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Abstract Heuristic search effectiveness depends directly upon the quality of heuristic 
evaluations of states in the search space. We show why ordinal correlation is 
relevant to heuristic search, present a metric for assessing the quality of a static 
evaluation function, and apply it to learn feature weights for a computer chess 
program. 
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1. Introduction 

Inspiration for this research came while reflecting on how evaluation 
functions for today’s computer chess programs are usually developed. 
Typically, evaluation functions are refined over many years, based upon 
careful observation of their performance.  During this time, engine authors 
will tweak feature weights repeatedly by hand in search of proper balance 
between terms. This ad hoc process is used because the principal way to 
measure the utility of changes to a program is to play many games against 
other programs and interpret the results. The process of evaluation function 
development would be considerably assisted by the presence of a metric that 
could reliably indicate a tuning improvement.  But what would such a metric 
be like? 

The critical operation of minimax game-tree searches (Shannon, 1950) 
and all its derivatives (Marsland, 1983; Plaat, 1996) is the asking of a single 
question: is position B better than position A? Note that it is not “How much 
better?” , but simply “ Is it better?” . In minimax, instead of propagating 
values one could propagate the positions instead, and, as humans do, choose 
between them directly without using values as an intermediary. 
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Consequently, we need only pairwise comparisons that tell us whether B is 
preferable to A.  Plausibly, then, the metric we seek will assess how well an 
evaluation function orders positions in relation to each other, without placing 
importance on the relative differences in the values of the assessed positions 
– that is, it will be ordinal in nature. 

While at shallow depths some resemblance between positions compared 
by a minimax-based search will be evident, this does not hold true at the 
search depths typically reached today. The positions that are being compared 
are frequently completely different in character, suggesting that our mystery 
metric ought to compare pairs of positions not merely from local pockets of 
the search space but globally. 

Consideration was also given to harnessing the great deal of recorded 
experience of human chess for developing a static evaluation function. 
Researchers have tried to make their machines play designated moves from 
test positions, but we focus on judgments about the relative worth of 
positions, reasoning that if these are correct then strong moves will emerge 
as a consequence. But how does one compute a correlation between the 
(ordinal) human assessment symbols, given in Table 1, with machine 
assessments? A literature review identified that a statistical measure known 
as Kendall’s �  might be exactly what is needed. 

After a brief overview of prior work 
on the automated tuning of static 
evaluation functions, we describe 
Kendall’s � , and our novel algorithm to 
implement it efficiently. We then 
discuss the materials used for our 
experiments, followed by details of our 
software implementation. Experimental 
results are provided in Section 6. After 
drawing some conclusions, we suggest 
further investigations to the interested 
researcher. 

2. Pr ior Work 

The precursor of modern machine learning in games is the work done by 
Samuel (1959, 1967). By fixing the value for a checker advantage, while 
letting other weights float, he iteratively tuned the weights of evaluation 

symbol meaning 
���  white is winning �  white has a clear advantage �

 white has an edge 
�  the position is equal �
 black has an edge �  black has a clear advantage 

�	�  black is winning 
 
Table 1.   Symbols for chess position 
assessment.1 
 

1 Two other assessment symbols, 
  (the position is unclear) and �  (a player has positional 
compensation for a material deficit) are also frequently encountered.  Unfortunately, the 
usage of these two symbols is not consistent throughout chess literature. Accordingly, we 
ignore positions labeled with these assessments. 
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function features so that the assessments of predecessor positions became 
more similar to the assessments of successor positions. 

Hartmann (1989) developed the “Dap Tap”  to determine the relative 
influence of various evaluation feature categories, or notions, on the 
outcome of chess games. Using 62,965 positions from grandmaster 
tournament and match games, he found that “ the most important notions 
yield a clear difference between winners and losers of the games” . 
Unsurprisingly, the notion of material was predominant; the combination of 
other notions contribute roughly the same proportion to the win as material 
did alone. He further concluded that the threshold for one side to possess a 
decisive advantage is 1.5 pawns. 

The DEEP THOUGHT (later DEEP BLUE) team applied least squares fitting 
to the moves of the winners of 868 grandmaster games to tune their 
evaluation function parameters as early as 1987 (Nowatzyk, 2000). They 
found that tuning to maximize agreement between their program’s preferred 
choice of move and the grandmaster’s was “not really the same thing”  as 
playing more strongly. Amongst other interesting observations, they 
discovered that conducting deeper searches while tuning led to superior 
weight vectors being reached. 

Tesauro (1995) initially configured a neural network to represent the 
backgammon state in an efficient manner, and trained it via temporal 
difference learning (Sutton, 1988). After 300,000 self-play games, the 
program reached strong amateur level. Subsequent versions also contained 
hidden units representing specialized backgammon knowledge and used 
minimax search. TD-GAMMON is now a world-class backgammon player. 

Beal and Smith (1997) applied temporal difference learning to determine 
piece values for a chess program that included material, but not positional, 
terms. Program versions using weights resulting from five randomized self-
play learning trials each won a match versus a sixth program version that 
used the conventional weights given in most introductory chess texts. They 
have since extended their reach to include piece-square tables for chess (Beal 
and Smith, 1999a) and piece values for Shogi (Beal and Smith, 1999b). 

Baxter, Tridgell, and Weaver (1998) applied temporal difference learning 
to the leaves of the principal variations returned by alpha-beta searches to 
learn feature weights for their program KNIGHTCAP. Through online play 
against humans, KNIGHTCAP’s skill level improved from beginner to strong 
master. The authors credit this to: the guidance given to the learner by the 
varying strength of its pool of opponents, which improved as it did; the 
exploration of the state space forced by stronger opponents who took 
advantage of KNIGHTCAP’s mistakes; the initialization of material values to 
reasonable settings, locating KNIGHTCAP’s weight vector “close in 
parameter space to many far superior parameter settings” . 
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Buro (1995) estimated feature weights by performing logistic regression 
on win/loss/draw-classified Othello positions. The underlying log-linear 
model is well suited for constructing evaluation functions for approximating 
winning probabilities. In that application, it was also shown that the 
evaluation function based on logistic regression can perform better than 
those based on linear and quadratic discriminant functions. Later, Buro 
(1999) presented a much superior approach, using linear regression and 
positions labeled with the final disc differential to optimize the weights of 
thousands of binary pattern features. 

Kendall and Whitwell (2001) evolved intermediate-strength players from 
a population of poor players by applying crossover and mutation operators to 
generate new weight vectors, while discarding vectors that performed poorly. 

3. Kendall’s Tau 

Concordance, or agreement, occurs where items are ranked in the same 
order.  Kendall's �  is all about the similarities and differences in the ordering 
of ordered pairs.  Consider two pairs, (xi, yi) and (xk, yk). Compare both the x 
values and the y values.  Table 2 defines the relationship between the pairs. 
 

relationship 
between xi and xk 

relationship 
between yi and yk 

relationship between 
(xi, yi) and (xk, yk) 

xi < xk yi < yk Concordant 
xi < xk yi > yk Discordant 
xi > xk yi < yk Discordant 
xi > xk yi > yk Concordant 
xi = xk yi �  yk extra y pair 
xi �  xk yi = yk extra x pair 
xi = xk yi = yk duplicate pair 

 
Table 2.    Relationships between ordered pairs. 

 
Table 3 contains a grid representing ordered pairs of machine and human 
evaluations. The value in each cell indicates the number of corresponding 
pairs; blank cells indicate that no such pairs are in the data set. Sample 
machine and human assessments are on the x- and y-axes, respectively. 

To compute � for a collection of ordered pairs, each ordered pair is 
compared against all other pairs. The total number of concordant pairs is 
designated S+ (“S-positive”). Similarly, the total number of discordant pairs 
is designated S– (“S-negative” ). 

Consider the table cell (0.0, � ). There are six entries, containing seven 
data points, located strictly below and to its left; these are concordant pairs 
and so contribute to S+. The two discordant pairs, strictly below and to its 
right, contribute to S–. We do not consider any cells from above the cell of 
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interest. If we did so, we would end up comparing each pair of ordered pairs 
twice instead of once. Finally, the 2 contained in the cell indicates that there 
are two (0.0, � ) data points; hence the examination of this cell has produced 
7 *  2 = 14 concordant pairs, and 2 *  2 = 4 discordant pairs. 

 
-1.6 -1.1 -0.7 -0.6 -0.3 -0.1 0.0 0.1 0.2 0.3 0.5 0.9 1.3 

��� 1          1   
�         1  1   
�

   1 1  1   1   1 
�    1  1 2 1 2     
�

  2  1 1        
�    1      1    
��� 1 1          1  

 
Table 3.    (machine, human) assessments, n = 25. 

 
�  is given by:  
 
 
 
The denominator equals the number of unique possible comparisons between 
any two ordered pairs from a collection of n ordered pairs. 

For the data in Table 3, S+ is 162, S– is 83, and n, the number of ordered 
pairs, is 25. �  equals 0.2633; we might also say that the concordance of the 
data is 0.2633. Possible concordance values range from +1, representing 
complete agreement in ordering, to -1, representing complete disagreement 
in ordering. Whenever there are extra or duplicate pairs, the values of +1 and 
-1 are not achievable. 

Cliff (1996) provides a more detailed exposition of Kendall’s � , 
discussing variations thereof that optionally disregard extra and duplicate 
pairs. Cliff labels what we call �  as � a, and uses it most often, noting that it 
has the simplest interpretation of the lot. 

A straightforward implementation would perform the process illustrated 
above for each cell of the table. Our novel, algorithmically superior 
implementation allocates additional memory space, and in successive single 
passes through the data, applies dynamic programming to compute tables 
containing the number of data points that are: 

either on the same row as or below the current cell; 
either on the same column or to the right of the current cell; 
either on the same column or to the left of the current cell; 
strictly below and to the right of the current cell; 
strictly below and to the left of the current cell. 

Then, in a final pass, S+ and S– are computed by multiplying the number of 
data points in the current cell by the data in the final two tables listed. It is 

2/)1( −
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also possible to use more passes, but less memory, by performing the sweeps 
to the left and to the right serially instead of in parallel. 

There is a better-known ordinal metric in common use: Spearman’s � , 
also known as Spearman correlation. In our application, the number of 
distinct human assessments is constant. Therefore, after initial data 
processing has identified the unique machine assessments for memory 
allocation and indexing purposes, �  is computed in time linear in the number 
of unique machine assessments, which is not possible for � . Prototype 
implementations confirmed that �  was significantly quicker to compute for 
large data sets. 

Not only does �  more directly measure what interests us (“ for all pairs of 
positions (A, B), is position B better than position A?”), it is also more 
efficient to compute than plausible alternatives. Therefore, we concentrate 
on �  in this paper. 

4. Chess-Related Components 

Many chess programs, or chess engines, exist. Some are commercially 
available; most are hobbyist. For our work, we selected CRAFTY, by Robert 
Hyatt (1996) of the University of Alabama. CRAFTY is the best chess engine 
choice for our work for several reasons: the source was readily available to 
us, facilitating experimentation; it is the strongest such open-source engine 
today; previous research has already been performed using CRAFTY.  We 
worked with version 19.1 of the program. 

4.1 Training Data 

To assess the correlation of �  with improved play, we used 649,698 positions 
from Chess Informant 1 through 85 (Sahovski, 1966). These volumes cover 
the important chess games played between January 1966 and September 
2002. This data set was selected because it contains a variety of assessed 
positions from modern grandmaster play, the assessments are made by 
qualified individuals, it is accessible in a non-proprietary electronic form, 
and chess players around the world are familiar with it. 

We used a 32,768-position subset for the preliminary feature weight 
tuning experiments reported here. 

4.2 Test Suites 

English chess grandmaster John Nunn (1999) developed the Nunn and Nunn 
II test suites of 10 and 20 positions, respectively. They serve as starting 
positions for matches between computer chess programs, where the 
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experimenter is interested in the engine’s playing skill independent of the 
quality of its opening book.  Nunn selected positions that are approximately 
balanced, commonly occur in human games, and exhibit variety of play. We 
refer to these collectively as the “Nunn 30” . 

Don Dailey, known for his work on STARSOCRATES and CILKCHESS, 
prepared a file of two hundred commonly reached positions, all of which are 
ten ply from the initial position. We refer to these collectively as the “Dailey 
200” . 

5. Software Implementation 

Here we detail some specifics of our implementation. We discuss both 
alterations made to CRAFTY and new software written as a platform for our 
experiments. 

5.1 Use of Floating-Point Computation 

We modified CRAFTY so that variables holding machine assessments are 
declared to be of an aliased type rather than directly as integers. This allows 
us to choose whether to use floating-point or integer arithmetic via a 
compilation switch. The use of floating-point computation provides a 
learning environment where small changes in values can be rewarded. With 
these modifications, CRAFTY is slower, but only by a factor of two to three 
on a typical personal computer. The experiments were performed with this 
modified version; however, all test matches were performed with the 
original, integer-based evaluation implementation. Further details can be 
found in Section 6. 

It might strike the reader as odd that we chose to alter CRAFTY in this 
manner rather than scaling up all the evaluation function weights. There are 
significant practical disadvantages to that approach. How would we know 
that everything had been scaled? It would be easy to miss some value that 
needed to be changed. How would we identify overflow issues? It might be 
necessary to switch to a larger integer type. How would we know that we 
had scaled up the values far enough? It would be frustrating to have to repeat 
the procedure. 

By contrast, the choice of converting to floating-point is safer.  Precision 
and overflow are no longer concerns.  Also, by setting the typedef to be a 
non-arithmetic type we can cause the compiler to emit errors wherever type 
mismatches exist. Thus, we can be more confident that our experiments rest 
upon a sound foundation. 
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5.2 Hill Climbing 

We implemented an iteration-based learner, and a hill-climbing algorithm. 
Other iteration-based algorithms may be substituted for the hill-climbing 
code if desired. Because we are not working with an analytic function, we 
measure the gradient empirically. 

We multiply Vcurrent, the current weight of a feature being tuned, by a 
number fractionally greater than one1 to get Vhigh, except when Vcurrent is near 
zero, in which case a minimum distance between Vcurrent and Vhigh is 
enforced.  V low is then set to be equidistant from Vcurrent, but in the other 
direction, so that Vcurrent is bracketed between V low and Vhigh.  Two test weight 
vectors are generated: one using Vhigh, the other using V low.  All other 
weights for these test vectors remain the same as in the base vector.  This 
procedure is performed for each weight that is being tuned.  For example, 
when 11 parameters are being learned, 1 + 11 * 2 = 23 vectors are examined 
per iteration: the base vector, and 22 test vectors. 

The three computed concordances related to a weight being tuned ( � current, 
� low, and � high) are then compared.  If all three are roughly equal, no change is 
made: we select Vcurrent.  If � current is lower than both � low and � high, we choose 
the V corresponding to the highest � . If they are in either increasing or 
decreasing order, we use the slope of test points (V low, � low) and (Vhigh, � high) 
to interpolate a new point. However, to avoid occasional large swings in 
parameter settings, we bound the maximum change from Vcurrent. The final 
case occurs when � current is higher than both � low and � high. In this case, we 
apply inverse parabolic interpolation to select the apex of the parabola 
formed by the three points, in the hope that this will lead us to the highest �  
in the region. 

Once this procedure has been performed for all of the weights being 
learned, it is possible to postprocess the weight changes, for instance to 
normalize them. However, at present we have not found this to be necessary. 
The chosen values now become the new base vector for the next iteration. 

5.3 Automation 

A substantial amount of code was written to automate the communication of 
work and results between multiple, distributed instantiations of CRAFTY and 
the PostgreSQL database. We implemented placeholder scheduling (Pinchak, 
2002) so that learning could occur more rapidly, and without human 
intervention. 

 
1 The tuning experiments reported in this paper used 1.01. 
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5.4 Search Effor t Quantum 

Traditionally, researchers have used search depth to quantify search effort. 
For our learning algorithm, doing so would not be appropriate: the amount of 
effort required to search to a fixed depth varies wildly between positions, 
and we will be comparing the assessments of these positions. However, 
because we did not have the dedicated use of computational resources, we 
could not use search time either. While it is known that chess engines tend to 
search more nodes per second in the endgame than the middlegame, this 
difference is insignificant for our short searches because it is dwarfed by the 
overhead of preparing the engine to search an arbitrary position. Therefore, 
we chose to quantify search effort by the number of nodes visited. 

We instructed CRAFTY to search 16,384 nodes to assess a position. 
Earlier experiments that directly called the static evaluation or quiescence 
search routines to form assessments were not successful. When searching 
1,024 nodes per position, we had mixed results. Like the DEEP THOUGHT 
team (Nowatzyk, 2000), we found that larger searches improve the quality of 
learning. The downside is, of course, the additional processor time required 
by the learning process. 

There are positions in our data set from which CRAFTY does not complete 
a 1-ply search within 16,384 nodes, because its quiescence search explores 
many sequences of captures. When this occurs, no evaluation score is 
available to use. Instead of using either zero or the statically computed 
evaluation (which is not designed to operate without a quiescence search), 
we chose to throw away the data point for that particular computation of � , 
reducing the position count (n). However, the value of �  for similar data of 
different population sizes is not necessarily constant. As feature weights are 
changed, the shape of the search tree for positions may also change. This can 
cause CRAFTY to not finish a 1-ply search for a position within the node 
limit where it was previously able to do so, or vice versa. When many 
transitions in the same direction occur simultaneously, noticeable 
irregularities are introduced into the learning process. Ignoring the node 
count limitation until the first ply of search has been completed may be a 
better strategy. 

5.5 Performance 

Early experiments were performed using idle time on various machines in 
our department. Lately, we have had (non-exclusive) access to clusters of 
personal computer workstations, which is helpful because the task of 
computing �  for distinct weight vectors within an iteration is trivially 
parallel. Examining 32,768 positions and computing �  takes about two 
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minutes per weight vector. The cost of computing �  is negligible in 
comparison, so in the best case, when there are enough nodes available for 
the concordances of all weight vectors of an iteration to be computed 
simultaneously, learning proceeds at the rate of 30 iterations per hour. 

6. Exper imental Results 

We demonstrate that concordance between human judgments and machine 
assessments increases with increasing depth of machine search. This result, 
combined with knowing that play improves as search depth increases 
(Thompson, 1982), in turn justifies our attempt to use this concordance as a 
metric to tune selected feature weights of CRAFTY’s static evaluation 
function. 

6.1 Concordance as Machine Search Effor t Increases 

In Table 4 we computed �  for depths 1 through 7 for n = 649,698 positions, 
performing work equivalent to 211 billion (109) comparisons at each depth. 
S+ and S– are reported in billions. As search depth increases, the difference 
between S+ and S–, and therefore � , also increases. The sum of S+ and S– is 
not constant because at different depths different amounts of extra y-pairs 
and duplicate pairs are encountered. 

It is difficult to predict how close 
an agreement might be reached 
using deeper searches. Two effects 
come into play: diminishing returns 
from additional search, and dimin-
ishing accuracy of human assess-
ments relative to ever more deeply 
searched machine assessments. 
Particularly interesting is the odd-
even effect on the change in �  as 
depth increases. It has long been 

known that searching to the next depth of an alpha-beta search requires 
relatively much more effort when that next depth is even than when it is odd 
(Marsland, 1983). Notably, �  tends to increase more in precisely these cases. 

Similar experiments performed using increasing node counts, and 
increasing wall clock time (on a dedicated machine) with a different, smaller 
data set also gave increasing concordance, but, as expected, did not exhibit 
the staggered rise of the increasing depth searches. In sum, these 
experiments lend credibility to our belief that �  is a direct measure of 
decision quality. 

depth S+ / 109 S– / 109 �  
1 110.374 65.298 0.2136 
2 127.113 48.934 0.3704 
3 131.384 45.002 0.4093 
4 141.496 36.505 0.4975 
5 144.168 34.726 0.5186 
6 149.517 30.136 0.5656 
7 150.977 29.566 0.5753 

Table 4.    �  computed for various search 
depths, n = 649,698. 
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6.2 Tuning of CRAFTY’s Feature Weights 

CRAFTY uses centipawns (hundredths of a pawn) as its evaluation function 
resolution, so experiments were performed by playing CRAFTY as distributed 
versus CRAFTY with the learned weights rounded to the nearest centipawn. 
Each program played each position both as White and as Black. The feature 
weights we tuned are given along with their default values in Table 5. 
 

The scaling factors 
were chosen because 
they act as control knobs 
for many subterms. 
Bishop and knight were 
included because they 
participate in the most 
common piece imbal-
ances. Trading a bishop 
for a knight is common, 
so it is important to 
include both to show 
that one is not learning 

to be of a certain weight chiefly because of the weight of the other. We also 
included three of the most important positional terms involving rooks. 
Material values for the rook and queen are not included because trials 
showed that they climbed even more quickly than the bishop and knight do, 
yielding no new insights. 

6.2.1 Tuning from Arbitrary Values 

Figure 1 illustrates the learning. The 11 parameters were all initialized to 50, 
where 100 represents both the value of a pawn and the default value of most 
scaling factors. For ease of interpretation, legend contents are ordered to 
match up with the vertical ordering of corresponding data at the rightmost 
point on the x-axis. For instance, bishop is the topmost value, followed by 
knight, then � , and so on. �  is measured on the left y-axis in linear scale; 
weights are measured on the right y-axis in logarithmic scale, for improved 
visibility of the weight trajectories. 

Rapid improvement is made as the bishop and knight weights climb 
swiftly to about 285, after which �  continues to climb, albeit more slowly. 
We attribute most of the improvement in �  to the proper determination of 
weight values for the minor pieces. All the material and positional weights 
are tuned to reasonable values. 

feature default value 
king safety scaling factor 100 

king safety asymmetry scaling factor -40 
king safety tropism scaling factor 100 

blocked pawn scaling factor 100 
passed pawn scaling factor 100 

pawn structure scaling factor 100 
bishop 300 
knight 300 

rook on the seventh rank 30 
rook on an open file 24 

rook behind a passed pawn 40 
 

Table 5.    Tuned features, with CRAFTY’ S default values. 
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Figure 1.    Change in weights from 50 as �  is maximized. 

 
The scaling factors learned are more interesting. The king tropism and 

pawn structure scaling factors gradually reached, then exceeded CRAFTY’s 
default values of 100. The scaling factors for blocked pawns, passed pawns, 
and king safety are lower, but not unreasonably so. However, the king safety 
asymmetry scaling factor dives quickly and relentlessly. CRAFTY’s default 
value for this term is –40; perhaps we should have started it at a lower value 
to speed convergence. 

Tables 6 and 7 contain match results of the weight vectors at specified 
iterations during the learning illustrated in Figure 1. Each side plays each 
starting position both as White and as Black, so with the Nunn 30 test, 60 
games are played, and with the Dailey 200 test, 400 games are played. 
Games reaching move 121 were declared drawn. 

The play of the tuned program improves dramatically as learning occurs.  
Of interest is the apparent gradual decline in percentage score for later 
iterations on the Nunn 30 test suite. The DEEP THOUGHT team (Nowatzyk, 
2000) found that their best parameter settings were achieved before reaching 
maximum agreement with GM players. Perhaps we are also experiencing 
this phenomenon. We used the Dailey 200 test suite to attempt to confirm 
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that this was a real effect, and found that by this measure too, the weight 
vectors at iterations 300 and 400 were superior to later ones. 

Throughout our ex-
perimentation, we have 
found that our tuned 
feature weights tend to 
perform better on the 
Nunn test suite than the 
Dailey test suite. Nunn’s 
suite contains positions 
of particular strategic 
and tactical complexity. 
Dailey’s suite is largely 

more staid, and contains positions from much earlier in the game. CRAFTY’s 
default weights appear to be more comfortable with the latter than the 
former. 

 
We conclude that the 

learning is able to yield 
settings that perform 
comparably to settings 
tuned by hand over years 
of games versus grand-
masters. 

 
 
 

6.2.2 Tuning from CRAFTY’s Default Values 

We repeated the just-discussed experiment with one change: the feature 
weights start at CRAFTY’s default values rather than at 50. Figure 2 depicts 
the learning. Note that we have negated the values of the king safety 
asymmetry scaling factor in the graph so that we could retain the logarithmic 
scale on the right y-axis, and also for another reason, for which see below. 

While most values remain normal, the king safety scaling factor 
surprisingly rises to almost four times the default value. Meanwhile, the king 
safety asymmetry scaling factor descends even below –100. The 
combination indicates a complete lack of regard for the opponent’s king 
safety, but great regard for its own. Table 8 shows that this conservative 
strategy is by no means an improvement. 
 

iteration wins draws losses percentage score 
0 3 1 56 5.83 

100 3 9 48 12.50 
200 14 21 25 40.83 
300 21 26 13 56.67 
400 19 28 13 55.00 
500 18 26 16 51.67 
600 18 23 19 49.17 

 
Table 6.    Match results (11 weights tuned from 50 vs. 
default weights), 5 minutes per game, Nunn 30 test suite. 

iteration wins draws losses percentage score 
0 3 13 384 2.38 

100 12 31 357 6.88 
200 76 128 196 35.00 
300 128 152 120 51.00 
400 129 143 128 50.13 
500 107 143 150 44.63 
600 119 158 123 49.50 

 
Table 7.    Match results (11 weights tuned from 50 vs. 
default weights), 5 minutes per game, Dailey 200 test suite. 
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Figure 2.    Change in weights from CRAFTY’s defaults as �  is maximized. 

 
The most unusual 

behaviour of the king 
safety and king safety 
asymmetry scaling fac-
tors deserves specific 
attention. When the 
other nine terms are 
left constant, these two 
terms behave similarly 
to how they do when 

all eleven terms are tuned. In contrast, when these two terms are held 
constant, no statistically significant performance difference is found between 
the learned weights and CRAFTY’s default weights. When the values of the 
king safety asymmetry scaling factor are negated as in Figure 2, it becomes 
visually clear from their trajectories that the two terms are behaving in a 
codependent manner. More investigation is required to determine the root 
cause of this behaviour. 

iteration wins draws losses percentage score 
25 19 23 18 50.83 
50 16 31 13 52.50 
75 11 32 17 45.00 

100 14 28 18 46.67 
125 9 23 28 34.17 
150 8 35 17 42.50 

 
Table 8.    Match results (11 weights tuned from defaults vs. 
default weights), 5 minutes per game, Nunn 30 test suite. 
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7. Conclusion 

We have proposed a new procedure for optimizing static evaluation 
functions based upon globally ordering a multiplicity of positions in a 
consistent manner. This application of ordinal correlation is fundamentally 
different from prior evaluation function tuning techniques. We believe it is 
worth further exploration, and hope it will lead to a new perspective and 
fresh insights about decision making in game-tree search. 

While our initial results show promise, more work is certainly needed. It 
is important to keep in mind that we tuned feature weights in accordance 
with human assessments. Doing so may simply not be optimal for computer 
play. Nonetheless, it is worth noting that having reduced the playing ability 
of a grandmaster-level program to candidate master strength by significantly 
altering several important feature weights, the learning algorithm was able to 
restore the program to grandmaster strength. 

7.1 Reflection 

Having identified the anomalous behaviour in Figure 2, it is worth looking 
again at Figure 1. The match results suggest that all productive learning 
occurred by iteration 400 at the latest, after which a small but perceptible 
decline appears to occur. The undesirable codependency between the king 
safety and king safety asymmetry scaling factors also appears to be present 
in the later iterations of the first experiment. 

Furthermore, our training data is small enough (n = 32,768) that 
overfitting is a consideration. Future learning experiments should use more 
positions.  This may in turn reduce the search effort required per position to 
tune weights well. Although we are not certain why larger searches improve 
the quality of learning, as the amount of search used per machine assessment 
increases, the amount of information gathered about how relative weights 
interact also increases.  On the surface, then, the improvement is not 
illogical. 

While some weights, for instance the positional rook terms, learned 
nearly identical values in both experiments, other features exhibited more 
variance. For cases such as the king tropism and blocked pawns scaling 
factors, it could be that comparable performance may be achieved with a 
relatively wide range of values. 

In our reported experiments, computation of �  was dominated by the 
search effort to generate machine assessments, enough so that the use of 
Spearman’s �  (or perhaps even Pearson correlation, notwithstanding our 
original rationale) may also have been possible. Maximizing these 
alternative metrics could be tried, at least when the training data contains 
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relatively few positions. Other optimization strategies, for instance genetic 
algorithms, could also be tried. 

It was not originally planned to attempt to maximize �  only upon 
assessments at a specific level of search effort. Unfortunately, we 
encountered implementation difficulties, and so reverted to the approach 
described herein. We had intended to log the node number or time point 
along with the new score whenever the evaluation of a position changes. 
This would have, without the use of excessive storage, provided the precise 
score at any point throughout the search. We would have tuned to maximize 
the integral of �  over the period of search effort. Implementation of this 
algorithm would more explicitly reward reaching better evaluations more 
quickly, improving the likelihood of tuning feature weights and perhaps even 
search control parameters effectively. 

7.2 Future Directions 

While our experiments used chess assessments from humans, it is possible to 
use assessments from deeper searches and/or from a stronger engine, or to 
tune a static evaluation function for a different domain. Depending on the 
circumstances, merging consecutively-ordered fine-grained assessments into 
fewer, larger categories may be desirable. Doing so could even become 
necessary should the computation of �  dominate the time per iteration, but 
this is unlikely unless one uses only negligible search to form machine 
assessments. 

Elidan et al. (2002) found that perturbation of training data could assist in 
escaping local maxima during learning. Our implementation of � , designed 
with this finding in mind, allows non-integer weights to be assigned to each 
cell. Perturbing the weights in an adversarial manner as local maxima are 
reached, so that positions are weighted slightly more important when 
generally discordant, and slightly less important when generally concordant, 
could allow the learner to continue making progress. 

It would also be worthwhile to examine positions of maximum 
disagreement between human and machine assessments, in the hope that 
study of the resulting positions will identify new features that are not 
currently present in CRAFTY’s evaluation. Via this process, a number of 
labeling errors would be identified and corrected. However, we do not 
believe that this would materially affect the outcome of the learning process. 

A popular pastime amongst computer chess hobbyists is to attempt to 
discover feature weight settings that result in play mimicking their favourite 
human players. By tuning against appropriate training data, e.g., from 
opening monographs and analyses published in Chess Informant and 
elsewhere that are authored by the player to be mimicked, training an 
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evaluation function to assess positions similarly to how a particular player 
might actually do so should now be possible. 

Producers of top computer chess software play many games against their 
commercial competitors. They could use our method to model their 
opponent’s evaluation function, then use this model in a minimax (no longer 
negamax) search. Matches then played would be more likely to reach 
positions where the two evaluation functions differ most, providing 
improved winning chances for the program whose evaluation function is 
more accurate, and object lessons for the subsequent improvement of the 
other. 

Identifying the most realistic mapping of CRAFTY’s machine assessments 
to the seven human positional assessments is also of interest. This 
information would allow CRAFTY (or a graphical user interface connected to 
CRAFTY) to present scoring information in a human-friendly format 
alongside the machine score. 
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