
Selective Extensions in Game-Tree Search †

Chun Ye
T.A. Marsland

Computing Science Department
University of Alberta

Edmonton
CANADA T6G 2H1

email: {chunye,tony}@cs.ualberta.ca

ABSTRACT
Although most of today’s chess playing programs still adopt a brute-force approach in
their search region, much has been done on search extensions to make the effort spent
more worthwhile. In this paper, we discuss some successful search extension heuristics
in the domain of Chinese Chess, a game that bears much resemblance to chess. We
restrict our experiments to the following: knowledge search extensions, singular exten-
sions, null move search (both in the brute-force and the quiescence search phase) and
futility cutoffs. These heuristics have been implemented in Abyss, a Chinese Chess pro-
gram participating in the 3rd Computer Olympiad. From the algorithmic point of view,
since Chinese Chess differs most from chess in its repetition rules, some discussion is
also devoted to that matter.

1. Introduction
Most of today’s chess playing programs still adopt a brute-force framework for their
search region, yet almost all of them employ selective extensions on particular moves
during the search to make the effort spent more worthwhile. Apart from the compli-
cated repetition rules, Chinese Chess is similar in nature to chess (perhaps more tactical
since in Chinese Chess no promotion of pawns is possible, so that all games have to be
won through a successful attack on the opponent’s king). It is natural that equivalent
extension heuristics should exist for Chinese Chess but whether they are effective and
whether the different evaluation functions, promotions and repetition rules affect their
properties is the motivation of this paper.

† This paper is based on the ongoing work by Chun Ye as part of his M. Sc. research at the Uni-
versity of Alberta, and is partially supported by the Natural Sciences and Engineering Research
Council of Canada under Grant A0792 held by the second author.

1



To narrow the focus of our discussion, we restrict ourselves to the following heuristics
drawn from computer chess; first, extensions using domain specific knowledge; second,
singular extensions where information gathered from the search itself is used to decide
whether to search deeper; third, null move search (both in the brute-force and quies-
cence search phase) and last, futility cutoffs, a means of forward pruning some seem-
ingly futile moves with little risk. Some space is also devoted to the repetition rule of
Chinese Chess, since it differs in a major way from repetition handling in chess.

2. Search Extensions on Forcing Moves
With today’s faster hardware and enhanced search algorithms, it is possible for the best
chess playing programs to search to a formidable depth (say 9-ply or even deeper) dur-
ing most of the middle game. Even for those programs, moves beyond the game tree
horizon may be neglected. To alleviate this problem, a more promising approach is
adopted viz., selective extensions, increasing the search by an extra ply (plies) when cer-
tain criteria are met. For instance, chess playing programs will usually extend the search
with an extra ply when the side to move is in check, since checking usually consists of a
serious threat. The safety of a deeper search is worth the extra-cost, which isn’t high
since the number of replies to a checking move is small. This is one example of using
domain-specific knowledge to extend the search depth. Other approaches include
extending on recaptures [Ebeling 1987, p. 101-2], pawn moves to the 6th and 7th rank
in chess [Kaindl 1982, Anantharaman et al. 1988], moves near the territory of the oppo-
nent’s king [Anantharaman 1991], strictly forced moves (say if one side has only one
legal move) [Uiterwijk 1991] and certain piece evading moves to bring a piece out of
the opponent’s attack (an ad hoc heuristic tried in Abyss). The latter two hav e not yet
been adequately explored in the computer chess literature, but both have a sound foun-
dation.
Here we give descriptions for these search extension heuristics, some experimental
results, and share our experience in implementing them in the Abyss Chinese Chess pro-
gram. The search extension heuristics experimented with include: check evasion, recap-
tures, futility-cutoff, and null move search. Results from eleven combinations of the
four heuristics are presented, as tested against 50 Chinese Chess middle games drawn
from a standard work [Tu 1985]. These results are summarized in Table 1, through data
from a series of experiments defined in Table 2. In those tables the success rate is the
fraction of the 50 positions correctly solved. A more accurate measure (considering
only those moves that not only meet the solutions but also provide correct principal vari-
ations) will be used in the M.Sc. thesis in preparation [Ye 1992].

2



Table 1: Experiment results for different extension heuristics (over 50 positions)

depth = 3 depth = 4 depth = 5
node success node node success node node success node
count rate ratio count rate ratio count rate ratio

Exp. No.

1 202898 26% 0% 1607058 30% 0% 5793297 32% 0%
2 251769 32% 24% 1572444 36% -2% 7333702 52% 27%
3 207583 26% 2% 2067686 30% 29% 6598971 32% 14%
4 259419 32% 28% 2005139 38% 25% 8050061 54% 39%
5 163352 24% -19% 1143982 28% -29% 3147045 30% -46%
6 213529 32% 5% 1065341 34% -34% 4602454 50% -21%
7 165255 24% -19% 1217646 28% -24% 3568519 30% -38%
8 222135 32% 9% 1115973 36% -31% 5144946 50% -11%
9 175702 26% -13% 1125369 32% -30% 4085124 30% -29%
10 219115 34% 8% 1426952 38% -11% 4735374 54% -18%
11 195930 34% -3% 856910 36% -47% 3319976 50% -43%

Table 2: Flag settings for different experiments
Exp. No. Configuration

1 − check_evasion − recapture − futility_cutoff − null_move
2 + check_evasion − recapture − futility_cutoff − null_move
3 − check_evasion + recapture − futility_cutoff − null_move
4 + check_evasion + recapture − futility_cutoff − null_move
5 − check_evasion − recapture + futility_cutoff − null_move
6 + check_evasion − recapture + futility_cutoff − null_move
7 − check_evasion + recapture + futility_cutoff − null_move
8 + check_evasion + recapture + futility_cutoff − null_move
9 − check_evasion − recapture − futility_cutoff + null_move
10 + check_evasion + recapture − futility_cutoff + null_move
11 + check_evasion + recapture + futility_cutoff + null_move

2.1. Search Extensions using Domain Specific Knowledge

2.1.1. Check Evasion
Because of its simplicity and efficiency, check evasion is perhaps the most commonly
found feature in chess programs. A checking move usually forms a major threat and is
a forcing move, therefore a one ply deeper search might reveal some tactics that are
beyond the original horizon. The situation is of course substantially the same in Chinese
Chess, so one can expect a similar benefit from adding such a heuristic.

3



Our results confirm this assumption, since although adding the check evasion heuristic
caused the nodes searched to be increased (by an average of 16%; Experiment 1 and
Experiment 2, Table 1), the cost was acceptable because more correct moves were suc-
cessfully found (an average of 33% more; Experiment 1 and Experiment 2, Table 1).

2.1.2. Recaptures
Capturing is the essence of tactics in chess (and Chinese Chess), and a capture search
[Bettadapur and Marsland 1988] forms the kernel part of quiescence search. In the
exhaustive search region, some captures are more or less forced, e.g., recaptures, as
defined by Carl Ebeling [1987, p. 101-2]. Therefore it might be worthwhile to extend
one more ply on recaptures with the hope that some deep tactics can be revealed.
Note that extending all recaptures could be expensive since a capture doesn’t restrict the
move choices by the opponent, therefore care is needed to avoid a search explosion. In
Abyss, we adopt the same rule as in Hitech [Ebeling 1987, Berliner 1989]; Only recap-
tures that bring the material merit into a window of the initial root value are considered.
Our experiments show that adding recaptures solely doesn’t improve the success rate
(Experiment 1 and Experiment 3, Table 1), it may however improve the play of the pro-
gram. Also Experiments 2 and 4 show that improvements (2 percentage points) are pos-
sible when recaptures is combined with the check evasion heuristic.

2.1.3. Other Forcing Moves
There are other moves in Chinese Chess which may be considered ‘forcing’ and are
worth searching with an extra ply. We will discuss three possibilities here, none of
which are included in the current version of Abyss.
During the 3rd Computer Olympiad, Jos Uiterwijk (author of the chess playing program
Touch) mentioned that he had implemented another heuristic: where a node has only one
legal move it is extended an extra ply [Uiterwijk 1991]. If there is only one legal move
in a position, it is of course ‘forced’ and a less turbulent and more reliable value may be
returned after searching by an extra ply. Such a heuristic is especially useful in situa-
tions where one side can make a move which leads to a decisive advantage (like a mate
threat) but the opponent can ‘thwart’ this threat by making some delaying moves like
checks. By disregarding these moves, it is possible that we can avoid being ‘fooled’ into
missing the threat. Notice that when there is only one legal move in a particular posi-
tion, this usually means the king of the side to move is under check, therefore two extra
plies should be extended when combining with the check evasion heuristic.
Another possibility is to extend the search on moves that bring to safety the piece under
attack. This may be viewed as a generalized case of the check evasion heuristic, since
otherwise the piece under attack will be captured by the opponent in the next move,

4



resulting in a material deficit. Moving the piece to safety (to a square where it is no
longer under opponent’s attack or is protected by pieces of its own side) is somehow
forced.
The other reason of using this ad hoc extending heuristic in the search algorithm in
Abyss stems from consideration of the repetition rule of Chinese Chess. Null moves can
usually be used to detect threats [Anantharaman 1991], but not all threats identified by
the null move follow the rules of Chinese Chess, and the expense of such a detection is
high. Therefore, some simplification to restrict the type of moves which are considered
‘threat’ is made in Abyss (see Section 5 for more details about the repetition check algo-
rithm). As a by-product of detecting a piece evading move, we gain knowledge about
how to distinguish a legal repetition from an illegal one.
In Abyss, a simplified version of this heuristic is included; it only considers moving a
major piece out of attack, since including all types of pieces proved to be too expensive.
There is still another type of move that is worth considering, i.e., moving a piece near
the enemy’s king [Anantharaman 1991]. In Chinese Chess, the king is more vulnerable
to attack than in chess. This is because the king in Chinese Chess is confined to only 9
squares (called the palace), and no extra protection is possible through a pawn promo-
tion. So the chance is higher here that a game ends through a direct attack upon the
opponent’s king. In fact, in Chinese Chess there is an adage which says "three pieces
besides wins the game"; Chinese Chess players consider positions with three pieces near
the opponent’s palace as winning, and will choose plans to aim for or avoid this combi-
nation. This shows how strong these moves (toward the opponent’s king) can be, and
therefore it is certainly worth extending the search when these positions occur. How-
ev er, it might be more efficient to consider only moves that bring the third piece near the
territory of the opponent’s king.
The above mentioned search extension heuristics are not yet included in the current ver-
sion of Abyss and remain part of our ongoing work.

2.2. Singular Extensions
Using domain-specific knowledge to extend search depth is of course beneficial.
Although experiments [Hyatt et al. 1990, Ye 1992] show that a n-ply search enabled
with extension heuristics is no better than a (n+2)-ply exhaustive search, it outperforms
(n+1)-ply exhaustive search in two ways: first it searches fewer nodes (time) and second
the move quality is better.
Nevertheless, there are two problems when using domain-specific knowledge to extend
the search. As Anantharaman et al. [1988] state:

"First, it is difficult to provide enough knowledge to cover all or most of the
interesting cases. Second, the knowledge is usually based only on the static

5



features of the moves without taking into account the dynamics of the posi-
tion, and the search extensions based on such knowledge may be grossly
irrelevant and wasteful."
A more powerful search extension heuristic called Singular Extensions was
presented by Anantharaman et al. [1988], and proved to be a great success
in the chess playing program Deep Thought. The idea of Singular Exten-
sions is to use information gathered in the search itself to extend the search
whenever one move is significantly better than the sibling moves.

There are two types of singular moves which are considered during the search; they are
Singular PV moves and Singular Fail-high moves, which are defined elsewhere [Anan-
tharaman et al. 1988]. Both are considered in the current version of the Abyss program.
However, although the Singular Fail-high heuristic was built according to the definition,
some simplifications were made to the Singular PV heuristic implementation, because
of limited programming and testing time before its use at the 3rd Computer Olympiad.
Normally, a re-search is required when the value of a PV Singular move drops below α
after it is extended with an extra ply. There are many implementation complications
related to handling this situation [Anantharaman et al. 1988, Anantharaman 1991].
Abyss simplifies the treatment by only searching the remaining moves to a nominal
depth (without considering any singular extensions) when a move is found to be PV Sin-
gular but drops its value afterwards when it is extended. Of course, such a treatment is
purely because of the time available for programming.
Complete results for the Singular Extensions experiments are not yet available. How-
ev er, both self-playing and playing against a commercial Chinese Chess program (Xian
[Jacobs 1989]) bring some promising results, but a more complete discussion of this
heuristic is left to the upcoming thesis [Ye 1992].

3. Null Move Heuristic
Abyss employs two different heuristics when using the Null Move to decide whether to
search deeper. First, Abyss uses the Null Move heuristic, as described by Goetsch and
Campbell [1990], in its brute-force region; and second, Abyss carries out a Null Move
Quiescence Search, as proposed by Don Beal [1989], before it starts a capture search
[Bettadapur and Marsland 1988].
The Null Move heuristic [Goetsch and Campbell 1990] is a means of improving search
speed with only little risk. Abyss tries a null move search in the internal nodes with a
depth reduction of 1 ply before it starts searching legal moves. If the value returned is
greater than β, this value is accepted as a true cutoff; otherwise, this value is used to
improve the α bound.

6



The Null Move heuristic proves to be successful in Abyss. The savings are great; An
av erage node reduction of 24% (Experiment 1 and Experiment 9, Table 1) is achieved
by the Null Move heuristic alone. When combined with other search extension heuris-
tics, like check evasion and recaptures, not only does the null move heuristic reduce
node expansions, but it does not hurt the average success rate either (compare Experi-
ment 1 with Experiments 4 and 10, Table 1). Actually, Abyss disallows the null move
search in some critical lines when it knows that the side to move is under threat; this
could be a check or certain capture moves. Also, the null move search is not used near
frontier nodes [Marsland 1987].
The other heuristic using the null move concept is the Null Move Quiescence Search
[Beal 1989]. Abyss separates its search into three phases: brute-force, null move quies-
cence and capture search. The purpose of adding a Null Move Quiescence Search layer
is to find some general threats by the least cost. Our initial experiments show that the
av erage branching factor of the null move quiescence search is about 2, and decreases as
the depth of the search deepens, as Table 3 shows.

Table 3: Branching factor of null move quiescence search (1 ply exhaustive)
Depth 2 3 4 5 6
Branching Factor 3.26 2.88 2.38 2.24 1.85

One problem related to implementing the Null Move Quiescence Search is how many
plies will be feasible. The algorithm is self-terminating but for computers slower than a
Sun SPARC, it is probably impractical to search without a depth limit. The depth that
Abyss uses is 4 ply, since in Chinese Chess (and also in chess) most of the threats can be
detected by a 4-ply brute-force search. These threats should also be found by using the
Null Move Quiescence Search, provided they are purely tactical. However, we lack
complete data to confirm that a depth of 4 ply is optimal for micro-computers.

4. Gamma Algorithm, Razoring and Futility Cutoff
The final search extension heuristic that is considered in Abyss is the futility-cutoff. This
heuristic actually provides forward pruning, instead of extending the search. It is how-
ev er another means of performing a selective search and is therefore included here.
The idea of futility cutoff isn’t new, Newborn [1975, p. 177-8] presented a method
which he called the Gamma algorithm. The idea is to end the search if the material merit
of the current node in the search tree is worse than that of the node making the best
move found so far. A similar idea is used in Chess 4.5 too [Slate and Atkin 1983]. There
is also the pruning technique by Kent and Birmingham [1977] called razoring, which
tries to terminate the search if the merit of the current node exceeds the β bound. All
these heuristics are generally applicable and closely resemble Newborn’s Gamma

7



algorithm, but using them involves some risk. A safer variation is the heuristic which
Jonathan Schaeffer calls the futility-cutoff [Schaeffer 1986, p. 33-4]. The main differ-
ences are: First, use of a futility-cutoff is restricted to the layer before the frontier nodes
in the search tree. Second, material merit is used to decide whether to stop the search or
not, but here the total value of the material merit and the maximum positional value is
used. Third, the search doesn’t stop when such a criterion is met, instead, it uses this
information to forward prune most of the moves and only considers those which bring
the material merit into the current window; this consists of all checking moves and some
of the captures. In other words, the futility-cutoff is a low risk transformation of nodes
near the frontier into tip nodes when certain criteria are met. Although this heuristic is
often mentioned, only Schaeffer [1986] provides quantitative data to show its effec-
tiveness. Here we offer results based on data gathered from the search of 50 Chinese
Chess middle game positions.
Table 4 shows that the futility-cutoff heuristic gives as great node count savings (an aver-
age of 32%) as the Null Move heuristic, while retaining a small move choice error (up to
4%). Combining both heuristics result in even better savings (an average of 47%; see
Experiment 4 and Experiment 11, Table 1) without worsening the moves selected,
although it is hard to say which heuristic gives more savings (Experiment 8 and Experi-
ment 10, Table 1). However, using futility-cutoff proves to be a little riskier and the right
move success rate deteriorates when the depth goes deeper (2% at depth 4 and 4% at
depth 5, Table 4). Nevertheless, because of its great savings, especially when combing
with the Null Move heuristic, it is still advisable to include this heuristic in the search.

Table 4: Node savings and success errors when using a futility-cutoff

depth = 3 depth = 4 depth = 5
savings errors savings errors savings errors

Comparisons

Exp. 1 and Exp. 5 19% 4% 29% 4% 46% 2%
Exp. 2 and Exp. 6 15% 0% 32% 2% 37% 2%
Exp. 3 and Exp. 7 20% 2% 41% 2% 46% 2%
Exp. 4 and Exp. 8 14% 0% 44% 2% 36% 4%
Exp. 10 and Exp. 11 11% 0% 40% 2% 30% 4%

5. Impact of the Chinese Chess Repetition Rule
Although similar to chess, Chinese Chess differs significantly in its repetition rule. For
example, repetition check is considered a draw in chess, but such a repetition is not
allowed in Chinese Chess. In general, the rules of Chinese Chess disallow the use of
certain repetitions after a threat move (ev en so there are exceptions). Three types of
moves are considered as threats; first, checking moves; second, moves that threaten to
win material; and last, moves that threaten to mate. However, the rule allows certain

8



repetitions via a ‘threat’, provided the current position is a repetition and is reached by a
threat move as well (again there are exceptions to this).
Since the repetition rule of Chinese Chess is so complicated, none of the current Chi-
nese Chess programs can claim that they handle all situations correctly. Tsao Kuo-Ming
et al. [1990] have proposed a means for their program Chess Master to handle most of
the commonly occurring situations. The commercial Chinese Chess program Xian
[Jacobs 1989] guarantees never to make an illegal repetitive move, but still lacks the
knowledge to handle cases when a repetition would be legal; and in some cases it allows
the opponent to make an illegal repetitive move. Another program, Surprise, a partici-
pant at the 3rd Computer Olympiad, allows certain check repetitions (which are illegal),
when it finds that all other alternatives are significantly ‘worse’ (as evidenced by Sur-
prise’s play during the 3rd Computer Olympiad).
In Abyss, we tried a more generalized repetition detection algorithm, differentiating
between detection in the root and during interior nodes. The scenario behind this is to
use a more strict rule for the root node but be ‘generous’ to internal nodes.
For internal nodes, some approximation is made and only check repetition and some
simple piece-winning threats are considered. Two positions are considered identical if
their transposition table locks [Zobrist 1970, Marsland 1987] are the same. A stack
(sequential table) is used to store all such locks from the first move in each game, no
count of the number of repetitions is kept. If a repetition under such a definition is
detected, we determine not only whether the move reaching this position is a check, or a
threat to win a lone piece, but also that the previous move is not such a simple threat; If
the preceding move was not a threat, then a threatening move leading to a repeated posi-
tion is assigned an illegal score (almost as poor as a mate score). Any other combination
of moves to a repeated position is given a draw score and in both cases there is no fur-
ther search. The reason for using an illegal score is because the definition of repetition
here is approximated, and so we might miss the only possible defense if an illegal score
is not better than a mate score.
Nevertheless, at the root node an illegal move will be disallowed, so a more strict repeti-
tion check algorithm is adopted. For each move being considered at the root, we check
backwards to see if this position is being repeated for the third time; if so, and the move
that reaches this position falls in the category of threat (as defined in Section 5.1), we
backup to see if the previous position is also a repetition (not necessarily for the third
time) and whether the move reaching that position is also a threat. If the test of the sec-
ond position fails (the position is not repeated or the move to it is not a threat), we
assign the value of the current move as forbidden, a score worse than mate; in all other
cases when a three-fold repetition is detected, a draw score is assigned. We hav en’t yet
had an opportunity to test the program with a large suite of real problems, so it is too
early to say how well the algorithm we adopted in Abyss handles the more difficult

9



repetition conditions in Chinese Chess.

5.1. The Definition of Threat
In Abyss a threat is defined as a:

Checking threat: If a move delivers check, it is a threat. This is the simple case.
Mate threat: If after one side has made a move, the opponent can be mated by a
series of checking moves, the first move is considered to be a mate threat. In
Abyss, an approximation is adopted. We do a search to a depth of 3, considering
only checking moves and replies to check, and assume that there is a mate if a
mate score is returned for this search. We believe that the chance of having a
mate-in-n (n > 3) threat is too rare to be worth including in the repetition detec-
tion algorithm.
Piece-winning threat: Again some simplifications are made, and we only consider
those moves that threaten to win an unprotected piece (passed pawns and all
minor and major pieces in Chinese Chess).
The expense of threat detection isn’t as large as it seems, because the above oper-
ations are only carried out when a third-time-repetition is seen, and that test is
only done once during the search.

Further work is required to consider more backward positions when a repetition is
found. At the moment we can handle some difficult repetition situations, e.g., two
threats over two threats (a draw) or two threats over one threat (a loss). Also, because of
time limits, search to some predefined fixed depth might be required to detect whether a
side has a piece-winning threat. By restricting the moves to only captures, checking
moves and replies to checks (an extended quiescence search), we can do a search after
making a null move (in this case making two consecutive moves for the side causing the
repetition). If the value returned exceeds a certain amount (the threat margin), the first
move can be thought of as a threat and can be treated accordingly.

6. Future Work
Selective Extensions has proved to be a promising approach to adding selectivity in
today’s (Chinese) chess-playing programs using brute-force search algorithms. In this
paper, we discussed some extension heuristics adopted in the Chinese Chess playing
program Abyss. Apart from the experiments described here, there are some other things
which are worth considering for future work.
First, before making further comparisons, we must implement a full version of the Sin-
gular Extensions heuristic, to determine its full effectiveness.
Second, we must combine different extension heuristics. Null Move Quiescence Search
is an efficient means in detecting threats. The use of Singular Extensions is another way

10



of revealing deep combinations, but which of the two is more cost-effective? Further, is
there a hybrid which will be better than any single heuristic?
Third, we must find an optimal set of these heuristics for micro-computers. Most of the
described heuristics were tested on today’s fastest hardware. It is possible that not all of
them will be equally effective for micro-computers. Therefore, it is highly desirable that
an optimal combination be found and some of the heuristics be excluded.
We expect that at least some of these questions will be answered after the experimental
work for the current M.Sc. thesis research is complete.

7. Acknowledgment
We thank Alan Sharpe and Bin Zhang for helping with the testing of Abyss, and Dr.
Nick Jacobs for making the code of his Xian program available. We also recognize the
value of Don Beal’s discussions about null move heuristics, during his three-month stay
as a Visiting Professor.

11



Bibliography
T. Anantharaman, M. Campbell and F. Hsu, "Singular Extensions: Adding Selectivity to

Brute-force Searching," Int. Comp. Chess Assoc. J., 11(4), 1988, pp. 135-143.
T. Anantharaman, "Extension Heuristics," Int. Comp. Chess Assoc. J., 14(2), 1991, pp.

47-65.
D.F. Beal, "Experiments with the Null Move," in Advances in Computer Chess 5, D.

Beal (ed.), North-Holland, 1989, pp. 65-79.
H. Berliner, "Some Innovations Introduced by Hitech," in Advances in Computer Chess

5, D. Beal (ed.), North-Holland, 1989, pp. 283-293.
P. Bettadapur and T.A. Marsland, "Accuracy and Savings in Depth-Limited Capture

Search," Int. J. Man Machine Studies, 29(5), 1988, pp. 497-502.
J.A. Birmingham and P. Kent, "Tree-searching and Tree-pruning Techniques," in

Advances in Computer Chess 1, M. Clarke (ed.), Edinburgh Univ. Press, Edin-
burgh, 1977, pp. 89-107.

C. Ebeling, All the Right Moves: a VLSI Architecture for Chess, MIT Press, 1987.
G. Goetsch and M. Campbell, "Experiments with the Null Move Heuristic in Chess," in

Computers, Chess, and Cognition, T.A. Marsland and J. Schaeffer (eds.),
Springer-Verlag, 1990, pp. 159-168.

R.M. Hyatt, A.E. Gower and H.L. Nelson, "Cray Blitz," in Computers, Chess, and Cog-
nition, T. A. Marsland and J. Schaeffer (eds.), Springer-Verlag, 1990, pp.
110-130.

N.J.D. Jacobs, "Xian, a Chinese Chess Program," in Heuristic Programming in Artificial
Intelligence, D. Levy and D. Beal (eds.), Ellis Horwood, London, 1989, pp.
104-112.

H. Kaindl, "Quiescence Search in Computer Chess," SIGART Newsletter, Vol. 80, 1982,
pp. 124-131.

T.A. Marsland, "Computer Chess Methods," in Encyclopedia of Artificial Intelligence,
1st edition, S. Shapiro (ed.), John Wiley, 1987, pp. 159-171.

M. Newborn, Computer Chess, Academic Press, 1975.
J. Schaeffer, "Experiments in Search and Knowledge," Technical Report TR 86-12, Uni-

versity of Alberta, July 1986.
D. J. Slate and L. R. Atkin, "CHESS 4.5−The Northwestern University Chess Program,"

in Chess Skill in Man and Machine, P.W. Frey (ed.), Springer-Verlag, New York,
1983, pp. 92-118.

12



K. Tsao, H. Li and S. Hsu, "Design and Implementation of a Chinese Chess Program,"
in Heuristic Programming in Artificial Intelligence 2, D. Levy and D. Beal (eds.),
Ellis Horwood, London, 1990, pp. 108-118.

J. Tu, Encyclopedia of Chinese Chess, Shanghai Cultural Press, 1985.
J. Uiterwijk, Personal communications with Touch’s author, 3rd Computer Olympiad,

Maastricht, The Netherlands, 1991.
C. Ye, "Selective Extensions for Chinese Chess," M.Sc. Thesis, Computing Science

Dept., University of Alberta, in preparation, 1992.
A.L. Zobrist, "A New Hashing Method with Applications for Game Playing," Tech.

Rep. 88, Computer Science Department, Univ. of Wisconsin, Madison, April,
1970; Also, Int. Comp. Chess Assoc. J., 13(2), 1990, pp. 169-173.

13


