Distributed Debugging in the Large

Zhonghua Yang
CRC for Distributed Systems Technology
University of Queensland, QLD 4072, Australia

Email: yang@dstc.edu.au

Abstract

A notion of distributed debugging based on partially
ordered events is presented. Both the execution model
of a distributed program and an order-preserving mech-
anism supporting this notion are formally examined.
In this paper, we discuss the fundamentals of distributed
computation for debugging and identify the atomic pro-
cess interaction group as a higher level view of the par-
tial ordering model of program execution. This atomic
process interaction group exists inherently in a com-
putation and has the distinct properties of indivisi-
bility and independence, with no communication tak-
ing place between groups. We claim that the atomic
process interaction group is a unifying mechanism for
event and process abstraction and advocate it as a ba-
sic debugging unit. Finally, an algorithm to detect the
atomic groups as they occur during a computation is
outlined.

1 Introduction

The difficulties in debugging distributed programs
(distributed debugging for short) are well recognized,
and include:

1. The complexity of the control flow of a distributed
program. Accordingly, the interactions between
component processes of the program become very
intricate.

2. Communication with an unpredictable delay. This
makes it difficult to obtain and maintain a global
state and time of the computation.

3. Nondeterminism, an inherent feature of distributed
systems, asynchronous systems in particular. For
example, the order of event occurrence in a com-
putation cannot easily be determined. A program
that works correctly one time may fail later if the
duration of events changes. From a debugging

T. A. Marsland

Department of Computing Science

University of Alberta, Edmonton, Canada T6G 2H1

tony@cs.ualberta.ca

viewpoint, this means that reproduction of the
execution results requires serious effort.

4. The probe effect. Any attempt to trace the exe-
cution of a program may interfere with the pro-
gram’s behavior, which may further contribute to
the difficulties of obtaining reproducible execu-
tion results. How much this intrusiveness affects
the computation in progress is the “Uncertainty
Principle” as applied to debugging: there is no
precise answer.

5. Information explosion. Any kind of trace for a
distributed program will potentially generate vol-
umes of information that must be conveyed to a
programmier in a comprehensible manner.

These difficulties provide convincing evidence that new
techniques and tools are required for distributed de-
bugging. In providing such facilities and tools, four
main approaches have been taken.

e Use of a collection of sequential debuggers. Al-
though not able to handle time-dependent errors,
this scheme works well at a lower level, i.e., at the
instruction level or at the procedure level. Most
available commercial debuggers fall into this cat-

egory.

o Centralized debugging. When developing a dis-
tributed program, all the processes are first run
on a single processor. Once the program has been
debugged, the processes can then be run on the
separate processors. Although this approach is
sometimes convenient, many problems may not
be easily revealed because of differences between
debugging and actual execution run-time environ-
ments.

e Use of event-based debugging. A distributed de-
bugger views the program execution as a sequence
of events. During the execution, an event history

(or trace) containing all the events generated by
the program is recorded for browsing or replay.
Most research projects in distributed debugging
take this approach.

e By static analysis. This differs from a formal
proof of program correctness, which is explicitly
excluded when dealing with distributed debug-
ging. The approach uses dataflow analysis to de-
tect synchronization errors and race problems.

The design and implementation of a distributed de-
bugger is divided into two categories:

e Operating system service-based design and imple-
mentation. The distributed debugger explicitly
invokes a set of operating system and networking
services. In other words, the support for debug-
ging is provided by the operating system and net-
working services. This design and implementa-
tion can support several languages, but provides
a low level description of program behavior.

e Language-based design and implementation. Lan-
guage based debuggers use high-level application
programming language facilities to support de-
bugging. It is, therefore, system independent.

Although the debugging of distributed programs has
been gaining research interest in recent years, as wit-
nessed by several special workshops [10, 9], the works
have focused mainly on the practical aspects of pro-
viding a user with special functions and tools. Rarely
have the fundamental issues underlying the design and
implementation of these facilities and tools been given
a penetrating exposition. These issues include the pro-
gram execution model, the partial ordering view of
events in a computation, and partial order preserving
mechanisms. This paper devotes itself to the some
of them. However, since the partial ordering view of
events in a computation is the cornerstone of our dis-
cussion, we first give a brief justification of why partial
orders? Its full account and arguments can be found
elsewhere in the literature [12].

1.1 Why partial orders?

In recent years, modeling concurrency with partial
orders has been advocated by several researchers. Just
as linear ordering naturally models sequential com-
putations, partial orders of events are a natural and
normal model for distributed computation. As stated
eloquently by Pratt,

“The undefinedness of ‘global simultanic-
ity’ is not merely a relativistic curiosity, it
is a practical engineering problem. Given
two microprocessors on two ocean liners 100
miles apart, the relative temporal order of
execution of individual instructions on these
two machines is for all practical purpose un-
defined. As another example, two fragmented
packets arriving at the same ports overlapped
in time have their relative order undefined” [11].

Obviously, from a debugging viewpoint, the problem
of observability makes reliance on a total order unde-
sirable and inconvenient. If two unrelated events occur
on two separate computers, a total ordering of these
events is unnatural and artificial because the exact or-
der is simply undetermined. Thus, if an execution of
the distributed program exhibits an abnormal behav-
ior, and problems are suspected to exist, then a total
ordering of event occurrence in the execution is of lit-
tle help in locating the problems. Rather, we need to
determine the causal relation between an event which
manifests the erroneous behavior (the effect) and an
event which causes the problem (the bug), and this
causal relation precisely defines partial orderings of
a computation. We believe that this understanding
captures the fundamental nature for distributed de-
bugging and is a main theme of this paper.

Here we will examine the idea of partial orders
of events from a distributed debugging standpoint.
While doing so, we consider the problem from two
different levels of abstractions. At the higher level, we
identify a possible problem area where the bugs might
reside. However, the precise place of the bugs remains
unknown, and is left to a lower level debuger. These
areas are called (atomic) process interaction groups,
and will be defined in Section 3. This kind of de-
bugging is called distributed debugging in the large, as
opposed to the distributed debugging in the small (at
a lower level), where the detailed debugging task is
carried out. In this paper, we only discuss the former.

In the remainder of this paper, we give an overview
of the program execution model based on a partial
order relation, then provide a comprehensive treat-
ment of logical clocks and a virtual time mechanism
for maintaining this partial order. Finally, partial or-
dering based debugging is presented, by analyzing the
distinct behaviour feature of a distributed program
and conducting debugging at different levels of detail.

2 The execution model of distributed
programs

A distributed program is modeled by D = {P,C},
where P consists of a finite set of processes, P =
{p1,p2, - ,pn}, that run at one or more nodes con-
nected by a communication network. These processes
have a disjoint address space and communicate with
each other solely by message passing via a finite set of
communication channels, C'. These processes may also
perform operations independently and concurrently,
and cooperate with each other to achieve a common
goal. The dynamics of each process p; is character-
ized by a finite set of three kinds of events on that
process: a send event, a receive event and an internal
event. A send event occurs when the process trans-
mits a message to another process, and is the cause of
an occurrence of the receive event on the destination
process. The communications between processes are
one-to-one, and the send and receive events are corre-
sponding communications within a system. An inter-
nal event causes a local state change in the process on
which it occurs. A (possibly infinite) sequence of all
the events in a process constitutes the local history of

the process, denoted as h; = e}eZed - and a global

2 T)
history of the computation is the union of the local his-
tories of all the processes containing all of its events,
H=hiUhyUhgU---Uh,. Since an event generally
changes the state of a process (and a computation),
we will use the term event and state interchangeably
wherever there is no confusion. These events and the
partial order relationship between them (see Defini-
tion 1, later) characterizes the behavior of distributed

programs, and have two distinct attributes:

e Locality, that is, events occur in a small area and
over a short period of time.

e Atomicity, that is, an event has either occurred
or has not. In other words, it has either left some
effects or nothing during the computation.

In monitoring the execution of a distributed pro-
gram, we ignore those processes that have no events
in any computation, and also those processes that have
only internal events without communications, since
they are considered to be pure sequential programs.
We assume that the facilities and tools for debugging
sequential programs are adequate. We denote F; as
an event set on a process p;, £/ a set of events within a
system, and e; 1, is the kth event on the process p;. It
is assumed that there are n internal events called the
initial event, e; o, one on each process. For simplicity,

we sometimes also use e to represent an event in the
system when the process on which the event occurred
is irrelevant. For convenience, each process is assumed
to have a unique identifier, as we have already done
above.

Note that this model forms a high level of abstrac-
tion of a distributed program. It abstracts away the
physical organization of the program (e.g., process —
processor mapping) and the particular details of the
supporting communication network, it even abstracts
the details of the distributed programming environ-
ment. It can be further noted that the whole state
information about program executions consists of the
following two parts [14]:

e Process states — which are similar to state infor-
mation about the sequential programs.

e Channel states — the sequence of messages in
transit on the channel when the state informa-
tion is taken.

It is believed that in a highly distributed compu-
tation, relations between events become important.
What is required in debugging such programs is to
catch the significant events and understand how the
occurrence of an event causally depends on the previ-
ous occurrence of others. Intuitively, our objective is
to find out the causes of the bugs, once a program
execution exhibits misbehavior (a fault). For exam-
ple, a send event of a process would depend on it first
performing either an internal computation event or a
receive event, which in turn would be caused by some
other event, including a send event by another process.
This view of a distributed computation as an event oc-
currence together with the causality relation is along
the lines suggested by Lamport [6], and leads to a def-
inition of program execution as a partial ordering of
an event occurrence.

Definition 1 The execution of a distributed program
is represented by (E,—), where E is a finite set of
events, and —C E X F s the “happen before” rela-
tion [6], defined to be the smallest relation for which
€is — €j1 1f

1. i =jand s <t (e, comes before ¢;),

2. 1# j and e;, 15 a send event and e; ; is the cor-
responding receive event.

3. Jderu € Ee5s — e uNepu — €51 That is,
the “happen before” relation is transitive.

Certain events in the execution of a distributed pro-
gram may be causally unrelated. These events are said
to be concurrent (or incomparable). Formally, for two
distinct events e; and ey, if e —£4 €3 and ex —£ e,
then ey || ea.

For convenience, and stressing the causal relation
between communicating events, we define the follow-
ing mapping:

Definition 2 For a send/receive event ¢;, and its cor-
responding receive/send event e;, the mapping M (e;) :
E — E is defined as M(e;) = e¢; and M(ej) = ¢;.

Obviously, the observed behavior of the execution
of a computation must be “meaningful”. A form of
generalization of “meaningful” is the notion of con-
sistent cut. A cut of a distributed computation is a
subset C of its global history H and contains an ini-
tial prefix of each local history, denoted by {e;le; is
the last event in the prefix for each process}. Clearly,
a consistent cut is one obtained by an omniscient ex-
ternal observer who can observe simultaneously the
events in each process. In a system where there is no
global time, the consistent cut is defined to be one
that respects the causal relation, in other words, a cut
C is consistent if for all events e and €',

(eeC)AN(eC)=€ eC

that is, a consistent cut is left closed under the causal
relation.

Note that this view of computation at the event
level is fundamental to “meaningfully” capture its be-
havior. However, in the analysis, design, and debug-
ging of the distributed system, it is often required to
create multiple viewpoints on a system, and to be able
to view the system at different levels of abstraction.
To make this requirement more convincing, we intro-
duce the following definitions, taken from Lamport’s
development [7]:

Definition 3 A higher level view of a distributed pro-
gram ezecution (E, —) is (E*, L) such that:

H1. E* partitions E, and is nonempty.
H2. G, Go CE*: G1 ——= Gy <= Va e Gy,be Gy :

a—b.

From a distributed debugging perspective, if F is
taken to be the execution of the high level language
statements, and E* is treated as the execution of the
steps of a particular algorithm implemented by the
code of the statements, then E* forms a higher level
view of E. In Section 3, we identify the partitions E*

and its subset G on which a higher level view about
the computation can be based, and in this way, de-
bugging can be safely carried out at the different level
of abstraction.

The mechanism we use for maintaining the event
ordering is the wvector clock [8, 4] using Lamport’s no-
tion of causality. A vector clock, V, is represented by
an n-component vector V(e;)[1..n]. As it occurs, each
event e; is timestamped by the value of V(e;) (also
called vector time). The vector clock ticks based on
the causal relationship between the events, and thus
the components V(e;) have the following value:

e V(e!)[i] = t, where t is the number of events that

process p; has executed up to and including e;.

e V(e!)[j],j # i is the number of events p; has ex-
ecuted that causally precede e!.

A straightforward implementation of the vector clock
has each process p; maintaining a vector of n-components,
Vi, and advance the component as follows:

o If ¢; is a local or a send event, then V(e;) =

V(ez) + 1.

e For a send event, process p; tags the message with
its timestamp, V(e;).

o If ¢; is the receive event, the process p; takes
a pair-wise maximum of its own vector and the
message timestamp.

Vector time has several interesting properties which
adequately characterize causality [13, 2]. In particular,
we have:

1. e — ¢ if and only if V(e) < V(¢€),

2. e || ¢ if and only if =V (e) < V(¢') and =V (¢') <
V(e),

We require that the timestamp tagged with each
message also contains the origin and destination of
the message. Thus, the problem of determining the
casual precedence can be further simplified. That is,
for two events e € E; and €’ € Ej, we have:

1. e — ¢’ if and only if V(e)[i] < V(e')[],
2. e || ¢ ifand only if V((e)[i] > V(¢/)[¢] and V' (¢')[j] >
V(e)lil,

Now we are ready to examine the behavior of the
program execution from a distributed debugging per-
spective.

3 A higher level debugging unit of dis-
tributed computation

Earlier, we stated that there is no reason to inter-
leave the instruction streams of processes in a compu-
tation to form one stream. Instead, from a debugging
viewpoint, it is much more convenient, both intuitively
and conceptually, to juxtapose these streams and to
add interprocess communication in between. In par-
ticular, a distributed debugger has the following view
of a computation:

e Each process carries out its computation sequen-
tially;

e When necessary, a process communicates with
other processes via the interprocess communica-
tion primitives, e.g., those provided in high level
languages;

e Because of the locality attribute of events, a pro-
cess does not communicates with all the processes
in any reasonably short period of time. This com-
munication pattern of process interactions can be
generally identified in a distributed computation.

This partial ordering view of a computation suggests
that we establish our strategy for building the debug-
ger on the basis of the differences between distributed
and sequential computations. This also is the princi-
ple of separation of concerns. A distributed debugger
need only concentrate on the interaction of processes,
leaving debugging of the sequential phase to a stan-
dard debugger. To stress this insight, we introduce
the concept of a Process Dependent Diagram. A Pro-
cess Dependent Diagram (PDD) is an abstraction of
the dynamic behavior of a distributed program, and
shows the interactions between processes while hiding
the detail of internal events within a process.

In a large scale computation, the PDD can become
very big and intricate, so we must restrict it to a man-
ageable size. This can be done by a so-called restric-
tion of the computation, denoted by Z/(P’, E’). It is
the result of hiding away all processes and events not
in P C P and E' C E. We regard the restriction as a
means of managing the complexity and intricacy of a
distributed program’s behavior. Thus, we can define
a higher level view of process interaction — the Pro-
cess Interaction Group (PIG) — as a restriction unit,
where a pair of send and receive events is a primary
process interaction unit. Informally, a Process Inter-
action Group (PIG) G is a nonempty set of events
which have occurred between any two consistent cuts.

In addition, if a send/receive event e; belongs to G,
then the corresponding event M(e;) also belongs to G.

Thus, the PIG begins with a consistent cut. How-
ever, requiring that a pair of send and receive events be
in the same group makes the notion of a PIG stronger
than a consistent cut. Groups are formed when a
computation is quiet, and process interactions only
take place within groups (hence the name). We be-
lieve that methodologically the PIG can be used as
a debugging unit to provide a higher level starting
point for debugging. In fact, it provides another way
of viewing the behavior of the execution in the sense
that the only way the rest of the computation affects
the group is in determining the process state at the
beginning of the group execution, and conversely, the
only way the group affects the rest of the computation
is in determining the process state at the end of the
group execution.

To further keep the PIG size manageable, we de-
fine the atomic process interaction group as the small-
est process interaction group which cannot be fur-
ther divided. An atomic PIG possesses indivisibility
in the sense that it is any process interaction group
that does not have another group as its proper subset.
Obviously, each atomic PIG is a process interaction
group and inherits the general properties of a process
interaction group, but not vice versa. Furthermore,
an atomic PIG enjoys great computational indepen-
dence, and can be considered as an isolated unit, since
no message passes between groups and every message
sent must be received in the same group. In addition,
they partition a computation, and never overlap.

For convenience, we assume that there is an initial
atomic PIG which is the set of initial events on all
processes in the system, that is,

go={eio|Vie{l,2,...,n} and e o is an nitial
event on p; }

The independence of a group and the indivisibility
of an atomic group qualify them as a suitable compu-
tational unit for debugging purposes. As mentioned
above, a restriction of a computation may be imposed
in terms of the group. The group is the unity of the
process abstraction and event abstraction in the fol-
lowing sense:

e Grouping communicating processes as a unit ab-
stracts away how the processes communicate, hid-
ing all communication activities among themselves
from the outside, and conducting no interaction
at all with processes outside the group.

e A process can be executing within at most one
atomic process group at any one time. This fea-

ture is what we want when we are debugging: one
group, one process, at one time.

e The whole group, as an isolated unit, behaves
as a single event and abstracts away the internal
structure of the group. Group is truly an event
in the computation. Progress of a computation is
from one group to the next and, as defined below,
the partial order relation is maintained among
groups.

This unifying abstraction of processes and events is
necessarily based on our program’s execution model.
Recall that only events and their relation appear in
this model, nothing else, and thus process abstrac-
tion must be expressed (embodied) in terms of event
abstraction. We believe that our view of process and
event abstraction, i.e., quiet external to the group and
clamor internal to the group, is simpler and neater
conceptually, and is more practical, since a simple and
well-defined interface would be considered as one of
the criteria for modularization.

Since the group is formed along the consistent cut,
there exists a “precedence” relation between groups.
Formally, for two atomic process groups g¢; and gs,
the g1 “precede” the g5, denoted as g1 — g2, if and
only if Je; € g1,¢; € g2,¢; — ¢;. Two atomic groups
are concurrent if g1 —~ ¢g» and g2 —# ¢1.

Having defined the precede relation between atomic
groups, we can establish the following theorem, pre-
sented without proof.

Theorem 1 The “precede” relation between atomic
groups is a strict partial ordering.

The fact that the “precede” relation between atomic
groups is a strict partial ordering ensures that as the
program executes, the atomic groups generated, plus
the relation between them, form a directed acyclic
graph (DAG). This DAG of atomic groups depicts in-
tuitively the behavior of the execution of a computa-
tion, and captures the manner in which the computa-
tion progresses.

With the abstraction power of the process interac-
tion groups, we propose the two debugging concepts:
qualitative debugging and quantitative debugging.

o Qualitative debugging. Debugging is done at a
higher atomic group level. At this level, the rela-
tionships between groups are inspected. In addi-
tion, one can see what a group is affected by or
affects another group’s behavior. The exact de-
tails of how processes interact within a group is of
no concern. Qualitative debugging is also called
debugging-in-the-large.

e Quantitative debugging. If something is found to
be wrong in the qualitative debugging (which is
very coarse), and one or more groups are sus-
pected to be the offenders, we can make a closer
examination of the particular groups, one group
at time, ignoring the rest of the execution. Quan-
titative debugging is also called debugging-in-the-
small.

The whole debugging process can start with the qual-
itative debugging at the level of the groups, and then
quantitative debugging, progressing from a higher level
to a lower level with more and more details of compu-
tation exposed until the bugs are located.

4 Detecting atomic groups

In the preceding section, we identified atomic pro-
cess interaction groups as a unifying abstraction of
events and processes, which inherently exist in a dis-
tributed computation and serve as a debugging unit.
This section outlines how we can detect the atomic
groups as they occur during a computation based on
the properties the atomic group possesses.

We assume that there exists a debugger process in
the system, which could be either one of processes
(designated for debugging support) of the distributed
program being debugged, or a specialized process solely
serving the debugging purpose. The debugger process
maintains a queue of events for each process. As the
program is executing, the process sends the event in-
formation to the debugger process. These events are
enqueued in ascending vector time order in the corre-
sponding process queue.

With this data structure the protocol of detecting
an atomic group, g, by the debugger process is out-
lined as follows:

(a) Periodically, find the consistent cut in the
event queues maintained by the debugger
process, i.e., find a set of events Cy,, = {eq,
€a, --+,en} satisfying the following condi-
tion:

Vi, j, V(es)li] > Vies il

(b) By comparing the vector time of the events
in the queues, obtain a smallest set ¢ of those
events that have occurred between any two
consistent cuts, Cy,.

(¢) For any event e; € g, include M(e;) into g.

Detecting atomic groups is often done in conjunction
with the detection of breakpoints. A breakpoint in the

computation is a predicate ¢ defined on the consistent
global state. Thus,

(d) While the debugger process detects an atomic
group, g, it also reaches the breakpoint ¢, if
¢ holds on the group g, that is, g = ¢.

The soundness of this protocol is straightforward —
the event set found by our protocol forms an atomic
group; the global state reflected in the group is consis-
tent, and communication event pairs are in the same
group. The smallness ensures the atomicity of the
group.

We now argue that the protocol is complete as well;
that is, if the group comes to its existence during the
computation, then our protocol will detect it. Suppose
that as the computation makes progress and an atomic
group has formed (we just argued that an atomic group
inherently exists in a computation), the events which
constitute the group will be eventually sent to the de-
bugger to be enqueued. Then, by executing our proto-
col, the debugger process will detect them as an atomic
group.

Breakpointing in distributed computation is a con-
stant issue. Problems may well exist if a predicate re-
quires the evaluation of a global state covering several
atomic group. If this is the case, we may have to relax
the definition of the atomic group — rather than the
smallest (atomic) group, A larger unit — a molecule
group may be defined. Nevertheless, a detailed elabo-
ration is beyond the gist of this paper, and will be left
to a future work.

5 Related works

The idea of observing the behavior of a distributed
computation along the line that no communication is
taking place between the processes is closely related
to the works by other researchers, but from differ-
ent perspective and settings. Fischer et al.[5] consider
the global state of a distributed transaction system in
which a global state is consistent if no transactions are
in progress. Following a similar line of thinking, Ahuja
et al.[1] propose as the basic computational unit in dis-
tributed systems states where there are no messages
in transit, while Elrad and Francez[3] suggest decom-
posing the distributed program into communication-
closed layers, to simplify the program analysis and ver-
ification. Our work, while based on the similar idea,
is developed in the context of distributed debugging,
and provides a different treatment and algorithm.

6 Conclusion

We have presented the notion of distributed de-
bugging based on the partially ordered events, which
is supported by the execution model of distributed
programs and the partial order preserving mechanism
(vector time). We have shown that the program ex-
ecution model, represented by a set of events and a
partial order relation between events, describes the
inherent nature of a program’s behavior. We stress
that the notion of partial-ordering-based distributed
debugging derived from this model captures the be-
havioral characteristics of a distributed program, and
is therefore more natural and convenient.

Any concept or idea, if it fails to deal with the com-
plexity of the problems to be solved, would have little
use in practice. From distributed debugging perspec-
tive, the partial ordering based notion must be devel-
oped in such a way that it can support multiple views
of the program execution. To this end, we have iden-
tified the atomic process interaction group as a higher
level view of a partial ordering model of the program
execution, which inherently exists in a computation
and serves as a unifying mechanism for event and pro-
cess abstraction. We advocate that the debugging unit
be an atomic group with a clear interface that requires
no communication taking place between them.

The protocol outlined for detecting atomic groups
is straightforward. The technical tool used is vector
time as the timestamps of an event. Combining the
notion of process interaction groups with breakpoint-
ing may facilitate the task of distributed debugging.
However, how to specify breakpoints in the framework
as presented in this paper requires further research.

Acknowledgements

Much of the research by the first author as reported in
this paper was conducted while he was visiting the Univer-
sity of Alberta, and was supported by a Canadian NSERC
Grant held by the second author. The work by the first
author has also been funded in part by the Cooperative
Research Centers Program through the department of the
Prime Minister and Cabinet of the Commonwealth Gov-
ernment of Australia.

References

[1] Mohan Ahuja, Ajay D. Kshemkalyani, and Timothy
Carlson. A Basic Unit of Computation in Distributed
Systems. In Proceedings of the 10th International
Conference on Distributed Computing Systems, pages
12-19, 1990.

(2]

[10]

[11]

[12]

[13]

[14]

0. Babaoglu and Keith Marzullo. Consistent Global
States of Distributed Systems: Fundamental Con-
cepts and Mechanisms. In S.J. Mullender, editor, Dis-
tributed Systems. chapter 4. ACM Press, 1993.

T. Elrad and N. Francez. Decomposition of Dis-
tributed Program into Communication-Closed Layer.
Science of Computer Programming, 2(3):155-163, De-
cember 1982.

C. J. Fidge. Timestamps in Message-Passing Systems
that Preserve Partial Ordering. In Proceedings of 11th
Australian Computer Science Conference, pages 56—
66, February 1988.

Michael J. Fischer, Nancy D. Griffeth, and Nancy A.
Lynch. Global States of a Distributed System. IEEFE
Transactions on Software Engineering, SE-8(3):198—
202, May 1982.

Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM, 21(7):558-565, July 1978.

Leslie Lamport. On Interprocess Communication:
Part I Basic formalism and Part I Algorithms. Dis-
tributed Computing, 1(1):77-101, 1986.

Friedemann Mattern. Virtual Time and Global States
of Distributed Systems. In M. Cosnard and P. Quin-
ton, editors, Proceedings of International Workshop
on Parallel and Distributed Algorithms (Chateau de
Bonas, France, October 1988), pages 215-226, Ams-
terdam, 1989. Elsevier Science Publishers B. V.

Barton Miller and Thomas LeBlanc, editors. Proceed-
ings of the ACM SIGPLAN and SIGOPS Workshop
on Parallel and Distributed Debugging, University of
Wisconsin, Madison, May 5-6 1988.

Barton P. Miller and Charles McDowell, editors. Pro-
ceedings of the ACM/ONR Workshop on Parallel and
Distributed Debugging, Published in ACM SIGPLAN
NOTICES Volume 26 Number 12, 1991, Santa Cruz,
California, May 21-22 1991. ACM Press.

V. R. Pratt. On the Composition of Processes. In
Conference Record of the 9th Annual ACM Sympo-
stum on Principles of Programming Language, pages
213-223, January 25-27 1982.

Vaughan Pratt. Modeling Concurrency with Partial
Orders. International Journal of Parallel Program-
ming, 15(1):33-71, 1986.

R. Schwarz and F. Mattern. Detecting Causal Rela-
tionships in Distributed Computations: In Search of
the Holy Grail. Technical Report SFB 124-15/92, De-
partment of Computer Science, University of Kaiser-
slautern, December 1992.

Z. Yang and T. A. Marsland. Global Snapshots for
Distributed Debugging. In Proceedings of 4th Inter-
national Conference of Computers and Information
(ICCI’92), pages 436-440, Toronto, Canada, May 28-
30 1992. IEEE Computer Society Press.

