xi = xk yi � yk extra y pair
xi � xk yi = yk extra x pair
xi = xk yi = yk duplicate pair

Table 2. Relationships between ordered pairs.

Table 3 contains a grid representing ordered pairs of machine and human
evaluations. The value in each cell indicates the number of corresponding
pairs; blank cells indicate that no such pairs are in the data set. Sample
machine and human assessments are on the x- and y-axes, respectively.

To compute � for a collection of ordered pairs, each ordered pair is
compared against all other pairs. The total number of concordant pairs is
designated S+ (“S-positive”). Similarly, the total number of discordant pairs
is designated S– (“S-negative”).

Consider the table cell (0.0, �). There are six entries, containing seven
data points, located strictly below and to its left; these are concordant pairs
and so contribute to S+. The two discordant pairs, strictly below and to its
right, contribute to S–. We do not consider any cells from above the cell of

Evaluation Function Tuning via Ordinal Correlation 5

interest. If we did so, we would end up comparing each pair of ordered pairs
twice instead of once. Finally, the 2 contained in the cell indicates that there
are two (0.0, �) data points; hence the examination of this cell has produced
7 * 2 = 14 concordant pairs, and 2 * 2 = 4 discordant pairs.

-1.6 -1.1 -0.7 -0.6 -0.3 -0.1 0.0 0.1 0.2 0.3 0.5 0.9 1.3

��� 1 1
� 1 1
�

 1 1 1 1 1
� 1 1 2 1 2
�

 2 1 1
� 1 1
��� 1 1 1

Table 3. (machine, human) assessments, n = 25.

� is given by:

The denominator equals the number of unique possible comparisons between
any two ordered pairs from a collection of n ordered pairs.

For the data in Table 3, S+ is 162, S– is 83, and n, the number of ordered
pairs, is 25. � equals 0.2633; we might also say that the concordance of the
data is 0.2633. Possible concordance values range from +1, representing
complete agreement in ordering, to -1, representing complete disagreement
in ordering. Whenever there are extra or duplicate pairs, the values of +1 and
-1 are not achievable.

Cliff (1996) provides a more detailed exposition of Kendall’s � ,
discussing variations thereof that optionally disregard extra and duplicate
pairs. Cliff labels what we call � as � a, and uses it most often, noting that it
has the simplest interpretation of the lot.

A straightforward implementation would perform the process illustrated
above for each cell of the table. Our novel, algorithmically superior
implementation allocates additional memory space, and in successive single
passes through the data, applies dynamic programming to compute tables
containing the number of data points that are:

either on the same row as or below the current cell;
either on the same column or to the right of the current cell;
either on the same column or to the left of the current cell;
strictly below and to the right of the current cell;
strictly below and to the left of the current cell.

Then, in a final pass, S+ and S– are computed by multiplying the number of
data points in the current cell by the data in the final two tables listed. It is

2/)1(−
−=

−+

nn

SSτ

6 D. Gomboc, T.A. Marsland, M. Buro

also possible to use more passes, but less memory, by performing the sweeps
to the left and to the right serially instead of in parallel.

There is a better-known ordinal metric in common use: Spearman’s � ,
also known as Spearman correlation. In our application, the number of
distinct human assessments is constant. Therefore, after initial data
processing has identified the unique machine assessments for memory
allocation and indexing purposes, � is computed in time linear in the number
of unique machine assessments, which is not possible for � . Prototype
implementations confirmed that � was significantly quicker to compute for
large data sets.

Not only does � more directly measure what interests us (“ for all pairs of
positions (A, B), is position B better than position A?”), it is also more
efficient to compute than plausible alternatives. Therefore, we concentrate
on � in this paper.

4. Chess-Related Components

Many chess programs, or chess engines, exist. Some are commercially
available; most are hobbyist. For our work, we selected CRAFTY, by Robert
Hyatt (1996) of the University of Alabama. CRAFTY is the best chess engine
choice for our work for several reasons: the source was readily available to
us, facilitating experimentation; it is the strongest such open-source engine
today; previous research has already been performed using CRAFTY. We
worked with version 19.1 of the program.

4.1 Training Data

To assess the correlation of � with improved play, we used 649,698 positions
from Chess Informant 1 through 85 (Sahovski, 1966). These volumes cover
the important chess games played between January 1966 and September
2002. This data set was selected because it contains a variety of assessed
positions from modern grandmaster play, the assessments are made by
qualified individuals, it is accessible in a non-proprietary electronic form,
and chess players around the world are familiar with it.

We used a 32,768-position subset for the preliminary feature weight
tuning experiments reported here.

4.2 Test Suites

English chess grandmaster John Nunn (1999) developed the Nunn and Nunn
II test suites of 10 and 20 positions, respectively. They serve as starting
positions for matches between computer chess programs, where the

Evaluation Function Tuning via Ordinal Correlation 7

experimenter is interested in the engine’s playing skill independent of the
quality of its opening book. Nunn selected positions that are approximately
balanced, commonly occur in human games, and exhibit variety of play. We
refer to these collectively as the “Nunn 30” .

Don Dailey, known for his work on STARSOCRATES and CILKCHESS,
prepared a file of two hundred commonly reached positions, all of which are
ten ply from the initial position. We refer to these collectively as the “Dailey
200” .

5. Software Implementation

Here we detail some specifics of our implementation. We discuss both
alterations made to CRAFTY and new software written as a platform for our
experiments.

5.1 Use of Floating-Point Computation

We modified CRAFTY so that variables holding machine assessments are
declared to be of an aliased type rather than directly as integers. This allows
us to choose whether to use floating-point or integer arithmetic via a
compilation switch. The use of floating-point computation provides a
learning environment where small changes in values can be rewarded. With
these modifications, CRAFTY is slower, but only by a factor of two to three
on a typical personal computer. The experiments were performed with this
modified version; however, all test matches were performed with the
original, integer-based evaluation implementation. Further details can be
found in Section 6.

It might strike the reader as odd that we chose to alter CRAFTY in this
manner rather than scaling up all the evaluation function weights. There are
significant practical disadvantages to that approach. How would we know
that everything had been scaled? It would be easy to miss some value that
needed to be changed. How would we identify overflow issues? It might be
necessary to switch to a larger integer type. How would we know that we
had scaled up the values far enough? It would be frustrating to have to repeat
the procedure.

By contrast, the choice of converting to floating-point is safer. Precision
and overflow are no longer concerns. Also, by setting the typedef to be a
non-arithmetic type we can cause the compiler to emit errors wherever type
mismatches exist. Thus, we can be more confident that our experiments rest
upon a sound foundation.

8 D. Gomboc, T.A. Marsland, M. Buro

5.2 Hill Climbing

We implemented an iteration-based learner, and a hill-climbing algorithm.
Other iteration-based algorithms may be substituted for the hill-climbing
code if desired. Because we are not working with an analytic function, we
measure the gradient empirically.

We multiply Vcurrent, the current weight of a feature being tuned, by a
number fractionally greater than one1 to get Vhigh, except when Vcurrent is near
zero, in which case a minimum distance between Vcurrent and Vhigh is
enforced. V low is then set to be equidistant from Vcurrent, but in the other
direction, so that Vcurrent is bracketed between V low and Vhigh. Two test weight
vectors are generated: one using Vhigh, the other using V low. All other
weights for these test vectors remain the same as in the base vector. This
procedure is performed for each weight that is being tuned. For example,
when 11 parameters are being learned, 1 + 11 * 2 = 23 vectors are examined
per iteration: the base vector, and 22 test vectors.

The three computed concordances related to a weight being tuned (� current,
� low, and � high) are then compared. If all three are roughly equal, no change is
made: we select Vcurrent. If � current is lower than both � low and � high, we choose
the V corresponding to the highest � . If they are in either increasing or
decreasing order, we use the slope of test points (V low, � low) and (Vhigh, � high)
to interpolate a new point. However, to avoid occasional large swings in
parameter settings, we bound the maximum change from Vcurrent. The final
case occurs when � current is higher than both � low and � high. In this case, we
apply inverse parabolic interpolation to select the apex of the parabola
formed by the three points, in the hope that this will lead us to the highest �
in the region.

Once this procedure has been performed for all of the weights being
learned, it is possible to postprocess the weight changes, for instance to
normalize them. However, at present we have not found this to be necessary.
The chosen values now become the new base vector for the next iteration.

5.3 Automation

A substantial amount of code was written to automate the communication of
work and results between multiple, distributed instantiations of CRAFTY and
the PostgreSQL database. We implemented placeholder scheduling (Pinchak,
2002) so that learning could occur more rapidly, and without human
intervention.

1 The tuning experiments reported in this paper used 1.01.

Evaluation Function Tuning via Ordinal Correlation 9

5.4 Search Effor t Quantum

Traditionally, researchers have used search depth to quantify search effort.
For our learning algorithm, doing so would not be appropriate: the amount of
effort required to search to a fixed depth varies wildly between positions,
and we will be comparing the assessments of these positions. However,
because we did not have the dedicated use of computational resources, we
could not use search time either. While it is known that chess engines tend to
search more nodes per second in the endgame than the middlegame, this
difference is insignificant for our short searches because it is dwarfed by the
overhead of preparing the engine to search an arbitrary position. Therefore,
we chose to quantify search effort by the number of nodes visited.

We instructed CRAFTY to search 16,384 nodes to assess a position.
Earlier experiments that directly called the static evaluation or quiescence
search routines to form assessments were not successful. When searching
1,024 nodes per position, we had mixed results. Like the DEEP THOUGHT
team (Nowatzyk, 2000), we found that larger searches improve the quality of
learning. The downside is, of course, the additional processor time required
by the learning process.

There are positions in our data set from which CRAFTY does not complete
a 1-ply search within 16,384 nodes, because its quiescence search explores
many sequences of captures. When this occurs, no evaluation score is
available to use. Instead of using either zero or the statically computed
evaluation (which is not designed to operate without a quiescence search),
we chose to throw away the data point for that particular computation of � ,
reducing the position count (n). However, the value of � for similar data of
different population sizes is not necessarily constant. As feature weights are
changed, the shape of the search tree for positions may also change. This can
cause CRAFTY to not finish a 1-ply search for a position within the node
limit where it was previously able to do so, or vice versa. When many
transitions in the same direction occur simultaneously, noticeable
irregularities are introduced into the learning process. Ignoring the node
count limitation until the first ply of search has been completed may be a
better strategy.

5.5 Performance

Early experiments were performed using idle time on various machines in
our department. Lately, we have had (non-exclusive) access to clusters of
personal computer workstations, which is helpful because the task of
computing � for distinct weight vectors within an iteration is trivially
parallel. Examining 32,768 positions and computing � takes about two

10 D. Gomboc, T.A. Marsland, M. Buro

minutes per weight vector. The cost of computing � is negligible in
comparison, so in the best case, when there are enough nodes available for
the concordances of all weight vectors of an iteration to be computed
simultaneously, learning proceeds at the rate of 30 iterations per hour.

6. Exper imental Results

We demonstrate that concordance between human judgments and machine
assessments increases with increasing depth of machine search. This result,
combined with knowing that play improves as search depth increases
(Thompson, 1982), in turn justifies our attempt to use this concordance as a
metric to tune selected feature weights of CRAFTY’s static evaluation
function.

6.1 Concordance as Machine Search Effor t Increases

In Table 4 we computed � for depths 1 through 7 for n = 649,698 positions,
performing work equivalent to 211 billion (109) comparisons at each depth.
S+ and S– are reported in billions. As search depth increases, the difference
between S+ and S–, and therefore � , also increases. The sum of S+ and S– is
not constant because at different depths different amounts of extra y-pairs
and duplicate pairs are encountered.

It is difficult to predict how close
an agreement might be reached
using deeper searches. Two effects
come into play: diminishing returns
from additional search, and dimin-
ishing accuracy of human assess-
ments relative to ever more deeply
searched machine assessments.
Particularly interesting is the odd-
even effect on the change in � as
depth increases. It has long been

known that searching to the next depth of an alpha-beta search requires
relatively much more effort when that next depth is even than when it is odd
(Marsland, 1983). Notably, � tends to increase more in precisely these cases.

Similar experiments performed using increasing node counts, and
increasing wall clock time (on a dedicated machine) with a different, smaller
data set also gave increasing concordance, but, as expected, did not exhibit
the staggered rise of the increasing depth searches. In sum, these
experiments lend credibility to our belief that � is a direct measure of
decision quality.

depth S+ / 109 S– / 109 �
1 110.374 65.298 0.2136
2 127.113 48.934 0.3704
3 131.384 45.002 0.4093
4 141.496 36.505 0.4975
5 144.168 34.726 0.5186
6 149.517 30.136 0.5656
7 150.977 29.566 0.5753

Table 4. � computed for various search
depths, n = 649,698.

Evaluation Function Tuning via Ordinal Correlation 11

6.2 Tuning of CRAFTY’s Feature Weights

CRAFTY uses centipawns (hundredths of a pawn) as its evaluation function
resolution, so experiments were performed by playing CRAFTY as distributed
versus CRAFTY with the learned weights rounded to the nearest centipawn.
Each program played each position both as White and as Black. The feature
weights we tuned are given along with their default values in Table 5.

The scaling factors
were chosen because
they act as control knobs
for many subterms.
Bishop and knight were
included because they
participate in the most
common piece imbal-
ances. Trading a bishop
for a knight is common,
so it is important to
include both to show
that one is not learning

to be of a certain weight chiefly because of the weight of the other. We also
included three of the most important positional terms involving rooks.
Material values for the rook and queen are not included because trials
showed that they climbed even more quickly than the bishop and knight do,
yielding no new insights.

6.2.1 Tuning from Arbitrary Values

Figure 1 illustrates the learning. The 11 parameters were all initialized to 50,
where 100 represents both the value of a pawn and the default value of most
scaling factors. For ease of interpretation, legend contents are ordered to
match up with the vertical ordering of corresponding data at the rightmost
point on the x-axis. For instance, bishop is the topmost value, followed by
knight, then � , and so on. � is measured on the left y-axis in linear scale;
weights are measured on the right y-axis in logarithmic scale, for improved
visibility of the weight trajectories.

Rapid improvement is made as the bishop and knight weights climb
swiftly to about 285, after which � continues to climb, albeit more slowly.
We attribute most of the improvement in � to the proper determination of
weight values for the minor pieces. All the material and positional weights
are tuned to reasonable values.

feature default value
king safety scaling factor 100

king safety asymmetry scaling factor -40
king safety tropism scaling factor 100

blocked pawn scaling factor 100
passed pawn scaling factor 100

pawn structure scaling factor 100
bishop 300
knight 300

rook on the seventh rank 30
rook on an open file 24

rook behind a passed pawn 40

Table 5. Tuned features, with CRAFTY’ S default values.

12 D. Gomboc, T.A. Marsland, M. Buro

Figure 1. Change in weights from 50 as � is maximized.

The scaling factors learned are more interesting. The king tropism and

pawn structure scaling factors gradually reached, then exceeded CRAFTY’s
default values of 100. The scaling factors for blocked pawns, passed pawns,
and king safety are lower, but not unreasonably so. However, the king safety
asymmetry scaling factor dives quickly and relentlessly. CRAFTY’s default
value for this term is –40; perhaps we should have started it at a lower value
to speed convergence.

Tables 6 and 7 contain match results of the weight vectors at specified
iterations during the learning illustrated in Figure 1. Each side plays each
starting position both as White and as Black, so with the Nunn 30 test, 60
games are played, and with the Dailey 200 test, 400 games are played.
Games reaching move 121 were declared drawn.

The play of the tuned program improves dramatically as learning occurs.
Of interest is the apparent gradual decline in percentage score for later
iterations on the Nunn 30 test suite. The DEEP THOUGHT team (Nowatzyk,
2000) found that their best parameter settings were achieved before reaching
maximum agreement with GM players. Perhaps we are also experiencing
this phenomenon. We used the Dailey 200 test suite to attempt to confirm

Evaluation Function Tuning via Ordinal Correlation 13

that this was a real effect, and found that by this measure too, the weight
vectors at iterations 300 and 400 were superior to later ones.

Throughout our ex-
perimentation, we have
found that our tuned
feature weights tend to
perform better on the
Nunn test suite than the
Dailey test suite. Nunn’s
suite contains positions
of particular strategic
and tactical complexity.
Dailey’s suite is largely

more staid, and contains positions from much earlier in the game. CRAFTY’s
default weights appear to be more comfortable with the latter than the
former.

We conclude that the

learning is able to yield
settings that perform
comparably to settings
tuned by hand over years
of games versus grand-
masters.

6.2.2 Tuning from CRAFTY’s Default Values

We repeated the just-discussed experiment with one change: the feature
weights start at CRAFTY’s default values rather than at 50. Figure 2 depicts
the learning. Note that we have negated the values of the king safety
asymmetry scaling factor in the graph so that we could retain the logarithmic
scale on the right y-axis, and also for another reason, for which see below.

While most values remain normal, the king safety scaling factor
surprisingly rises to almost four times the default value. Meanwhile, the king
safety asymmetry scaling factor descends even below –100. The
combination indicates a complete lack of regard for the opponent’s king
safety, but great regard for its own. Table 8 shows that this conservative
strategy is by no means an improvement.

iteration wins draws losses percentage score
0 3 1 56 5.83

100 3 9 48 12.50
200 14 21 25 40.83
300 21 26 13 56.67
400 19 28 13 55.00
500 18 26 16 51.67
600 18 23 19 49.17

Table 6. Match results (11 weights tuned from 50 vs.
default weights), 5 minutes per game, Nunn 30 test suite.

iteration wins draws losses percentage score
0 3 13 384 2.38

100 12 31 357 6.88
200 76 128 196 35.00
300 128 152 120 51.00
400 129 143 128 50.13
500 107 143 150 44.63
600 119 158 123 49.50

Table 7. Match results (11 weights tuned from 50 vs.
default weights), 5 minutes per game, Dailey 200 test suite.

14 D. Gomboc, T.A. Marsland, M. Buro

Figure 2. Change in weights from CRAFTY’s defaults as � is maximized.

The most unusual

behaviour of the king
safety and king safety
asymmetry scaling fac-
tors deserves specific
attention. When the
other nine terms are
left constant, these two
terms behave similarly
to how they do when

all eleven terms are tuned. In contrast, when these two terms are held
constant, no statistically significant performance difference is found between
the learned weights and CRAFTY’s default weights. When the values of the
king safety asymmetry scaling factor are negated as in Figure 2, it becomes
visually clear from their trajectories that the two terms are behaving in a
codependent manner. More investigation is required to determine the root
cause of this behaviour.

iteration wins draws losses percentage score
25 19 23 18 50.83
50 16 31 13 52.50
75 11 32 17 45.00

100 14 28 18 46.67
125 9 23 28 34.17
150 8 35 17 42.50

Table 8. Match results (11 weights tuned from defaults vs.
default weights), 5 minutes per game, Nunn 30 test suite.

Evaluation Function Tuning via Ordinal Correlation 15

7. Conclusion

We have proposed a new procedure for optimizing static evaluation
functions based upon globally ordering a multiplicity of positions in a
consistent manner. This application of ordinal correlation is fundamentally
different from prior evaluation function tuning techniques. We believe it is
worth further exploration, and hope it will lead to a new perspective and
fresh insights about decision making in game-tree search.

While our initial results show promise, more work is certainly needed. It
is important to keep in mind that we tuned feature weights in accordance
with human assessments. Doing so may simply not be optimal for computer
play. Nonetheless, it is worth noting that having reduced the playing ability
of a grandmaster-level program to candidate master strength by significantly
altering several important feature weights, the learning algorithm was able to
restore the program to grandmaster strength.

7.1 Reflection

Having identified the anomalous behaviour in Figure 2, it is worth looking
again at Figure 1. The match results suggest that all productive learning
occurred by iteration 400 at the latest, after which a small but perceptible
decline appears to occur. The undesirable codependency between the king
safety and king safety asymmetry scaling factors also appears to be present
in the later iterations of the first experiment.

Furthermore, our training data is small enough (n = 32,768) that
overfitting is a consideration. Future learning experiments should use more
positions. This may in turn reduce the search effort required per position to
tune weights well. Although we are not certain why larger searches improve
the quality of learning, as the amount of search used per machine assessment
increases, the amount of information gathered about how relative weights
interact also increases. On the surface, then, the improvement is not
illogical.

While some weights, for instance the positional rook terms, learned
nearly identical values in both experiments, other features exhibited more
variance. For cases such as the king tropism and blocked pawns scaling
factors, it could be that comparable performance may be achieved with a
relatively wide range of values.

In our reported experiments, computation of � was dominated by the
search effort to generate machine assessments, enough so that the use of
Spearman’s � (or perhaps even Pearson correlation, notwithstanding our
original rationale) may also have been possible. Maximizing these
alternative metrics could be tried, at least when the training data contains

16 D. Gomboc, T.A. Marsland, M. Buro

relatively few positions. Other optimization strategies, for instance genetic
algorithms, could also be tried.

It was not originally planned to attempt to maximize � only upon
assessments at a specific level of search effort. Unfortunately, we
encountered implementation difficulties, and so reverted to the approach
described herein. We had intended to log the node number or time point
along with the new score whenever the evaluation of a position changes.
This would have, without the use of excessive storage, provided the precise
score at any point throughout the search. We would have tuned to maximize
the integral of � over the period of search effort. Implementation of this
algorithm would more explicitly reward reaching better evaluations more
quickly, improving the likelihood of tuning feature weights and perhaps even
search control parameters effectively.

7.2 Future Directions

While our experiments used chess assessments from humans, it is possible to
use assessments from deeper searches and/or from a stronger engine, or to
tune a static evaluation function for a different domain. Depending on the
circumstances, merging consecutively-ordered fine-grained assessments into
fewer, larger categories may be desirable. Doing so could even become
necessary should the computation of � dominate the time per iteration, but
this is unlikely unless one uses only negligible search to form machine
assessments.

Elidan et al. (2002) found that perturbation of training data could assist in
escaping local maxima during learning. Our implementation of � , designed
with this finding in mind, allows non-integer weights to be assigned to each
cell. Perturbing the weights in an adversarial manner as local maxima are
reached, so that positions are weighted slightly more important when
generally discordant, and slightly less important when generally concordant,
could allow the learner to continue making progress.

It would also be worthwhile to examine positions of maximum
disagreement between human and machine assessments, in the hope that
study of the resulting positions will identify new features that are not
currently present in CRAFTY’s evaluation. Via this process, a number of
labeling errors would be identified and corrected. However, we do not
believe that this would materially affect the outcome of the learning process.

A popular pastime amongst computer chess hobbyists is to attempt to
discover feature weight settings that result in play mimicking their favourite
human players. By tuning against appropriate training data, e.g., from
opening monographs and analyses published in Chess Informant and
elsewhere that are authored by the player to be mimicked, training an

Evaluation Function Tuning via Ordinal Correlation 17

evaluation function to assess positions similarly to how a particular player
might actually do so should now be possible.

Producers of top computer chess software play many games against their
commercial competitors. They could use our method to model their
opponent’s evaluation function, then use this model in a minimax (no longer
negamax) search. Matches then played would be more likely to reach
positions where the two evaluation functions differ most, providing
improved winning chances for the program whose evaluation function is
more accurate, and object lessons for the subsequent improvement of the
other.

Identifying the most realistic mapping of CRAFTY’s machine assessments
to the seven human positional assessments is also of interest. This
information would allow CRAFTY (or a graphical user interface connected to
CRAFTY) to present scoring information in a human-friendly format
alongside the machine score.

Acknowledgements

We would like to thank: Yngvi Björnsson, for the use of his automated
game-playing software, and for fruitful discussions; Don Dailey, for access
to his suite of 200 test positions; Robert Hyatt, for making CRAFTY
available, and also answering questions about its implementation; Peter
McKenzie, for providing PGN to EPD conversion software; NSERC, for
partial financial support [Grant OPG 7902 (Marsland)].

References

Baxter, J., Tridgell, A., and Weaver, L. (1998). KnightCap: A Chess Program that Learns by
Combining TD(�) with Game-tree Search. Proceedings of the Fifteenth International
Conference in Machine Learning (IMCL) pp. 28-36, Madison, WI.

Beal, D. F. and Smith, M. C. (1997). Learning Piece Values Using Temporal Differences.
ICCA Journal, Vol. 20, No. 3, pp. 147-151.

Beal, D. F. and Smith, M. C. (1999a). Learning Piece-Square Values using Temporal
Differences. ICCA Journal, Vol. 22, No. 4, pp. 223-235.

Beal, D. F. and Smith, M. C. (1999b). First Results from Using Temporal Difference Learning
in Shogi. Computers and Games (eds. H.J. van den Herik and H. Iida), pp. 113-125.
Lecture Notes in Computer Science 1558, Springer-Verlag, Berlin, Germany.

Buro, M. (1995). Statistical Feature Combination for the Evaluation of Game Positions.
Journal of Artificial Intelligence Research 3, pp. 373-382, Morgan Kaufmann, San
Fransisco, CA.

Buro, M. (1999). From Simple Features to Sophisticated Evaluation Functions. Computers
and Games (eds. H.J. van den Herik and H. Iida), pp. 126-145. Lecture Notes in Computer
Science 1558, Springer-Verlag, Berlin, Germany.

18 D. Gomboc, T.A. Marsland, M. Buro

Cliff, N. (1996). Ordinal Methods for Behavioral Data Analysis. Lawrence Erlbaum

Associates.
Elidan, G., Ninio, M., Friedman, N., and Schuurmans, D. (2002). Data Perturbation for

Escaping Local Maxima in Learning. AAAI 2002, pp. 132-139.
Hartmann, D. (1989). Notions of Evaluation Functions tested against Grandmaster Games.

Advances in Computer Chess 5 (ed. D.F. Beal), pp. 91-141, Elsevier Science Publishers,
Amsterdam, The Netherlands.

Hyatt, R.M. (1996). CRAFTY – Chess Program. ftp://ftp.cis.uab.edu/pub/hyatt/v19/crafty-
19.1.tar.gz.

Kendall, G. and Whitwell, G. (2001). An Evolutionary Approach for the Tuning of a Chess
Evaluation Function. Proceedings of the 2001 IEEE Congress on Evolutionary
Computation. http://www.cs.nott.ac.uk/~gxk/papers/cec2001chess.pdf.

Marsland, T. A. (1983). Relative Efficiency of Alpha-beta Implementations. IJCAI 1983, pp.
763-766.

Nunn, J. (1999). http://www.computerschach.de/test/nunn2.html.
Nowatzyk, A. (2000). http://www.tim-mann.org/deepthought.html. Also, see publications by

Anantharaman et al. (1987) and Hsu et al. (1988).
Pinchak, C., Lu, P., and Goldenberg, M. (2002). Practical Heterogeneous Placeholder

Scheduling in Overlay Metacomputers: Early Experiences. 8th Workshop on Job
Scheduling Strategies for Parallel Processing, Edinburgh, Scotland, U.K., pp. 85-105, also
to appear in LNCS 2537 (2003), pp. 205-228, also at http://www.cs.ualberta.ca/
~paullu/Trellis/Papers/placeholders.jsspp.2002.ps.gz.

Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de (1996). Best-First Fixed-Depth Game-Tree
Search in Practice. Artificial Intelligence, Vol. 87, Nos. 1-2, pp. 255-293.

Shannon, C. E. (1950). Programming a Computer for Playing Chess. Philosophical Magazine,
Vol. 41, pp. 256-275.

Sahovski Informator (1966). Chess Informant: http://www.sahovski.com/.
Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM

Journal of Research and Development, No. 3, pp. 211-229.
Samuel, A. L. (1967). Some Studies in Machine Learning Using the Game of Checkers. II –

Recent Progress. IBM Journal of Research and Development, Vol. 2, No. 6, pp. 601-617.
Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine

Learning, Vol. 3, pp. 9-44.
Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon. Communications of the

ACM, Vol. 38, No. 3, pp. 55-68. http://www.research.ibm.com/massive/tdl.html.
Thompson, K. (1982). Computer Chess Strength. Advances in Computer Chess 3, (ed. M.R.B.

Clarke), pp. 55-56. Pergamon Press, Oxford, UK.
Thompson, K. (1986). Retrograde Analysis of Certain Endgames. ICCA Journal, Vol. 9, No.

3, pp. 131-139.

