
March 2003
IEEE Virtual Reality 2003 tutorial 1:

Recent Methods for Image-based Modeling
and Rendering

Organizer:
Martin Jagersand

Authors:

Darius Burschka Dana Cobzas

Johns Hopkins University University of Alberta

Zach Dodds Greg Hager

Harvey Mudd College Johns Hopkins University

Martin Jagersand Keith Yerex

University of Alberta Virtual Universe Corporation

i

IEEE Virtual Reality 2003 tutorial 1:

Recent Methods for Image-based Modeling and Rendering

Biltmore hotel, Athenian Room
Saturday, March 22nd 2003

Schedule

7:30 Continental breakfast

8:00 Introduction and Survey
Martin Jagersand

9:00 The Geometry of Image Formation
Zach Dodds

10:00 Coffee break

10:30 Geometric Modeling from Images
Dana Cobzas

12:00 Lunch

13:30 Texturing from Images
Martin Jagersand

14:15 Real-time Visual Tracking
Darius Burschka

15:00 Coffee break

15:30 Hardware Accelerated Rendering
Keith Yerex

16:00 Laboratory and Individual

Questions/Answers with lecturers

17:00 Tutorial ends

ii

Abstract

A long standing goal in image-based modeling and rendering is to capture a scene from camera
images and construct a sufficient model to allow photo-realistic rendering of new views. With the
confluence of computer graphics and vision, the combination of research on recovering geometric
structure from un-calibrated cameras with modeling and rendering has yielded numerous new
methods. Yet, many challenging issues remain to be addressed before a sufficiently general and
robust system could be built to e.g. allow an average user to model their home and garden from
cam-corder video.

This tutorial aims to give researchers and students in computer graphics a working knowledge
of relevant theory and techniques covering the steps from real-time vision for tracking and the
capture of scene geometry and appearance, to the efficient representation and real-time rendering
of image-based models. It also includes hands-on demos of real-time visual tracking, modeling
and rendering systems.

Web Sites:

http://www.cs.ualberta.ca/\~ vis/VR2003tut

http://www.cs.jhu.edu/CIRL/XVision2/

Contents

1 A Survey of Image-based Modeling and Rendering
Dana Cobzas and Martin Jagersand 1

1.1 Modeling . 1
1.2 Image and View Morphing . 2
1.3 Interpolation from Dense Samples . 3
1.4 Pixel Reprojection using Scene Geometry . 4

1.4.1 Image mosaics . 4
1.4.2 Depth based reprojection . 6

1.5 Summary . 7

2 The Geometry of Image Formation
Zach Dodds 8

2.1 Camera Model . 9
2.2 2d Projective Geometry . 11
2.3 3d Projective Geometry . 15

3 Multiple View Geometry and Structure-From-Motion
Dana Cobzas and Martin Jagersand 19

3.1 Camera models . 19
3.2 Computation with Camera Models . 24
3.3 Two view geometry . 26
3.4 Multi view geometry . 31
3.5 Recovering metric structure . 33
3.6 A complete system for geometric modeling from images 35

4 Texturing of Image-based Models
Martin Jagersand 36

4.1 Texture basis . 37
4.2 Connection between intensity change and motion 37
4.3 Geometric texture variation . 39
4.4 Photometric variation . 43
4.5 Estimating composite variability . 43
4.6 Interpretation of the variability basis . 44
4.7 Examples of Dynamic Texture Renderings . 45
4.8 Discussion . 48

5 Real-Time Visual Tracking
Darius Burschka and Greg Hager 50

5.1 Motivation . 50
5.2 Visual Tracking in Monocular Images . 50
5.3 Tracking Moving Objects . 52

5.3.1 Recovering Structured Motion . 52

i

IEEE Virtual Reality 2003, T1

5.3.2 An Efficient Tracking Algorithm . 55
5.4 Illumination-Insensitive Tracking . 58
5.5 Making Tracking Resistant to Occlusion . 60

5.5.1 Planar Tracking . 62
5.6 Direct Plane Tracking in Stereo Images . 63

5.6.1 Planar Disparities . 63
5.6.2 Plane Tracking . 65

6 Implementation of Real-Time Texture Blending and IBMR systems
Keith Yerex and Martin Jagersand 67

6.0.3 Software choices: OpenGL or DirectX . 67
6.0.4 NVIDIA Register Combiners . 68
6.0.5 Summary . 70

6.1 IBMR System . 70
6.1.1 User interface . 72
6.1.2 Video capture and tracking . 73
6.1.3 Structure and texture editor . 74
6.1.4 Real-time renderer . 76

7 Discussion and Outlook 77

A Biographies 86

ii

IEEE Virtual Reality 2003, T1

1 A Survey of Image-based Modeling and Rendering

Dana Cobzas and Martin Jagersand

The confluence of computer graphics and vision has spurred much research in modeling scene
structure and appearance from images, and building image-based models that allow re-rendering
of novel views. Image-based modeling and rendering (IBMR) encompass a wide range of theory
and techniques. The field is still young, and giving it a precise definition at this point would
be premature. However, a common characteristic of IBMR methods is that images play a more
central role. While traditionally computer graphics has focussed on transforming 3D data into
2D image projections, image based rendering (IBR) techniques shifts this emphasis to 2D - 2D
image transforms. This opens up a span of possibilities, and in the recent literature image-based
methods both with and without the use of an explicit 3D scene geometry have been published.

Another reason for the wide range of methods are that IBMR have been developed with
different goals in mind. For example, three promising reasons are:

1. Consumer cam-corders and web cams are inexpensive, and ubitiquous. The ability to
capture 3D models from cameras would open up the possibility for consumer and small
business image editing to transition from 2D to 3D.

2. Despite significant work on both principles and methods of conventional computer graphics,
it has been difficult to generate photo-realistic renderings. IBMR holds promise in that
starting with photos, it short-cuts many of the difficult steps such as the precise a-priori
modeling of surface reflection properties, and exact ray tracing of lighting.

3. Just as for other computational hardware, the performance of graphics cards have increased
dramatically over the last decade. Still, the desire for realism and great detail often limit the
frame rate of rendering to below real time. Applying IBMR techniques, images of certain
canonical views can be pre-computed, and then in real-time warped and interpolated into
the desired final video rate view sequence.

The two first of the above share the common feature that images not only are used in the internal
representation, but is also the input data from which the graphics model is built. We will focus
on this type of techniques in the rest of the paper.

1.1 Modeling

The traditional approach for generating detailed 3D geometric models of the surrounding en-
vironment is a challenging problem for computer graphics community. The 3D model can be
generated using a CAD modeler or directly from real data (for example range data obtained
from range finders or stereo) [13]. The 3D model is usually represented using polygonal, bicubic
parametric curves, constructive solid geometry or space subdivision (such as octrees). New views
are then rendered directly from this 3D model. The problem with these traditional geometry
based modeling and rendering systems is that the modeling is slow and hard, and is very difficult
to create realism, because the geometry of the objects found in the real world is complex, and
because it is very difficult to model lighting and reflection. An alternative approach to these

1

IEEE Virtual Reality 2003, T1 1.2 Image and View Morphing

systems is the image-based modeling and rendering system. They combine computer vision and
computer graphics algorithms to create a model directly from images and use this representation
to generate photorealistic novel views from viewpoints different than the original ones. Using
this approach the model is very easy to acquire, and the cost of rendering is independent on
scene complexity, because the sample images contain the complexity of the scene. The realism
of the rendered images depends on the input images, so they produce photorealistic renderings.
One of the biggest problems with image-based rendering systems is that they can not or can
hardly accommodate changes in the scene (new objects, changes in lightning). Another problem
is that they require a lot of memory because of data redundancy, but considering the evolution
of computer systems this is not so challenging in our days.

The idea behind the image-based rendering (IBR) systems is that they try to sample the
plenoptic function [35] for the desired scene. The plenoptic function represents the intensity of
the light rays passing through the camera center at every location, at every possible viewing angle
(see figure 1). So, in general it is a 5D function, but depending on the scene constraints it can
have few degrees of freedom. There are three distinct categories of IBR techniques, depending
on the modality of encoding the plenoptic function and pixel transfer. They are: image and view
morphing, interpolation from dense samples and pixel reprojection using scene geometry that
includes the image mosaics. In the sections below I will briefly describe each of these categories.

ϕ
θ

(X,Y,Z)

Figure 1: Plenoptic function

1.2 Image and View Morphing

Image morphing techniques generate intermediate views by image interpolation without consid-
ering the geometry of the scene. The new views are therefore geometrically incorrect (see figure
2). One of the best known techniques is Beier and Neely’s feature based image metamorphosis
[1]. They used corresponding line segments to smoothly transform a source image into a destina-
tion image using simple pixel interpolation. A more advanced technique, called view morphing,
was developed by Seitz and Dyer [45]. They generate new views of a scene that represent a
physically-correct transition between two reference views. The motion of the camera is restricted
to a line that connects the two centers of projection. The intermediate views are created by first
prewarping the images in order to align the projection planes, then morphing using interpolation,
and then postwarping the interpolated images. Manning and Dyer extend this idea by creating
dynamic view morphing [32]. A similar approach, called view interpolation was created by Chen
and Williams [5]. Arbitrary viewpoints with constraints on the viewing angle are generated by

2

IEEE Virtual Reality 2003, T1 1.3 Interpolation from Dense Samples

interpolating images stored at nearby viewpoints. Their technique requires calibration and full
correspondence map of sample images. This is very difficult to obtain from real images, so their
algorithm was tested with synthetic images.

Image and view morphing techniques are very fast and simple, but they produce nonrealistic
and geometrically incorrect renderings approximated from the sample images. We cannot use
these techniques for robot navigation where the modeled environment must be geometrically
correct.

Figure 2: Interpolation can bring incorrect views

1.3 Interpolation from Dense Samples

This class of methods first build up a lookup table by taking many image samples of an object
or a scene and then reconstruct images from arbitrary viewpoints by interpolating the stored
table. This lookup table is an approximation of the plenoptic function. One of the biggest
advantages of these methods is that pixel correspondence is not necessary and they are fast,
but they require extensive data acquisition, high memory requirements and knowledge about
the camera viewpoint during data acquisition. That is why they are more suitable for synthetic
scenes.

Two examples of this approach have been presented in SIGGRAPH’96: light field rendering
[31] and the lumigraph [15]. They both use a 4D parameterization of the plenoptic function if the
scene is restricted to a bounding box (see figure 3a). The interpolation scheme used by Levoy
and Hanrahan [31] approximates the resampling process by interpolating the 4D function from
nearest samples. Lumigraph [15] is reconstructed as a linear sum of the product between a basis
function and the value at each grid point.

More recently Shum and He [47] presented a 3D plenoptic function called concentric mosaics.
In this case the camera motion is restricted to planar concentric circles and concentric mosaics
are created by composing slit images taken at different locations. Novel views are rendered by
combining the appropriate captured rays (see figure 3b). A similar approach is described in [40]
where a stereo panorama is created using a camera with one left and one right slit that is rotating
along a circle.

For this class of techniques the workspace is limited within the space defined by the samples, a
cube for the lightfield and lumigraph, and a disc for concentric mosaics, so they are not suitable
for our application of robot navigation.

3

IEEE Virtual Reality 2003, T1 1.4 Pixel Reprojection using Scene Geometry

t
v

u

s i j

C

C
C

C

n

m

k mCM

CMk

vi

jv

L

L

i

j

(a) (b)

Figure 3: (a) Lumigraph and lightfield parametrisation (b)Concentric mosaics

1.4 Pixel Reprojection using Scene Geometry

This class of techniques use relatively small number of images with the application of geometric
constraints to reproject image pixels at a given camera viewpoint. Some of the most used
constraints are: depth or disparity values, epipolar constraint, and trilinear tensor. The rendered
images are geometrically correct, but most of the methods require sparse or full disparity or depth
map which is very difficult to recover from real images. I will first talk about the image mosaics,
which are one of the most primitive image-based models, and then about the other techniques
that use depth or disparity in order to produce the image-based model.

1.4.1 Image mosaics

One of the simplest image-based modeling techniques is image mosaicing. The term “mosaic”
refers to the combination of at least two images to yield a higher resolution or larger image. This
is a very old technique and was developed long before the age of digital computers. It appeared
shortly after the photography was invented in 19th century, when images acquired from balloons
or tops of the mountains were manually pieced together to create maps. Today mosaics are used
in many applications like whiteboard and document scanning as an aid to video conferencing,
reconstructing 3D scenes from multiple nodes [51, 52, 48], video compression [25], architectural
walkthroughs, virtual museums, cartoons [61], telepresence, tele-medicine, and astronomy.

In order to register the images onto a bigger one they must be related by a linear projective
transformation (homography). This is possible when the images sample a planar surface, or are
taken from the same point of view. The general form of a projective transformation is:

s

u′

v′

1

 =

H11 H12 H13

H21 H22 H23

H31 H32 H33

u
v
1

where (u, v) and (u′, v′) are corresponding pixels in two images, s is a scale factor and H is a
non-singular matrix (defined up to a scale factor).

Creating an image mosaic involves three problems: projecting the images on the desired
surface (planar, cylindrical, spherical), and correcting geometric deformations caused by different

4

IEEE Virtual Reality 2003, T1 1.4 Pixel Reprojection using Scene Geometry

types of lenses, registering the images into a common coordinate system, and correcting
errors resulting from the registration process.

There are different types of image projection depending on the desired application and ac-
quisition technique. The simplest set of images to mosaic are pieces of a planar scene such as a
document or a whiteboard. As mentioned before, these pieces are related by a linear projective
transformation, so they can be registered together into a larger planar image [51]. While planar
mosaics are convenient representation for relatively small field of view (less 180◦), they become
problematic for wider scenes. In those circumstances either cylindrical or spherical represen-
tations are more suitable (panoramic or panospheric mosaics). Cylindrical panoramic mosaics
are created by projecting images taken from the same point of view onto a cylindrical surface
[48, 52]. They can be used for fixed location visualization (Quick Time VR) [4] or variable loca-
tion visualization (plenoptic modeling) [35] and for recovering 3D structure of the environment
[28]. Spherical panoramic mosaics can be created either by projected planar images taken from
a fixed center of projection onto a sphere [51], or using special lenses and mirrors [38].

Images with parallax, which do not satisfy any of the two conditions mentioned above, can
also be composed into a mosaic. Irani et al [25] used a polynomial transformation with more
than eight degrees to compensate nonlinearities due to parallax. An interesting approach is
presented in [9] where an intermediate image is used for registering two images under arbitrary
camera motion. Another solution is to use a one dimensional camera to scan scenes. This can be
realized using conventional cameras by combining strips taken from a sequence of neighboring
images. In this way Peleg [41] and Tsuji [62] created a panoramic mosaic from images along an
arbitrary path.

In order to create the image mosaics, images have to be registered or matched. Carefully
calibrated cameras prior to the acquisition process can eliminate this step, but this is very
inconvenient for the user. The image registration techniques used in the literature include:

• Manual registration methods where the operator has to manually align the images.

• Feature based methods that manually or automatically detect specific features in the
images, compute correspondences, and then estimate the camera motion.

• Finding the motion that will best align the images by exhaustively searching all the
possible motions. This can be computationally extremely expensive. Another possibility is
to iteratively adjust the motion parameters by minimizing the differences between the
overlapping areas. This method leads to a local minimum unless a reliable initial estimate
is provided.

• Frequency domain techniques compute the image displacement from phase correlation.
These methods require significant overlap between the images.

After image alignment, usually the mosaic has to be further processed in order to eliminate
remaining distortions and discontinuities. These errors are caused by changes in the illumination,
imperfect registration, dynamic scenes, etc. The lighting problem can be reduced using histogram
equalization or locally smoothing the mosaic at the intersection lines [52]. For compensating

5

IEEE Virtual Reality 2003, T1 1.4 Pixel Reprojection using Scene Geometry

small errors introduced by motion parallax Szeliski and Shum [52, 48] developed a local alignment
(deghosting) technique which warps each image based on the results of pairwise local registration.

Image mosaics are easy to build, but the rendered images must satisfy the same constraints
as the input images, so it is not possible to create arbitrary new views. Adding more constraints
like depth or disparity will overcome this problem.

1.4.2 Depth based reprojection

Depth or disparity is powerful information that can be used in image-based rendering. Depth is
evaluated from stereo vision or using other sensors like range-finders or sonars and then combined
with color information provided by images to form an image-based model. Disparity is usually
computed from image correspondence. Different approaches to this problem have been proposed.
Laveau and Faugeras [29] use a collection of fully calibrated images and the disparities between
them to compute a novel view using a raytracing process. McMillan and Bishop [35] developed
a rendering technique called plenoptic modeling. They compute new views from cylindrical
panoramic images by directly transferring disparity values (general angular disparities) from the
cylindrical models to the virtual view. Debevec [7] combines image-based and geometry-based
techniques to produce photorealistic models of architectural scenes. Their system is built from
two components: the first is a photogrammetric modeling system that recovers the basic geometry
of the scene and the second a model-based stereo algorithm that refines the geometric model to
conform with its actual appearance from a set of photographs. For rendering they present a view-
dependent texture-mapping that produces new images by warping and composing multiple views
of the scene. When dense range data is available from range-finders, it can be combined with
the image data to form a detailed image-based model [33], or a 3D model [49] of a large scene.
In both approaches range data is registered with the image data using line features (edges).

In order to compensate the occlusion problem in an efficient way, Shade et al. [46] introduce
layer depth images (LDI). A LDI is a view of the scene from a single camera view point, where
multiple pixel values are stored for each line of sight. This idea in further improved in [3] by
introducing the LDI tree - a combination of a hierarchical space partition scheme with the concept
of the LDI. The fixed resolution of the LDI may not provide an adequate sampling rate for every
reference image. The LDI tree preserves the sampling rate of the reference images by adaptively
selecting an LDI in the tree.

Normally 2D to 2D warping used in texturing models is only physically correct when model
facets are true planes. If the texture has a 3D structure texturing with an image alone is at best
an acceptable approximation, but in some cases (such as close up views or views at a grazing
angle to the surface) it will give a flat, unnatural appearance to the rendering. In 3D warping
a depth map is used to correctly “rearrange” the texture image into a new view[34]. Three
dimensional warping has further been developed into an efficient method for texturing, relief
texturing[39]. For instance, using a rectangular geometry model of a house and texturing it with
a flat 2D texture would give un-natural renderings for many views. However, using a texture
composed of both an image and depth map, and relief-texturing the same geometry recreates
the correct views of the house fine structure. In Figure 4 particularly this is evident for the roof
and dormers.

By now the reader may have noticed that in using texturing as a means of rendering macro-

6

IEEE Virtual Reality 2003, T1 1.5 Summary

(a) (b)

Figure 4: (a) Image texture and depth map. (b) Pre-warped relief texture and final textured
and rendered house.

scopic structure we have departed from its original meaning and intention (of describing a fine
scale surface appearance). This can be illustrated by considering that using 3D textures objects
of arbitrary shape can be rendered by enclosing them in an enveloping geometry, a visual hull or
bounding box. This can be as simple as the six sides of a cube. In Figure 5 a bust is rendered
using six textures with depth maps. The enclosing geometry is drawn for illustration purposes
only, and as can be seen the final object appearance has little to do with the geometric model
used.

Geometry-based techniques are the most suitable in certain applications e.g. robot navigation
and mapping, because they represent geometrically correct models of the scene and new views
can be generated from any arbitrary position. One of the biggest problems with image-based
systems is that it is hard to model dynamic environments and most of the natural environments
are changing. This needs to be overcome by automatically updating the model. This can also
improve the spatial sampling in the rendering process, by improving the model resolution from
newly acquired images.

1.5 Summary

This section has provided a short overview of image-based modeling and rendering techniques.
Depending on the way of representing the data they can be divided into: morphing techniques,
interpolation from dense samples, and geometrically based pixel reprojection which includes
image mosaics and depth based reprojection models.

7

IEEE Virtual Reality 2003, T1

(a) (b) (c)

Figure 5: (a) Image textures for four of the six model planes. (b) Two-dimensional flat texturing
(c) Three-dimensional relief texturing creates a realistric image-based object

2 The Geometry of Image Formation

Zach Dodds

The primary source of information used in image-based modeling is images from one or more
cameras. Cameras are remarkably effective sensors, but they are also deceptive: the information
they provide about the structure of the observed world may not always be what it seems.

An everyday example of visual ambiguity

Figure 6 shows an ordinary newspaper picture which demonstrates how even the human visual
system can incorrectly extract 3d geometric information from an image.

Figure 6: A photograph demonstrating ambiguity of the 3d locations of different parts of an
imaged scene [14].

8

IEEE Virtual Reality 2003, T1 2.1 Camera Model

To many observers, the defender’s hand in Figure 6 looks firmly clasped on the back of the
shooter’s head. In actuality, the hand is well away from the shooter and very close to the depth
of his left forearm. Given this scenario, imagine if a referee had only the information from
this image with which to evaluate the position of his hand — he would be unable to determine
whether he was committing a foul or merely reaching out for the ball, since either situation yields
the same image information.

One approach to disambiguating the different possible worlds which Figure 6 could depict
is to use precise models of both the objects imaged and the camera’s geometry. Knowing the
exact dimensions of the shooter’s head and defender’s hand, along with an accurate estimate
of the pose of the camera with respect to those objects, would suffice to determine the true 3d
geometry of the scene. Only under extremely controlled conditions, however, are such object
and camera models available. Without these constraints it is still possible to obtain and use
geometric models based on visual information. This chapter motivates different levels or strata
of recoverable geometric structure. These basic principles form the foundation of some of the
hybrid model-based and image-based rendering techniques presented in subsequent sections.

2.1 Camera Model

Effectively relating 2d image information with the 3d world drives the study of the geometric
properties of vision. As Figure 7 shows, the pinhole camera models image formation as a pro-
jection of 3d points through a focal point C known as the camera center. Similar triangles then
yield

xc =
Xc

Zc

and yc =
Yc

Zc

, (1)

where m = [xc, yc, 1]T and f = [Xc Yc Zc 1]′. Though nonlinear as a mapping from points in <3

to <2, when expressed in homogeneous coordinates Equation 1 becomes linear. (A motivation
and detailed description of homogeneous coordinates is provided below.) Thus, m = Pc f , or
componentwise

λ

xc

yc

1

 =

uc

vc

wc

 =

1 0 0 0
0 1 0 0
0 0 1 0

Xc

Yc

Zc

1

. (2)

In Equations 1 and 2 the mapping Pc assumes canonical coordinate systems for both world points
and image points, depicted in Figure 7 (left).

In general, world points might exist in any coordinate system rigidly displaced from the canon-
ical one by a rotation R and translation t. In addition, image coordinates measured in pixels are
modeled as an affine transformation K of the metric coordinates of Equations 1 and 2. Hence,
in these more general frames image projection becomes

y = K [R t] f. (3)

R and t hold six “external” parameters (the pose of the world frame with respect to the camera’s
canonical frame). K is an invertible, upper triangular matrix which models five “internal” camera

9

IEEE Virtual Reality 2003, T1 2.1 Camera Model

1

f

C

m

X

Y

Z

Figure 7: Projection in a pinhole camera. Suppose a world point f is expressed in a camera’s
canonical (Euclidean) frame with the indicated x, y, and z directions scaled to units of focal
length and centered at the camera’s focal point C. Then f ’s projection, y, satisfies Equations 1
and 2 when written in the metric image frame — identical to the camera’s canonical frame.

parameters. Because f and y are homogeneous, the lower right entry of K can be scaled to 1.
In this case

K =

a b c
0 d e
0 0 1

 (4)

implies that (c, e) are the coordinates of the principal point, cot−1(− b
a
) is the angle θ between

the image’s x and y axes, and there are a and d
sin(θ)

pixels in a single focal length in the x and y
image directions, respectively. Cameras with known K are considered internally calibrated, and
K provides the relationship

y = Km (5)

between m’s metric image frame and y’s pixel image frame.

Strata of geometric representation Because of the nonlinearity of the camera transfor-
mation (indeed, real camera transformations are even worse than depicted above, as the next
section attests), it is difficult to extract Euclidean or metrical structure from image informa-
tion. One technique for recovering that structure is to build up to it from less precise geometric
knowledge more readily extracted from an imaged scene. The following sections present a hier-
archy of five layers or strata [12] of geometric structure, as well as the geometric properies and
interrelationships among them.

Injective Geometry

Although an injective transformation of a scene is so general as to seem unhelpful in our goal
of modeling objects’ and images’ structure, it is important to keep in mind that real imaging
systems don’t start with even the clean perspective projection model described above. There is
often considerable distortion caused by the lens system of a camera. With shorter focal lengths

10

IEEE Virtual Reality 2003, T1 2.2 2d Projective Geometry

(and wider fields of view), the distortion tends to be more noticeable, as indicated in Figure 8.
(Note: this figure and others annotated “HZ” are used with permission from [20].)

Figure 8: The advantage of a wide field of view is tempered by the presence of significant radial
distortion from a linear projection

Calibration (or lens calibration) is the process of determining how to undo this type of distor-
tion, and comes in at least two basic varieties: techniques using algebraic coordinates of known
fiducial points and techniques that rely on the geometric constraints of the corrected transfor-
mation. A common approach to the former, algebraic approach is that of Tsai [58] or Brand,
Mohr, and Bobet [2], who model the distortion using both radial and center-displacement terms:

Figure 9: The advantage of a wide field of view is tempered by the presence of significant radial
distortion from a linear projection

The geometric approach relies on the fact that, without distortion, the camera transformation
is linear (in homogeneous, not Euclidean, coordinates), meaning that subspace dimensionality
is preserved: points map to points and lines (generically) map to lines. Thus, a calibration
object that consists of a large number of lines gives rise to a set of constraints that express the
collinearity of points recovered from those lines, e.g., Figure 10.

2.2 2d Projective Geometry

Once lens distortion has been accounted for, the camera effects a projective linear transformation
from 3d to 2d. Because of this relationship, projective geometric structure is the easiest to deduce
from and about images. This section provides a brief introduction to both 2d and 3d projective
space with a focus on the image-transfer applications of 2d projective planes.

11

IEEE Virtual Reality 2003, T1 2.2 2d Projective Geometry

Figure 10: Lens calibration may be found by adjusting distortion parameters so that lines map
to lines, as predicted by a linear projective transformation

Figure 11: An example of an image with radial distortion and a resampled image without it.

A metaphor for 2d projective space A camera’s retina is usefully modeled as a projective
plane. If you place the retina one unit in front of the camera’s center parallel to the plane formed
to the x- and y- axes of a coordinate frame whose origin is that camera center, every point on
the retina (or image plane) has Euclidean coordinates [x, y, 1]T .

Especially in light of the ray-projection used in imaging and rendering, it is natural to associate
each image point with the ray passing through that point. Each of these rays, then, models a
point in a projective plane in which the retinal plane is embedded. When considered a set of
rays, the use of 3d coordinates, i.e.,

x
y
1

 = s

x
y
z

 (6)

with x, y, and z not all equal to 0, is a natural means for representing projective points. Each
ray is distinguished by the 3d (Euclidean) coordinates of any point on it. Naturally, 0 = [0, 0, 0]T

12

IEEE Virtual Reality 2003, T1 2.2 2d Projective Geometry

must be excluded, as it is shared by all of the rays. The convention of these homogeneous
coordinates requires that coordinate vectors be considered equivalent if they differ by any nonzero
scale factor. In addition, this model also provides intuition for why the projective (homogeneous)
point [x, y, z]T is considered equivalent to the Euclidean point [x

z
, y

z
]T .

Both this geometric analogy and algebraic coordinate convention point to the primary differ-
ence between a projective and a Euclidean plane: there is a line of points ”at infinity” in the
former. These ideal points correspond to rays parallel to the image plane and have homoge-
neous coordinates of [x, y, 0]T . Such points may be considered the limit of the Euclidean points
[x, y, α]T as α → 0 or the vector in the direction of [x, y]T . Indeed, homogeneous coordinates are
important fundamentally because they can handle this line, linf , of points at infinity. Figure 12
[HZ] depicts this model of the projective plane.

Figure 12: A model for the projective plane as the set of rays emanating from the origin of 3d
Eucidean space

In 2d projective space, lines are represented as three homogeneous coordinates as well. If
l = [a, b, c]T , and the point x = [x, y, 1]T , x lies on the line l if ax + by + 1c = 0. This is true
regardles of scale, so that

xT l = lT x = 0

expresses the relationship between the coordinates of a line l and the points x on that line. The
symmetry in this equation is important: lines and points are dual in 2d projective space. That
is, for any result in the projective plane there holds a dual result that interchanges the role of
points and lines.

One example of this duality is in finding the point x that is shared by two lines, l and l′. x is
the intersection of l and l′ if

x = l × l′

where × represents the cross-product of two three-dimensional vectors. The dual theorem re-
verses the roles of points and lines: the line shared by two points, i.e., the line l that passes
through both points x and x′, is given by

l = x × x′

13

IEEE Virtual Reality 2003, T1 2.2 2d Projective Geometry

Transformations of projective planes Keep in mind that the ray-model of Figure 12 uses
a canonical coordinate system. A projective plane, of course, need not correspond to a useful
world coordinate frame so neatly. In general, a projective plane (i.e., an image plane) will be a
projective transformation of some canonical view that we might want to use as a model of (planar)
structure. A linear projective transformation H (sometimes called a collinearity, projectivity, or
homography) is, in 2d, a 3 × 3 matrix:

s

x′

y′

z′

 =

H11 H12 H13

H21 H22 H23

H31 H32 H33

x
y
z

Since H is defined up to a scale factor, it has 8 independent degrees of freedom (dof).
The importance of these 2d homographies is that they capture the geometric changes that a

planar patch undergoes when imaged. Figure 13 [HZ] provides three examples of this process;
in all three cases the coordinates of corresponding points in the two planes are related by a
homography. As a result, image-based rendering of a planar surface can be achieved through
pixel transfer, i.e., using a few points to determine the homography between a stored, model
image and a current, desired point of view. Then, that homography maps points in the model
to appropriate locations in the new view. Figure 14 shows an example of this.

Figure 13: Examples of pairs of images related by a homography: two images of a planar surface,
two images of any structure taken by cameras with the same camera center, and the shadow of
a surface.

Given known corresponding points in two images, xi ↔ x′
i, how can we determine the homog-

raphy H relating them? Consider the fundamental constraint:

x′

i = Hxi

Because this holds up to an unknown scale factor, it provides two linear constraints on the entries
of H. H has eight degrees of freedom, so that four such constraints suffice to find the entries
of the homography. With additional points, the system is overdetermined and a least-squares
solution (other than H = 0) can be found using the singular value decomposition [20].

A direct application of this algorithm is the creation of image mosaics, where images taken
by a rotating camera are stitched together using at least four “tie points” – the points used to

14

IEEE Virtual Reality 2003, T1 2.3 3d Projective Geometry

Figure 14: Example of pixel transfer after a four-point homography: note that the geometry
of the resulting image is close to the expected geometry, but the lighting is quite different. A
dynamically textured approach lessens or removed this problem.

determine the homography H between two views. Figure 15 [HZ] shows an eight-image example
as well as a full panormaic view.

2.3 3d Projective Geometry

On the other side of the camera is the world. Just as an image was naturally considered a 2d
projective plane, the objects being imaged are naturally considered populating a 3d projective
space. A plane of points called the plane at infinity, Πinf , is present (and not distinguished from
any other plane) in projective space. Points are represented with four homogeneous coordinates:

X =

x
y
z
t

In projective space, points and planes are dual, with

XTΠ = 0

for points X on the plane Π.
Projective transformations are 4 × 4 nonsingular matrices identified up to a scale factor and,

like their two-dimensional counterparts, preserve dimensionality of features: point-coincidence,
collinearity, and coplanarity. In some applications these properties suffice and a projective model
of objects is all that is required. For example, many tasks can be phrased as a set of feature
alignments among points and lines. Controlling a robotic manipulator to achieve those tasks
requires no more than a projective model of the objects being handled. When the sensors
available are cameras, this approach to robot control is called visual servoing [16]. In a sense,
visual servoing is a physically realized version of image-based modeling and rendering: a desired

15

IEEE Virtual Reality 2003, T1 2.3 3d Projective Geometry

Figure 15: Eight images and the mosaic resulting from homography-based trasfer

rendering of point and line features is achieved by actually moving an object of interest to a goal
pose.

However, for virtual reality or augmented reality applications, projective models are too coarse
for practical use. They will produce unrealistic images because so much of the objects’ expected
geometry is not captured in a projective model. Parallelism, volumes, areas, lengths, and angles
are all lost at the projective level of specification. the following section describes more precise
geometric descriptions that recover these model properties.

Affine and Metric Upgrades

The ability to work with vanishing points (ideal points, points at infinity) as easily as ordinary
points is a weakness, as well as a strength of projective space. The fundamental geometric prop-
erties of betweenness and parallelism are lost under projective transformations, e.g., Figure 16
[HZ], (In real images, not simply projectively-transformed images, betweenness is preserved.)

Figure 16: An example of a projective transformation that does not preserve “betweenness.”
Real cameras do not wrap physical objects around the plane or line at infinity because they are
one-sided. This transformation requires the comb to occupy portions of the half-spaces in front
of and behind the camera’s center.

In order to restore these properties, the points (either plane or line) at infinity must be identi-
fied. Then, for example, parallel lines are identified as those projective lines whose intersections
are points at infinity. Nonparallel lines meet elsewhere. In a static 3d model, the plane at infinity
can be determined using precisely this constraint. If sets of parallel lines in three distinct direc-

16

IEEE Virtual Reality 2003, T1 2.3 3d Projective Geometry

Figure 17: (Top) An upgrade through projectively, affinely, and similarity-based transformations
of a checkerboard tile pattern. (Middle) The initial and final, metrical model of a cabin.
(Bottom) The strata through which the cabin progressed, each requiring additional a priori
knowledge about the structure.

17

IEEE Virtual Reality 2003, T1 2.3 3d Projective Geometry

tions are identified, the three points of intersection of those sets determine the plane at infinity.
In 2d, two such sets of lines, known to be parallel a priori yield linf .

In both cases, the structure obtained is called affine. In three dinensions, an affine model has
12 degrees of freedom: three for the position of the origin, three for a rigid rotation, one overall
scale, two relative scales among the three axes and three representing the angles (skew) among
the three coordinate axes. In 2d, there are 6 dof: two for the position of the origin, one for rigid
rotation about the origin, one for overall scale, one for relative scale between the two axes, and
one for skew (the angle between the two axes).

In order to measure angles and arbitrary length ratios in a 2d or 3d model, a further updgrade
of its geometric representation is necessary. In 2d, this upgrade from an affine image requires two
pairs of orthogonal lines; in 3d the upgrade requires knowledge of the camera’s internal parame-
ters (or consistency of them across multiple images) and/or knowledge of some scene structure.
Both result in a metric description of the resulting structure, i.e., a rigid motion followed by a
uniform scaling. In order to obtain a Euclidean model with true distance information, a “yard-
stick” of some sort must be available to define at least one length. From there, all other lengths
can be determined relative to that canonical segment. Figure 17 [HZ] show this upgrade process
through projective, affine, and metrical representations of 2d and 3d structure.

Figure 18: The hierarchy of geometric strata in two dimensions

Figures 18 and 19 [HZ] summarize the hierarchy of information in various 2d and 3d geometrical
models. The modeling and rendering described in the sequel will use a variety of gometric
descriptions, depending on both the requirements of the tasks and the information available to
support them.

18

IEEE Virtual Reality 2003, T1

Figure 19: The hierarchy of geometric strata in three dimensions

3 Multiple View Geometry and Structure-From-Motion

Dana Cobzas and Martin Jagersand

3.1 Camera models

A camera maps points from the 3D space (object space) to 2D image plane. In this section we
present different camera models that mathematically describe this process.

Pinhole camera

Figure 20: Pinhole camera model

19

IEEE Virtual Reality 2003, T1 3.1 Camera models

The most basic camera model is the pinhole camera. The image formation process is specified
by choosing a center of projection and an image plane (see figure 20). The projection of a 3D
point is obtained by intersecting the ray from the camera center of projection to this point with
the image plane. The ray from the camera center perpendicular to the image plane is called
optical axis or principal ray. This model is in general valid for most real cameras. In some cases
it can be improved by taking nonlinear effects (e.g. radial distortion) into account.

If the center of projection is chosen as the origin of the world coordinate system, and the
image plane is located at a distance f from the origin, the projection equations can be written
as follows:

(x, y)T =

(

fX

Z
,
fY

Z

)T

Representing points using homogeneous coordinates we can rewrite the projection equation as:

x
z
1

 ∼

fX
fY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0

X
Y
Z
1

(7)

p

p

x

y
(c ,c)x y

Figure 21: From retinal coordinates to image pixel coordinates

Using this projection the image points will be indexed with respect to the principal point
(intersection of image plane with the optical axis). In real cameras image pixels are typically
indexed with respect to the top left corner of the image, so a change in coordinate system is
required. In addition the coordinates of the pixel do not correspond to the coordinates in the
retinal plane but depend on the physical dimensions of the CCD pixels in the camera. With
most standard cameras we can model this transformation by scaling along the camera axes. The
2D transformation that transforms retinal points into image pixels is (see figure 21):

u
v
1

 ∼

1
px

+ cx
1
py

+ cy

1

=

1
px

0 cx

0 1
py

cy

0 0 1

x
y
1

 (8)

where (cx, cy) represents the principal point location (not always the center of the image) and
px, py the 2 pixel scale factors along horizontal and vertical directions respectively. Combining

20

IEEE Virtual Reality 2003, T1 3.1 Camera models

equation 7 and 8, we obtain the projection equation in component and standard matrix form as

x =

f

px
0 cx 0

0 f
py

cy 0

0 0 1 0

Xcam = K[I|0]Xcam (9)

Here K is called the calibration matrix and is formed from camera internal parameters. More
parameters can be introduced to model different real cameras (e.g. skew in the case when the
pixels are not rectangular). This parameters are in general related to a particular physical camera
and can be determined ahead in the process of camera calibration [58]. In this presentation we
mostly assume that the cameras are not calibrated.

Camera motion

World 3D points, world coordinates, are normally expressed in their own coordinate frame, dif-
ferent than the camera frame. The camera and world coordinate frames are related by a general
Euclidean transformation (external or extrinsic camera parameters):

X = [R|t]Xcam

Xcam = [RT | − RT t]X

Incorporating this into the projection equation 9 we get:

x = K[RT | − RT t]X = PX (10)

The 3 × 4 matrix P is called the camera projection matrix and has in general 11 DOF. If P
can be decomposed like in equation 10 (3 × 3 left hand submatrix M is nonsingular) it is called
finite camera. If M is singular the camera is called infinite camera.

Some properties of the general projective camera P = [M |p4] can be derived without decom-
posing it into internal and external parameters. For example we can retrieve the camera center
C as the 1D nullspace pf P (PC = 0), for finite cameras:

C =

(

−M−1p4
1

)

and for infinite cameras:

C =

(

d
0

)

where d is the nullspace of M . The principal ray (the ray passing through the camera center
and which is perpendicular to image plane) can be expressed as:

v = det(M)m3

where m3 is the last row of M .

21

IEEE Virtual Reality 2003, T1 3.1 Camera models

Affine cameras

Affine cameras (or parallel projection cameras) is a class of infinite cameras of practical interest.
An affine camera has the last row of the projection matrix of the form (0, 0, 0, 1). They are called
affine because they map points at infinity to points at infinity. The center of projection is an
infinite point so camera projection rays are parallel.

In general an affine camera can be written as:

P∞ = K

i tx
j ty

0T d0

 R =

i
j
k

 t =

tx
ty
tz

 d0 = tz (11)

where d0 represents the depth of the point along the principal direction and i, j are the first two
rows of the rotation matrix that related the position of the object with the camera pose.

{camera}

{world}

X

Y
Z

k

j

d
t

i

x

x

X’

X

persp

aff

0

0
x

∆

Figure 22: Affine camera approximation

The imaging geometry of an affine camera is illustrated in figure 22. It can be illustrated as
a two step projection. Consider a plane that passes through the world coordinate center and is
parallel with the image plane. This plane can be thought as approximating the object since for
all the points on the plane the affine projection is equivalent to a perspective projection. The
3D point X is first projected on this plane to get X′, and then X′ is perspectively projected on
the image plane. The deviation of the affine projection with respect to the projective projection

22

IEEE Virtual Reality 2003, T1 3.1 Camera models

can be expressed as:

xaff − xpersp =
∆

d0
(xproj − x0) (12)

where x0 is the principal point and ∆ is the distance from the point to the object approximation
plane. From this we can see that the affine camera is a good approximation of the imaging
geometry when:

• The depth relief (∆) variation over the object surface is small compared to the average
distance to the object (d0).

• The distances between the object points and the principal ray are small.

A hierarchy of affine cameras

Camera center

Image plane
Object planex

x
x
x

parap

orth

persp

wp

X (origin)0

Figure 23: Different types of affine projection.

Different affine models can be derived starting with a very simple model and refining it to
better approximate the imaging process. This is illustrated in figure 23

Orthographic camera. If the direction of projection is along Z axis, the camera matrix has the
following form:

Porth =

i tx
j ty

0T 1

 (13)

Weak perspective camera. A better approximation of the perspective camera can be obtained
by first projecting orthographically on an approximate object plane and then projectively on the
image plane. It is also called scaled orthographic projection and the camera matrix has the form:

Pwp =

k 0 0
0 k 0
0 0 1

i tx
j ty

0T 1

 (14)

Paraperspective camera. The weak perspective camera is a good approximation of the per-
spective distortion only if the object is close to the principal axis. The paraperspective model

23

IEEE Virtual Reality 2003, T1 3.2 Computation with Camera Models

compensates this problem by projecting the object point on the model plane with a direction
parallel to the ray that projects the center of object coordinate system. It is not an affine camera
but a first order approximation of the perspective camera. (The other models can be seen as a
zero-order approximation.) The projection equations can be written as:

xwp = x0 +
i − x0k

tz
X (15)

ywp = y0 +
j − y0k

tz
X (16)

where (x0, y0) represents the image projection of the center of the object coordinate system.

Camera calibration

Camera calibration [58] deals with computing the camera matrix given images of a known object
and is equivalent to the resection problem discussed in subsection 3.2. The calibration object is
usually build as a 2D or 3D pattern with easily identified features (e.g. checkerboard pattern).
The camera matrix is then decomposed into internal and external parameters, assuming a certain
camera model. The linear camera model discusses so far can be a bad approximation for a very
wide lens camera and radial distortion has to be considered. The radial distortion is small near
the center but increasing toward the periphery, and can be corrected using:

x̂ = xc + L(r)(x − xc) (17)

ŷ = yc + L(r)(y − yc) (18)

where (x̂, ŷ) denotes the corrected point for (x, y) and (xc, yc) is the principal point of the camera
and r2 = (x − xc)

2 + (y − yc)
2. L(r) is the distortion function and can be approximated with

L(r) = 1 + k1r + k2r
2 + k1, k2, the coefficients of the radial correction are considered part of

the internal camera parameters.

3.2 Computation with Camera Models

In practical application we are interested in using camera models computationally to relate
the three entities of 3D structure, 2D image projection and projection matrix. Three basic
computational problems are:

1. Resection Given a 3D structure and its image projection compute the camera pose (extrinsic
parameters).

2. Intersection Given two or more image projections and corresponding cameras compute a
3D structure giving rise to these images.

3. Structure and Motion or Factoring Given only the image projections in two or more images
find both the camera pose and 3D structure.

24

IEEE Virtual Reality 2003, T1 3.2 Computation with Camera Models

Resection

In Resection we are given 3D points X1 . . .Xn and their image projections x1 . . .xn. Under an
linear affine camera we seek to determine the eight parameters in an affine projection. Rewriting
Eq.11 in affine (non-homogeneous) coordinates the constraint imposed by each image-3D point
is given by

xi =
[

i
j

]

Xi +
[

tx
ty

]

(19)

Each 2D-3D point correspondence hence imposes two constraints on the eight dimensional affine
camera space. We can solve for the camera parameters by extending the above equation for
n ≥ 4 points and grouping the camera elements into a matrix,

[x1, . . . ,xn] =
[

i|tx
j|ty

] [

X1, . . . ,Xn

1, . . . , 1

]

(20)

and then transposing the expression and solving for P =
[

i|tx
j|ty

]

in

x1
...

xn

 =

X1, 1
...

Xn, 1

P T (21)

Since we use affine coordinates we directly minimize geometric error, hence the solution is the
ML estimate for measurements perturbed by Gaussian noise.

In the case of a perspective camera model we need to estimate the full 3× 4 projective camera
matrix in the projection equation, xi ∼ PXi (Eq. 7), where here coordinates are given in homoge-
neous form, x = [u, v, w]T and X = [X, Y, Z, v]. Remember that the projective equivalence “∼”
is up to a scale, hence we cannot directly write a linear equation system as in Eq. 20. Instead,
the standard solution, Direct Linear Transform (DLT) is based on expressing the equivalence as
a vector product 0 = xi × PXi. Let P T = [p1,p2,p3] and rewrite the vector cross product on a
matrix form we get the following three constraint equations from each point correspondence

0 =

0T −wiX
T
i viX

T
i

wiX
T
i 0T uiX

T
i

−viX
T
i uiX

T
i 0T

p1

p2

p3

 (22)

However, only two of the three equations are linearly independent, hence we need six (or more)
2D-3D point correspondences to solve for the projection matrix P. One common way of solving
the above is to pick the first two of the three equations for each of the six point and stack them
into a 12× 12 linear equation system. Another alternative is to solve the overdetermined 18× 12
system imposing an additional constraint ‖P‖ = 1. (Without the additional constraint, noise in
the measurements will likely increase the rank and give a solution P=0.)

Intersection

In Intersection we are given two camera matrices P1 and P2 and the corresponding image point
projections x1,x2, and seek the 3D point giving rise to these image projections.

25

IEEE Virtual Reality 2003, T1 3.3 Two view geometry

In the affine case we can directly rearrange Eq.19 as

u1 − t1,x

v1 − t1,y

u2 − t2,x

v2 − t2,y

=

i1
j1
i2
j2

X (23)

and solve the overdetermined system for the 3D world point X = [X, Y, Z]. Again, since the
above equations are in pixel space we minimize geometric error, and we don’t normally expect
problems. (Note however that the system may be ill conditioned due to the two cameras being
nearly equal, i.e. i1 is nearly co-linear with i2 and j1 near j2)

In the projective case we seek to find a homogeneous 3D point X = [X, Y, Z, v]that simulta-
neously satisfies the two equivalences x1 ∼ P1X and x2 ∼ P2X. Since the equivalence is up to a
scale we can write λ1x1 = P1X and λ2x2 = P2X and rewrite into one matrix equation as

0 =
[

P1 x1 0T

P2 0T x2

]

X
λ1

λ2

 (24)

And solve the homogeneous system for a consistent 3D point X and scale factors λ1, λ2.

Structure and Motion

In the Structure and Motion (sometimes called Structure From Motion, SFM), using only the
n projected points xi,j , i ∈ 1 . . . n, j ∈ 1 . . .m in m images we seek to find both camera poses
P1, . . . , Pm and a consistent structure S = [X1, . . . ,Xn]. This is illustrated in Fig. 24.

For image-based modeling, this is the most interesting operations, since we can recover 3D
information from uncalibrated images (i.e. without needing to know the camera poses a-priori).
Interestingly, fast and robust linear methods based on direct SVD factorization of the image
point measurements have been developed for a variety of linear cameras, e.g. orthographic
[53], weak perspective [60], and para-perspective [42]. For non-linear perspective projection
there is no direct linear factorization method, but iterative methods have been developed[22].
Another solution developed by Sturm and Triggs is to first relate the images pairwise though the
fundamental matrix and then factor into structure and camera projections[50]. The factorization
methods and algorithms are presented in Sections 3.4.

For two, tree and four views image constraints have been formulated that allows extracting
camera motion from image points. The 2-view case is presented in the next section.

3.3 Two view geometry

Epipolar geometry and the fundamental matrix

Without having any information about the position of a 3D point, given its projection in one
image, restricts its projection in a second image to a line that is called the epipolar line. This is
the basic geometric constrained for the two view geometry and is illustrated in figure 25 (a)(b).
The epipolar line l′ can be seen as the projection of the ray going from the camera C through the

26

IEEE Virtual Reality 2003, T1 3.3 Two view geometry

Structure
from motion

algorithm

poses

+

tracked points

structure

Figure 24: A general structure from motion algorithm extracts the structure and camera poses
from a set of tracked points.

image point x on the second image plane. This is equivalent to intersecting the plane generated
by the camera centers C,C′ and the image point x (epipolar plane) with the second retinal
plane. Note that all epipolar lines in an image have a common point - the projection of the
second camera center. This point, is called the epipole and is denoted e and e′ respectively
for first and second camera in figure 25. Figure 25(c)(d) illustrated an example of four sets of
corresponding epipolar lines.

This geometric constraint can be algebraically formulated using the fundamental matrix F [11].
It connects corresponding image points in two views. We present a geometric derivation of the
fundamental matrix for image projections x,x′ of 3D point X (refer to figure 26). Consider the
point X laying on a plane π not passing through any of the camera centers. This plane induces a
2D projective transformation (homography) H between corresponding image projections, more
precisely:

x′ = Hx

The epipolar line passing through can be written as:

l′ = e′ × x′ = [e′]×x′ = [e′]×Hx = Fx

where F = [e′]×H defines the fundamental matrix ([e]× denotes the antisymmetric 3× 3 matrix
representing the vectorial product with e). It can be easily verified that

x′T Fx = 0 (25)

This result gives a characterization of the fundamental matrix using only image projections. F
is a 3 matrix that has rank 2 (the epipole e is the nullspace of F). A lot of effort has been

27

IEEE Virtual Reality 2003, T1 3.3 Two view geometry

(a) (b)

(c) (d)

Figure 25: Epipolar geometry: (a) epipolar lines and epipoles (b) epipolar plane (c)(d) example
of pairs of epipolar lines

put in robustly estimating F from a pair of uncalibrated images (e.g [54]. It can be estimated
linearly given 8 or more corresponding points. A nonlinear solution uses 7 corresponding, but
the solution is not unique.

We briefly list some important properties of the fundamental matrix that allows the compu-
tation of the epipolar lines and epipoles.

l′ = Fx l = F Tx′ (26)

Fe = 0 F Te′ = 0 (27)

Equation 25 is a projective relationship between image points and F only depends on projective
properties of camera matrices. In general a camera matrix depends on the internal parameters
and choice of world coordinate frame (external parameters). F does not depend on the choice of
the world frame and is unchanged by a projective transformation of 3D space. So two projective

28

IEEE Virtual Reality 2003, T1 3.3 Two view geometry

Figure 26: Geometric interpretation of the fundamental matrix

matrices P, P ′ uniquely determine F but the converse is not true. Given this projective ambiguity,
we can formulate a class of projection matrices given a fundamental matrix (canonical cameras):

P = [I|0] (28)

P ′ = [[e′]×F + e′vT |λe′] (29)

Calibrated stereo

(0,0)

x

X

Z

(d,0)

=fZ

xl r

{2nd camera}{1st camera}

Figure 27: Calibrated stereo geometry

A special case of the two view geometry arises when the cameras are calibrated and aligned (the
image planes are parallel with the line connected the camera centers). A 1D illustration of this
configuration is presented in figure 27. In this case the epipolar lines correspond to image rows
so corresponding points in two images are on the same scanline. The horizontal displacement
between two corresponding points is called disparity. This special case has practical application
is computing dense depth from images. Correspondence problem is simplified (corresponding
point is on the same scanline) and there is a simple solution for depth, knowing the focal length

29

IEEE Virtual Reality 2003, T1 3.3 Two view geometry

of the cameras f and the distance between the camera centers d:

Z =
df

xl − xr

where xl−xr represents the disparity (horizontal distance between corresponding calibrated image
points). Note that the cameras have to be calibrated and xl, xr and normalize with respect to
image scale and center. An example of a depth map computed using a trinocular vision system
(from Point Gray Research [44]) is presented in figure 28.

Figure 28: Example of a disparity map computed using the Triclops vision system. (a) left
intensity image (b) disparity map (c) Triclops device

More than two views

l’

l"
l

C"

C’C

x

x’

x"

L

X

Figure 29: Trilinear constraints

Similar constraints can be defined for 3 and 4 images. The epipolar constraint can be formu-
lated for three images, divided in groups of 2. But there is a stronger constraint that involves all
three: the projection of a point in the third image can be computed from corresponding projec-
tions in the other two images. A similar constraint hold for lines or combinations of points/lines

30

IEEE Virtual Reality 2003, T1 3.4 Multi view geometry

(see figure 29). This are called trililear constraints and can be expressed using the trifocal tensor
[55].

Quadrifocal constraints are formulated for 4 images (using the quadrifocal tensor) [56]. An
important result is that there are no additional constraints between more than 4 images. All
the constraints can be expressed using F , the trilinear tensor and the quadrifocal tensor. An
unifying theory uses multiview tensors [23, 19]. Here is a summary of different constraints and
the minimal configurations for computing structure from motion:

2 images epipolar geometry,F

• linear unique solution from 8 points

• nonlinear solution from 7 points (3 solutions)

3 images trifocal tensor

• linear solution from 7 points

• nonlinear solution from 6 points

4 images quadrifocal tensor

• linear solution from 6 points

3.4 Multi view geometry

For the case when points are tracked in many images there is a linear formulation of the re-
construction problem, called factorization. The original requires that the image coordinates
for all the points are available, so there are no occlusions. More recent extensions deals with
missing data. Assuming an affine camera, nonisotropic zero-mean Gaussian noise, the factoriza-
tion achieves ML affine reconstruction. This methods and its extension to the weak perspective
camera are presented in the following subsections.

Affine factorization

A general affine camera has the form
P∞ = [M |t]

where M is a 2 × 3 matrix and t is a 2D vector (note that we dropped the last row (0, 0, 0, 1)
from the projection matrix). The projection equation using homogeneous coordinates can be
written as:

(

x
y

)

= M

X
Y
Z

+ t

Having n points tracked in m images we form the 2m×n measurement matrix W and we can
write the projection equations in a compact was as:

W =

x1
1 · · · x1

n
...

...
xm

1 · · · xm
n

=

M1

...
Mm

[X1 · · · Xn] +

t1

...
tm

= RS + t1 (30)

31

IEEE Virtual Reality 2003, T1 3.4 Multi view geometry

If the image points are registered with respect to their centroid in the image plane and the
center of the world coordinate frame is the centroid of the shape points, the projection equation
becomes:

Ŵ = RS where Ŵ = W − t1 (31)

Rank theorem Following [53], in the absence of noise rank(Ŵ) = 3. Under most viewing
conditions with a real camera the effective rank is 3. Assuming 2m > n, Ŵ can be decomposed
Ŵ = O1ΣO2, where O1 is an orthonormal 2m× n matrix, Σ is an n× n diagonal matrix and O2

is an n × n orthonormal matrix (SVD).
Defining

R̂ = O′
1

Ŝ = Σ′O′
2

(32)

we can write
Ŵ = R̂Ŝ (33)

O′
1 is formed from the first three columns of O1, Σ′ is the first 3× 3 matrix of Σ and O′

2 contains
the first three rows of O2 (assuming the singular values are ordered in decreasing order).

The factorization calculates the affine shape of the structure Ŝ and the affine projection ma-
trices R̂.

Weak perspective factorization

The weak perspective camera is a special case of affine camera where

M =

[

si
sj

]

(34)

The matrices R̂ and Ŝ resulted from the affine factorization, are a linear transformation of the
metric scaled rotation matrix R and the metric shape matrix S. There is in general an affine
ambiguity in the reconstruction. More specifically there exist a 3 × 3 matrix Q such that:

R = R̂Q

S = Q−1Ŝ
(35)

Normally, to align Ŝ with an exocentric metric frame the world coordinates, at least four scene
points are needed. Assuming no scene information is provided,Ŝ can be aligned with the pixel
coordinate system of the camera row and column. This relates Q to the the components of the
scaled rotation R:

îTt QQT ît = ĵTt QQT ĵt (= s2)

îTt QQT ĵt = 0
(36)

where R̂ = [̂i1 · · · îmĵ1 · · · ĵm]T The first constraint assures that the corresponding rows sti
T
t ,

stj
T
t of the scaled rotation R in Eq. 34 are unit vectors scaled by the factor st and the second

equation constrain them to orthogonal vectors. This generalizes [53] from an orthographic to
a weak perspective case. The resulting transformation is up to a scale and a rotation of the
world coordinate system. To eliminate the ambiguity, the axis of the reference coordinate system
is aligned with the first frame and estimate only eight parameters in Q (fixing a scale). This
algorithm was adapted from [60].

32

IEEE Virtual Reality 2003, T1 3.5 Recovering metric structure

Projective factorization

A similar idea can be adopted for projective cameras. Several algorithms exist in the literature
[50, 22]. The projection equations λi

jx
i
j = P iXj for n points and m images can be written as (in

homogeneous coordinates):

W =

λ1
1x

1
1 · · · λ1

nx
1
n

...
...

λm
1 xm

1 · · · λm
n xm

n

=

P 1

...
P m

[X1 · · · Xn] +

t1

...
tm

(37)

λi
j are called the projective depth and are in general unknown. Assuming we know λi

j (for
example from an initial projective reconstruction), the camera matrices and 3D projective points
can be computed using a factorization algorithm similar to the affine one. The measurement
matrix gas rank four in this case.

If the projective depths are unknown an iterative approach can be adopted. Initially they are
all set to 1 and the structure is estimated using factorization. The depths are re-estimated by
reprojecting the structure and the procedure is repeated. However, there is no guarantee that
the procedure will converge to a global minimum.

Bundle adjustment

Consider that the projective 3D structure X̂j and the camera matrices P̂i had been estimated
from a set of image features xi

j. The bundle adjustment refines this estimates by minimizing the
geometric error

min
∑

i,j

d(P̂ iX̂j,x
i
j)

2 (38)

The name bundle adjustment means readjusting bundle of rays between the camera center and
the set of 3D points to fit the measured data. The solution looks for the Maximum Likelihood
(ML) estimate assuming that the measurement noise is Gaussian. This step is very important
in any projective reconstruction and is tolerant to missing data.

3.5 Recovering metric structure

Projective ambiguity

As mentioned before in subsection 3.3, given an uncalibtrated sequence of images with corre-
sponding points identified it is possible to reconstruct the structure only up to a projective
transformation.

But, there exist a homography H (or a family of homographies) such that the transformed
matrices P iH represent true projection matrices and an be decomposed as: P iH = KRi[I|ti],
where K, Ri, ti represent the internal and external parameters of the camera as described in
subsection 3.1. The projective structure is upgraded to metric by H−1Xj.

The general approach for a metric reconstruction is:

• Obtain a projective reconstruction P i, Xj

33

IEEE Virtual Reality 2003, T1 3.5 Recovering metric structure

• Determine the rectifying homography H from autocalibration constraints, and transform
the reconstruction to metric P iH, H−1Xj

Self-calibration

The theoretical formulation of self-calibration (auto-calibration) for constant camera parameters
was first introduced by Faugeras [10]. Present techniques can be dived in two main categories:

(a) a stratified approach that first determines the affine structure and then the metric structure
using the absolute conic;

(b) a direct approach that recovers the metric structure using the dual absolute quadric.

The rectifying homography can be expressed depending on the plane at infinity π∞ = (pT , 1)T

and camera calibration matrix K1 of the first camera:

H =

[

K1 0
−pT K1 1

]

(39)

Considering the projection matrices P i = [Ai|ai] the auto-calibration equation are as follows:

KiKiT = (Ai − aipT)K1K1T (Ai − aipT)T (40)

Note that ω∗i = K iKiT , the dual image of the absolute conic (DIAC), and the equation can be
rewritten as:

ω∗i = (Ai − aipT)ω∗1(Ai − aipT)T (41)

The auto-calibration methods determine p and K1 (8 parameters) based on constraints on Ki

such that one of its elements is zero. Triggs [57] introduced the absolute dual quadric for as a
numeric device for formulating auto-calibration equations:

ω∗i = P iQ∗

∞P iT (42)

and in this case Q∗
∞ is first estimated based on similar constraints on Ki and then decomposed

as Q∗
∞

= HĨHT where Ĩ = diag(1, 1, 1, 0) is the canonical configuration of the absolute quadric.
Methods that assume constant internal parameters were developed by Hartley[18], Pollefeys and
Van Gool [43]. A more flexible self-calibration with varying focal length was proposed by Heyden
and Åström [24].

Note that self-calibration is not a general solution to a metric reconstruction. Some critical
motions can generate degenerate solutions (e.g. planar motion and constant internal parameters)
and the constraints on the internal parameters has to be carefully chosen depending on each real
camera. Some external constraints on the scene (if available) like knowledge about parallel lines,
angles might improve the robustness. Metric bundle adjustment is recommended as a final step.

34

IEEE Virtual Reality 2003, T1 3.6 A complete system for geometric modeling from images

3.6 A complete system for geometric modeling from images

Putting together the presented techniques for extracting geometric structure from uncalibrated
images we now have a general procedure for calculating the metric structure:

1. Get initial corresponding points.

2. 2,3 view geometry: compute F, trilinear tensor between consecutive frames and recompute
correspondences.

3. Initial reconstruction: get an initial projective reconstruction from a subsequence with big
baseline (e.g. using chains of fundamental matrices, trilinear tensors or factorization) and
bind more frames/points using resection/intersection.

4. Bundle adjustment

5. Self-calibration

6. Metric bundle adjustment

35

IEEE Virtual Reality 2003, T1

4 Texturing of Image-based Models

Martin Jagersand

With texture normally mean fine scale visual or tactile properties of a surface. The word is
related to textile, and indeed it was used to describe the particular surface created by the the
interwoven threads in a fabric. In computer graphics texturing is the process of endowing a
surface with fine scale properties. Often this is used to make the visualization richer and more
natural than if only the 3D geometry had been rendered. There are a wide range of computer
graphics texturing approaches. Early texturing involved replicating a small texture element over
the surface of an object to enrich its appearance. Commonly this is done by warping a small 2D
texture element onto the structure but other variations include 3D texturing, where a surface
appearance is created by carving away into a 3D texture volume. Texture can also be used to
model light, e.g. using a specular highlight texture on a model and reflections.

The focus of this Section is on image texturing. We will study how to compose a texture
image suitable for photo-realistic image-based rendering. In this case the texturing element is
a comparably large image, and unlike the above mentioned techniques, not repeated over the
surface. Hence, we are to some extent transcending out of the original domain of texturing by
now not only modeling fine scale structure, but potentially medium and large scale geometry in
texture. We will focus on aspects that are specific to image based modeling and rendering, and
not treat standard issues such as implementation of 2-D warps, filtering and multi-resolution
texturing. The background on basic texturing is covered in the literature[21] and recent text
books[36].

In particular, we will describe how to make the texture correctly represent the variation over
different viewpoints of a potentially complex underlying geometry. Using the tools of 3D warp-
ing, relief textures provides an explicit geometric solution to adding 3D structure to a planar
texture[39]. However, relief textures require a detailed a-priori depth map of the texture ele-
ment. This is normally not available in image-based modeling if only uncalibrated camera video
is used. An alternative way to represent the image motion caused by depth parallax is by mod-
ulating a spatial image basis. Previously, this technique has been used in image (camera) plane
encoding of deterministic scene motion[26] and capturing certain quasi-periodic motions[8]. Re-
cently, it has been generalized and made more efficient by parameterizing this motion on a scene
geometry instead of the image plane[6]. The following development of dynamic textures will
closely follow the latter scene geometry based derivation of image variability.

In the previous Section we saw how uncalibrated video can be used to otrain geometric in-
formation from a scene. A structure-from-motion (SFM) method starts with a set of m images
I1 . . . Im from different views of a scene. Through visual tracking or correspondence detection
the image projection x1 . . . xn of n physical scene points are identified in every image. From this,
a structure from motion computes a structure, represented by a set of n scene points X1 . . .Xn,
and m view projections P1 . . . Pm such that (reprojection property):

xj,i = PjXi i ∈ 1 . . . n, j ∈ 1 . . .m (43)

Independent of the geometric details and interpretation and central to image based modeling
and rendering is that this structure can be reprojected into a new virtual camera and thus

36

IEEE Virtual Reality 2003, T1 4.1 Texture basis

novel views can be rendered. Practically, the structure is divided into Q planar facets (triangles
or quadrilaterals are used in the experiments) with the points xj,i as node points. For texture
mapping, each one of the model facets are related by a planar projective homography to a texture
image. See Fig. 44.

4.1 Texture basis

In conventional texture mapping, one or more of the real images are used as a source to extract
texture patches from, and then warped onto the re-projected structure in the new view.

Instead of using an image as a source texture, here we study how to relate and unify all the
input sample images into a texture basis. Let xT,i be a set of texture coordinates in one-to-one
correspondence to each model point Xi and thus also for each view j with the image points xj,i

above. A texture warp function w translates the model vertex to texture correspondences into a
pixel-based re-arrangement (or warp) between the texture space Iw to screen image coordinates
I.

T (x) = I(W(x)) (44)

Common such warp functions are affine, bi-linear and projective warps. The warp function W
acts by translating, rotating and stretching the parameter space of the image, and hence for
discrete images a re-sampling and filtering step is needed between the image and texture spaces.
Details of these practicalities can be found in [36].

Now if for each sample view j, we warp the real image Ij from image to texture coordinates
into a texture image Tj , we would find that in general Tj 6= Tk, j 6= k. Typically, the closer view
j is to k, the smaller is the difference between Tj and Tk. This is the rationale for view-dependent
texturing, where a new view is textured from one to three (by blending) closest sample images[7].

In this paper we will develop a more principled approach, where we seek a texture basis B
such that for each sample view:

Tj = Byj , j ∈ 1 . . .m. (45)

Here, and in the following, T is a q × q texture image flattened into a q2 × 1 column vector. B is
a q2×r matrix, where normally r � m, and y is a modulation vector. The texture basis B needs
to capture geometric and photometric texture variation over the sample sequence, and correctly
interpolate new in-between views. We first derive a first order geometric model, then add the
photometric variation. For clarity we develop these applied to one texture warp (as in Fig. 36),
while in practical applications a scene will be composed by texturing several model facets (as in
Figures 44 and 38).

4.2 Connection between intensity change and motion

To capture texture variation due to geometric deformation we seek to derive a spatial basis for
the particular small motion present in textures captured from different view-points. At first
it may seem contradictory that geometric motion can be generated by linear combinations of
a basis. Normally the linear combination, ie blending, of two images dissolves one image into
the other. This typically results in a blurry intermediate images with no particular motion
perception. However, here we will show that for particular choices of bases and corresponding

37

IEEE Virtual Reality 2003, T1 4.2 Connection between intensity change and motion

blending functions small geometric motions can be modulated. As a very simple motivating
example consider that a drifting sine wave grating I = sin(u+at) can be translated into arbitrary
phase by modulating just two basis functions, I = sin(u + at) = sin(u) cos(at) + cos(u) sin(at) =
sin(u)y1 + cos(u)y2, where y1 and y2 are mixing coefficients.

Using a set of filters with different spatial frequencies has been applied to synthesizing image
motion in predictive display, a field of robotics where predictive images are synthesized to com-
penaste for delays in the operator-robot control loop[27]. Consider the situation in Fig. 30. A
camera is observing the motiojn of a robotic hand manipulating a block. Exact a-priori modeling

Figure 30: Different poses of a Utah/MIT robotic hand performing fingertip manipulation of a
block.

of these motions is diffcult due to the complex kinematics of the hand. However, from a short
video sequence of motions we can build a spatial basis captusing the image variation. Figure 31
shows the first trhough sixth basis vector, B1, . . . , B6. As can be seen they have localized patches
with roughly the same spatial frequency, but different phase. For instance in the compementaty
pair B5 and B6 the grasped block has a component with approximately 20 pixels period roughly
horizontally in both images. The fingers have somewhat higher frequencies, since small finger
motions correspond to larger motions of the block. Using only linear combinations of B5 and
B6 a drifting grating motion effect1 can be created, see [web-video]. By also adding the low
order components B1 . . . B4 a coherent motion and shape signal can be generated up to the cut
off resolution (about 20 pixels here). Notice that these results are different from what has been
presented in the face and object recognition literature (e.g. [59]). But our sample set is also very
different. In the predictive display application we do not sample different objects or faces, but
closely spaced images from the same objects and scene under varying poses.
Modulation of the Spatial Basis Another important characteristic is how the modulation
coefficients y space manifold maps to motions. It has been shown that under varying camera
motion the space of the modulation coefficients form a smooth manifold[37]. In Fig. 32 the first

1The detection of visual motion in the human brain is believed to be well modeled by a linear system with
a scale-space hierarchy of eigenfunctions, ”gabor patches” each with a localized spatial and frequency response.
Hence a stimuli composed of similar functions will maximally stimulate the system

38

IEEE Virtual Reality 2003, T1 4.3 Geometric texture variation

Basis image 1 Basis image 2 Basis image 3

Basis image 4 Basis image 5 Basis image 6

Figure 31: Utah/MIT fingertip manipulation of a block. Two example basis images, u5 and u6,
having roughly the same spatial frequency content

six components f1 . . . f6 are plotted against the two first motor components x1 and x2.

x
1

x
2

y 1

x
1

x
2

y 2

x
1

x
2

y 3

x
1

x
2

y 4

x
1

x
2

y 5

x
1

x
2

y 6

Figure 32: Six first components of the motor-visual function f captured for motions shown in
Fig.30.

Small motions are synthesized by linear combinations of basis functions of different phase and
direction. Six images from a synehtsized animation of hand motion are shown in Fig. 33.

4.3 Geometric texture variation

In the following we will develop a spatial variability basis for the image motion caused by texture
warps. While no real physical motion is involved, we can think of the action of moving the texture
facet control point as causing a virtual image motion. The starting point for developing a spatial
texture basis representing small geometric variations is the well known optic flow constraint,

39

IEEE Virtual Reality 2003, T1 4.3 Geometric texture variation

Figure 33: Images from synthesized animation of hand motions.

which for small image plane translations relates texture intensity change ∆T = Tj −Tk to spatial
derivatives ∂

∂u
T, ∂

∂v
T with respect to texture coordinates x = [u, v]T under an image constancy

assumption[17].

∆T =
∂T

∂u
∆u +

∂T

∂v
∆v (46)

Note that given one reference texture T0 we can now build a basis for small image plane trans-
lations B = [T0,

∂T
∂u

, ∂T
∂v

] and from this generate any slightly translated texture T (∆u, ∆v) =
B[1, ∆u, ∆v]T = By

In rendering, we are interested not only in translations but in the effects of parameterized
warps. Given a warp function x′ = W(a,x) we study the residual image variability introduced
by the imperfect stabilization achieved by a perturbed warp ŵ, ∆T = T (ŵ, t) − T (W). Let
ŵ = w + ∆w and rewrite as an approximate image variability to the first order (dropping t):

∆T = T (w + ∆w) − Tw = T (w) + ∂
∂w

T (w)∆w − Tw =
∂

∂w
T (w)∆w

(47)

Explicitly writing out the components of the inner derivatives (Jacobian) we have:

∆T =

[

∂T

∂u
,
∂T

∂v

] [

∂u
∂a1

· · · ∂u
∂ak

∂v
∂a1

· · · ∂v
∂ak

]

∆[a1 . . . ak]
T (48)

The above equation expresses an optic flow type constraint in an abstract formulation without
committing to a particular form or parameterization of w. In practice, the function w is usually
discretized using e.g. triangular or quadrilateral mesh elements. Next we give examples of how
to concretely express image variability from these discrete representations.

Particularly for image based modeling and rendering we warp real source images into new
views given an estimated scene structure. Errors between the estimated and true scene geometry
cause these warps to generate imperfect renderings. We divide these up into two categories,
image plane and out of plane errors. The planar errors cause the texture to be sourced with an
incorrect warp.2. The out of plane errors arise when piecewise planar facets in the model are not
true planes in the scene, and when re-warped into new views under a false planarity assumption
will not correctly represent parallax.

2Errors in tracking and point correspondences when computing the SFM, as well as projection errors due to
differences between the camera model and real camera both cause model points to be reprojected incorrectly in
the sample images

40

IEEE Virtual Reality 2003, T1 4.3 Geometric texture variation

Planar texture variability First we will consider geometric errors in the texture image plane.
In most both IBR (as well as conventional rendering) textures are warped onto the rendered view
from a source texture T by means of a affine warp or projective homography.
Affine variation Under a weak perspective (or orthographic) camera geometry, plane-to-plane
transforms are expressed using an affine transform of the form:

[

uw

vw

]

= Wa(p, a) =
[

a3 a4

a5 a6

]

p +
[

a1

a2

]

(49)

This is also the standard image-to-image warp supported in OpenGL. Now we can rewrite the
image variability Eq. 48 resulting from variations in the six affine warp parameters as:

∆Ta =
∑6

i=1
∂

∂ai
Tw∆ai =

[

∂T
∂u

, ∂T
∂v

]

[

∂u
∂a1

· · · ∂u
∂a6

∂v
∂a1

· · · ∂v
∂a6

]

∆[a1 . . . a6]
T (50)

Let {T}discr = T be a discretized texture image flattened along the column into a vector,
and let ’∗u’ and ’∗v’ indicate point-wise multiplication with column flattened camera coordinate
u and v index vectors. Rewrite the inner derivatives to get an explicit expression of the six
parameter variability in terms of spatial image derivatives:

∆Ta =
[

∂T
∂u

, ∂T
∂v

]

[

1 0 ∗u 0 ∗v 0
0 1 0 ∗u 0 ∗v

]

[y1, . . . , y6]
T =

[B1 . . .B6][y1, . . . , y6]
T = Baya

(51)

where [B1 . . .B6] can be interpreted as a texture variability basis for the affine transform.
Projective variation Under a perspective camera the plane-to-plane warp is expressed by a
projective collineation or homography,

[

u′

v′

]

= Wh(xh,h) =
1

1 + h7u + h8v

[

h1u h3v h5

h2u h4v h6

]

(52)

Rewrite Eq. 48 with the partial derivatives of Wh for the parameters h1 . . . h8 into a Jacobian
matrix. Let c1 = 1+h7u+h8v, c2 = h1u+h3v+h5, and c3 = h2u+h4v+h6. The resulting texture
image variability due to variations the estimated homography is (to the first order) spanned by
the following spatial basis:

∆Th = 1
c1

[

∂T
∂u

, ∂T
∂v

]

[

u 0 v 0 1 0 −uc2
c1

−vc2
c1

0 u 0 v 0 1 −uc3
c1

−vc3
c1

]

∆h1
...

∆h8

 =

[B1 . . .B8][y1, . . . , y8]
T = Bhyh

(53)

Similar expressions can be derived for other warps. E.g. in real time vidusual tracking a four
parameter variability from modeling image u, v translations, image plane rotations and scale has
shown to be suitable[17].
Non-planar parallax variation While in image-based modeling a scene is represented as
piecewise planar model facets, the real world scene is seldom perfectly planar. In rendering this
gives rise to parallax errors. Figure 34 illustrates how the texture plane image T changes for

41

IEEE Virtual Reality 2003, T1 4.3 Geometric texture variation

different scene camera centers C. Given a depth map d(u, v) representing the offset between the
scene and texture plane, relief texturing [39] can be used to compute the rearrangement (pre-
warp) of the texture plane before the final homography renders the new view. In image-based
methods, an accurate depth map is seldom available. However we can still develop the analytic
form of the texture intensity variation as above. Let r = [α, β] be the angle for view Pj between
the ray from the camera center Cj to each scene point. The pre-warp rearrangement needed on
the texture plane to correctly render this scene using a standard homography warp is then:

[

δu
δv

]

= Wp(x,d) = d(u, v)
[

tanα
tanβ

]

(54)

As before, taking the derivatives of the warp function with respect to a camera angle change and
inserting into Eq.48 we get:

∆Tp = d(u, v)

[

∂T

∂u
,
∂T

∂v

] [

1
cos2 α

0
0 1

cos2 β

]

[

∆α
∆β

]

= Bpyp (55)

C

ddu

1

C
m

Scene

Texture plane

Camera
plane

Figure 34: Texture parallax between two views.

Non-rigidity We consider only non-rigidities where the shape change is a function of some
measurable quantity x ∈ <n. In this paper we choose x from pose and articulation parameters.
Let g(x) (= [u, v]T) represent the image plane projection of the non-rigid warp. We can then
write the resulting first order image variation as:

∆In =
{

∑n
i=1

∂I
∂xi

∆xi

}

discr
=

{[

∂I
∂u

, ∂I
∂v

] [

∂
∂x1

g(x)∆x1, . . . ,
∂

∂xn
g(x)∆xn

]}

discr
=

[B1 . . .Bn][y1, . . . , yn]
T = Bnyn

(56)

42

IEEE Virtual Reality 2003, T1 4.4 Photometric variation

4.4 Photometric variation

In image-based rendering real images are re-warped into new views, hence the composite of
both reflectance and lighting is used. If the light conditions are same for all sample images,
there is no additional intensity variability introduced. However, commonly the light will vary
at least somewhat. In the past decade several published both empirical studies and theoretical
motivations have shown that a low dimensional intensity subspace of dimension 5-9 is sufficient
for representing the light variation of most natural scenes[30]. Hence we introduce nine additional
freedoms in our variability model to allow for lighting. (Complex scenes may require more, simple
(convex lambertian) less).

∆Tl = [B1 . . .B9][y1 . . . y9]
T = Blyl (57)

4.5 Estimating composite variability

In textures sampled from a real scene using an estimated geometric structure we expect that the
observed texture variability is the composition of the above derived planar, parallax and light
variation, as well as unmodeled effects and noise ∆Ie. Hence, total residual texture variability
can be written as:

∆I = ∆Is + ∆Id + ∆Il + ∆Ie (58)

Using the basis derived above we can write the texture for any sample view k, and find a
corresponding texture modulation vector yk:

Tk = [T0, Bh, Bp, Bl][1, y1, . . . , y19] = Byk (59)

Textures for new views are synthesized by interpolating the modulation vectors from the nearest
sample views into a new y, and computing the new texture Tnew = By

Since this basis was derived as a first order representation it is valid for (reasonably) small
changes only. In practical image-based modeling the geometric point misalignments and parallax
errors are typically within a few pixels, which is small enough.

In IBR typically, neither the dense depth needed to analytically compute Bp, nor light and
reflectance models needed for Bl are available. Instead the only available source of information
are the sample images I1 . . . Im from different views of the scene, and from these, the computed
corresponding textures T1 . . .Tm.

However, from the above derivation we expect that the effective rank of the sample texture
set is the same as of the texture basis B, i.e. rank[T1, . . . ,Tm] ≈ 20. Hence, from m � 20
(typically 100-200) sample images we can estimate the best fit (under some criterion) rank 20
subspace using e.g. PCA, SVD, or ICA.

Briefly PCA can be performed as follows. Form a measurement matrix A = [Iz(1), . . . , Iz(m)].
The principle components are the eigen vectors of the covariance matrix C = AAT . A dimension-
ality reduction is achieved by keeping only the first k of the eigenvectors. For practical reasons,
usually k � M � l, where l is the number of pixels in the texture patch, and the covariance
matrix C will be rank deficient. We can then save computational effort by instead computing
L = AT A and eigen vector factorization L = V DV T , where V is an ortho-normal and D a

43

IEEE Virtual Reality 2003, T1 4.6 Interpretation of the variability basis

diagonal matrix. From the k first eigenvectors V̂ = [v1 . . .vk] of L we form a k-dimensional
eigenspace B̂ of C by B̂ = AV̂ . Using the estimated B̂ we can now write a least squares optimal
estimate of any intensity variation in the patch as

∆I = B̂ŷ, (60)

the same format as Eq. 58, but without using any a-priori information to model B. While ŷ
captures the same variation as y, it is not parameterized in the same coordinates. For every
training image It we have from the orthogonality of V̂ that the corresponding texture mixing
coefficients are the columns of [ŷ1, . . . , ŷm] = V̂ T . From the factorization of geometric structure
we also have the corresponding xt.

This yields an estimated texture basis B̂ and corresponding space of modulation vectors
ŷ1, . . . ŷm in one-to-one correspondence with the m sample views. From the derivation of the
basis vectors in B we know this variation will be present and dominating in the sampled real
images. Hence, the analytical B and the estimate B̂ span the same space and just as before, new
view dependent textures can now be modulated from the estimated basis by interpolating the ŷ
corresponding to the closest sample views and modulating a new texture T = B̂ŷ. Practically
to estimate the texture mixing coefficients for intermediate poses, we first apply n-dimensional
Delaunay triangulation over the sampled poses x1...m. Then given a new pose x we determine
which simplex the new pose is contained in, and estimate the new texture mixing coefficients ŷ
by linearly interpolating the mixing coefficients of the corner points of the containing simplex.

4.6 Interpretation of the variability basis

In our application, the geometric model captures gross image variation caused by large move-
ments. The remaining variation in the rectified patches is mainly due to:

1. Tracking errors as well as errors due to geometric approximations (e.g. weak perspective
camera) cause the texture to be sourced from slightly inconsistent locations in the training
images. These errors can be modeled as a small deviation ∆[h1, . . . , h8]

T in the homography
parameters from the true homography, and causes image differences according to Eq. 53.
The weak perspective approximations, as well as many tracking errors are persistent, and
a function of object pose. Hence they will be captured by B̂ and indexed in pose x by f .

2. Depth variation is captured by Eq. 55. Note that projected depth variation along the
camera optic axis changes as a function of object pose.

3. Assuming fixed light sources and a moving camera or object, the light variation is a function
of relative camera-object pose as well.

From the form of Equations 53 and 55 we expect that pose variations in the image sequence
will result in a texture variability described by combinations of spatial image derivatives. In
Fig.35 we compare numerically calculated spatial image derivatives to the estimated variability
basis B̂.

In synthesizing texture to render a sequence of novel images the function f modulates the filter
bank B so that the new texture dynamically changes with pose x according to Tw = Bf̂(x)+ T̄.

44

IEEE Virtual Reality 2003, T1 4.7 Examples of Dynamic Texture Renderings

Figure 35: Comparison between spatial derivatives ∂Tw

∂x
and ∂Tw

∂y
(left two texture patches) and

two vectors of the estimated variability basis [B1,B2] (right) for house pictures.

4.7 Examples of Dynamic Texture Renderings

In the first example, a wreath from dried flowers and grains was captured from 128 frames of video
with varying camera pose. The geometry used is just one quadrilateral. In Fig. reffig:wreath
renderings of the wreath onto a quadrilateral is shown both using a standard static textures and
pose varying dynamic texture. On the tutorial web site is an mpeg video of the same wreath
rendered under rotaing motion.

In the next example, a toy house made from natural materials (bark, wood, pine cone chips)
is captured using a better quality Basler A301fc camera with a 12mm lens. This results in a
better alignment between captured geometry and real scene points. However, using automatic
image point tracking and triangulation the resulting triangles sometimes do not correspond to
house walls (Fig. 37 left). Using standard texture mapping on this geometry we get significant
geometric distortions (Fig. 37 right). In Fig. 38 these errors have been compensated for by
modulating the texture basis to give the correct parallax for the underlying real surfaces.

As an example of a non-rigid object animation we captured the geometry of an arm from the
tracked positions of the shoulder and hand using image-plane motions. We recorded a 512 sample
images and estimate a texture basis of size 100. The arm motion was coded using the image
position of the hand. Figure 40 shows some intermediate position reanimated using the dynamic
texture algorithm. To test the performance of our algorithm we generate parallel renderings
using static texture. To be consistent with the dynamic texturing algorithm we sampled texture
from an equally spaced 100 images subset of the original sequence. Figure 39 illustrates the
performance of the two algorithms for re-generating one of the initial positions and for a new
position. We also created a movie (arm.mpg) that reanimates the arm in the two cases. Notice
the geometric errors in the case of static texture algorithm that are corrected by the dynamic
texture algorithm.
Quantitative comparison In order to quantitatively analyze how modulating a texture basis
performs compared to standard view dependent texturing from a close real image, we produced
three image sequences. The first image sequence are 80 real scene images of the wreath viewed
under different camera poses from straight on to approximately 50 degrees off axis. The second
image sequence is a synthesized rendering of those same poses from the texture basis (Fig. 36

45

IEEE Virtual Reality 2003, T1 4.7 Examples of Dynamic Texture Renderings

Figure 36: Texturing a rotating quadrilateral with a wreath. Top: by warping a flat texture
image. Bottom: by modulating the texture basis B and generating a continuously varying
texture which is then warped onto the same quad. Demo on web site

Figure 37: Left: Delauney triangulation of a captured house model. Note that triangles don’t
correspond well to physical planes. Right: Static texturing of a captured house produces signifi-
cant errors. Especially note the deformations where the big and small house join due to several
triangles spanning points on both houses, and .

46

IEEE Virtual Reality 2003, T1 4.7 Examples of Dynamic Texture Renderings

Figure 38: Rendered novel views of a house by modulating a texture onto a coarse captured
geometric model. Note the absence of geometric distortions compared to the previous figure.

Figure 39: Geometric errors on arm sequence. (top) Renderings of a new position using static and
dynamic textures respectively. (bottom) Rerenderings for one frame from the training sequence
using static and dynamic textures.

47

IEEE Virtual Reality 2003, T1 4.8 Discussion

Figure 40: Arm animation

and web page video). The third is the same rendering using standard view dependent textures
from 30 sample textures quite close (at most a few degrees from) the rendered pose. The average
image intensity error per pixel between rendered and real images was calculated for sequence
two and three. It was found that for most views modulating a basis texture we can achieve
about half the image error compared to standard view dependent texturing. This error is also
very stable over all views, giving real time rendering a smooth natural appearance. The view
dependent rendering from sample images did better only when a rendered frame is very close to
a sample image, and otherwise gave a jumpy appearance where the error would go up and down
depending on the angular distance to a sample view. The error graph for 14 of the 80 views is
shown in 41.

For an animation there are global errors through the whole movie that are not visible in one
frame but only in the motion impression from the succession of the frames. One important
dynamic measurement is motion smoothness. When using static texture we source the texture
from a subset of the original images (k + 1 if k is the number of texture basis) so there is
significant jumping when changing the texture source image. We tracked a point through a
generated sequence for the pattern in the two cases and measure the smoothness of motion.
Table 1 shows the average pixel jitter.

Vertical jitter Horizontal jitter

Static texture 1.15 0.98
Dynamic texture 0.52 0.71

Table 1: Average pixel jitter

4.8 Discussion

Dynamic textures is a texturing method where for each new view a unique view-dependent
texture is modulated from a texture basis. The basis is designed so that it encodes a texture
intensity spatial derivatives with respect to warp and parallax parameters in a set of basis
textures. In a rendered sequence the texture modulation plays a small movie on each model facet,
which correctly represents the underlying true scene structure to a first order. This effectively
compensates for small (up to a few pixels) geometric errors between the true scene structure and
captured model.

48

IEEE Virtual Reality 2003, T1 4.8 Discussion

0 5 10 15
0

1

2

3

4

5

6

View

M
ea

n
er

ro
r

Modulated texture
View texture

Figure 41: Pixel intensity error when texturing from a close sample view (red) and by modulating
the texture basis. For most views the texture basis gives a lower error. Only when the rendered
view has the same pose as the one of the three source texture images (hence the IBR is a unity
transform) is the standard view based texturing better

The benefit of using dynamic textures combined with geometric structure from motion is that
it can capture and render scenes with reasonable quality from uncalibrated images alone. Hence,
neither a-priori models, expensive laser scanners or extensive human intervention is required.
This can potentially enable applications such as virtualized and augmented reality in the con-
sumer market.

49

IEEE Virtual Reality 2003, T1

5 Real-Time Visual Tracking

Darius Burschka and Greg Hager

5.1 Motivation

Real-time vision is an ideal source of feedback for systems that must interact dynamically with
the world. Cameras are passive and unobtrusive, they have a wide field of view, and they provide
a means for accurately measuring the geometric properties of physical objects. Potential applica-
tions for visual feedback range from traditional problems such as robotic hand eye coordination
and mobile robot navigation to more recent areas of interest such as user interfaces, gesture
recognition, and surveillance. One of the key problems in real-time vision is to track objects of
interest through a series of images. There are two general classes of image processing algorithms
used for this task: full-field image processing followed by segmentation and matching and local-
ized feature detection. Many tracking problems can be solved using either approach, but it is
clear that the correspondence search in single frames is a challenging and error-prone task. In
this sense, precise local feature tracking is essential for the accurate recovery of three-dimensional
structure.

The XVision is our image processing library providing basic image processing functions and
tracking abstractions that can be used to construct application specific, robust tracker designs
in a simple way. This software runs on standard commercial hardware allowing a construction
of low-cost systems for a variety of robotics and graphics applications. The library provides a
variety of tracking primitives that use color, texture, edges or disparity representations of the
world as input.

In the following section we will focus on two image domains: texture in monocular systems and
disparity domain, where we made significant contributions to the state of the art as presented in
the tutorial.

5.2 Visual Tracking in Monocular Images

Visual tracking has emerged as an important component of systems using vision as feedback for
continuous control [63, 64, 67, 66], human computer interfaces [68, 69, 70], surveillance, or visual
reconstruction [73, 74, 77, 78]. The central challenge in visual tracking is to determine the image
position of an object, or target region of an object, as the object moves through a camera’s field
of view. This is done by solving what is known as the temporal correspondence problem: the
problem of matching the target region in successive frames of a sequence of images taken at
closely-spaced time intervals.

This problem has much in common with the stereo or motion correspondence problems, but
differs in that the goal is not to determine the exact correspondence of each point within the
image, but rather to determine, in a gross sense, the movement of the target region. Thus,
because all points in the target region are presumed to be part of the same object, we assume
– for most applications – that these points move rigidly in space. This assumption allows us
to develop low-order parametric models for the image motion of the points within the target
region, models that can be used to predict the movement of the points and track the target

50

IEEE Virtual Reality 2003, T1 5.2 Visual Tracking in Monocular Images

region through the image sequence.
The simplest and most common model for the motion of the target region through the image

sequence is to assume image translation, which is equivalent to assuming that the object is
translating in space and is being viewed orthographically. For inter-frame calculations such as
those required for motion analysis, this is typically adequate. However for tracking applications
in which the correspondence for a finite size image patch must be computed over a long time
span, the translation assumption is eventually violated. As noted by Shi and Tomasi [86], in such
cases rotation, scaling, shear and other image distortions often have a significant effect on feature
appearance and must be accounted for to achieve reliable matching. A more sophisticated model
is to assume affine deformations of the target region, which is equivalent to assuming that the
object is planar and again is being viewed orthographically. This model goes along way toward
handling more general motions, but again breaks down for object which are not planar or nearly
planar.

Recent attempts have been made to model more complex motions or more complex image
changes. For example, Black and Yacoob [90] describe an algorithm for computing structured
optical flow for recognizing facial expressions using motion models that include affine deforma-
tions and simple polynomial distortions. Rehg and Witkin [89] describe a similar algorithm
for tracking arbitrarily deforming objects. In both cases, the algorithms track by integrating
inter-frame changes, a procedure that is prone to cumulative error. More recent work consid-
ers tracking while the target undergoes changes of view by using a subspace of images and an
iterative robust regression algorithm [92].

We develop a general framework for tracking objects through the determination of frame to
frame correspondence of the target region. The motion is not restricted to pure translation, or
even necessarily affine deformations of the target region through the image space. Rather any
parametric model for the image motion can be specified. If the shape of the object is known in
advance, then one can choose the appropriate model for image motion.

Again in analogy to the stereo and motion correspondence problems, there is the choice of
what features of the target region to match through the image sequence. In this paper, we match
image intensity for all points within the target region. The advantage of using image intensity is
that all the information is used in determining the temporal correspondence. A disadvantage is
that the intensity of points within the target region vary with changes in lighting. Thus, many
researchers have avoided image intensity in favor of features such as edges or corners [96, 94] or
have completely ignored the effects of illumination. Hence, unaccounted for changes in shading
and illumination can easily influence the solutions for translation or object geometry, leading
to estimation bias and, eventually, mis-tracking. Solutions to illumination problems have been
largely confined to simple accommodations for brightness and contrast changes.

We develop a method for tracking image regions that accounts not only for changes in the
intensity of the illumination, but also for changes of the pose of the object with respect to the
source of illumination. We do this by developing a parametric, linear model for changes in the
image of the target region induced by changes in the lighting. As for our parametric models
for image motion, our parametric models for illumination are low-order and can be developed
either in advance or on the fly. Furthermore, we show how these illumination models can be
incorporated into SSD motion estimation with no extra on-line computational cost.

51

IEEE Virtual Reality 2003, T1 5.3 Tracking Moving Objects

We have both a parametric model for the allowable motion of the image coordinates and a
parametric model for the allowable changes in the image due to changes in illumination. To
establish the temporal correspondence of the target region across the image sequence, we simul-
taneously determine the motion parameters and the illumination parameters that minimize the
sum of squared differences (SSD) of image intensities. SSD-based methods have been employed
in a variety of contexts including stereo matching [84], optical flow computation [85], hand-eye
coordination [66], and visual motion analysis [86].

SSD-based methods are sensitive to outliers. If the object becomes partially occluded, then
tracking system – in an effort to comply with the SSD constrain – may move away from the
partially occluded target and eventually mistrack. To overcome this, we augment our SSD
constrain allowing it to discard statistical outliers. This improves performance of the system
significantly. Even if the occluded portion of the target region is a significant fraction of the
whole target region (e.g., 25% of the object are occluded), the method still allows a robust lock
on the target.

5.3 Tracking Moving Objects

In this section, we describe a framework for efficient tracking of a target region through an image
sequence. We first write down a a general model for the set of allowable image deformations
of the target region across the sequence. This set is treated as a manifold in the target region
image coordinate space – we call this manifold the “tracking manifold.” We then pose the
tracking problem as the problem of finding the optimal path across a tracking manifold. We
define the optimal path as that which minimizes the sum of squared differences (SSD) between
the brightness values of the initial and subsequent images of the target and subsequent images
of the target warped according to the target coordinates on the tracking manifold. Methods
for implementing SSD matching are well-known and can be found in a variety of publications,
e.g. [84, 85, 86].

5.3.1 Recovering Structured Motion

First, we consider the problem of describing the motion of a target object from the information
contained in a sequence of closely spaced images. Let I(x, t) denote the brightness value at the
location x = (x, y)T in an image acquired at time t and let ∇xI(x, t) denote the spatial gradient
at that location and time. The symbol t0 denotes an identified “initial” time and we refer to the
image at time t0 as the reference image. Let the set R = {x1,x2, . . . ,xN} be a set of N image
locations which define a target region. We refer to the brightness values of the target region in
the reference image as the reference template.

Over time, relative motion between the the target object and the camera causes the image of
the target to move and to deform. We stipulate that the deformations over time are well-modeled
by a fixed motion model which is described as a change of coordinates f(x, µ) parameterized by
µ = (µ1, µ2, . . . , µn)T ∈ U , with f(x, 0) = x. We assume that f is differentiable in both µ and x.
The parameters µ are the motion information to be recovered from the visual input stream. We
write µ∗(t) to denote the ground truth values of these parameters at time t, and µ(t) to denote
the corresponding estimate. The argument t will be suppressed when it is obvious from context.

52

IEEE Virtual Reality 2003, T1 5.3 Tracking Moving Objects

Suppose that a reference template is acquired at time t0 and that initially µ∗(t0) = µ(t0) = 0.
Let us initially assume that the only changes in subsequent images of the target are completely
described by f . It follows that for any time t > t0 there is a parameter vector µ∗(t) such that

I(x, t0) = I(f(x, µ∗(t)), t) for all x ∈ R. (61)

This a generalization of the so-called image constancy assumption [97]. It follows that the
configuration of the target region at time t can be estimated by minimizing the following least
squares objective function:

O(µ) =
∑

x∈R

(I(f(x, µ), t) − I(x, t0))
2. (62)

For later developments, it is convenient to rewrite this optimization problem in vector notation.
At this point, let us consider images as vectors in an N dimensional space. The image of the
target region at time t under the change of coordinates f with parameter µ is defined as

I(µ, t) =

I(f(x1, µ), t)
I(f(x2, µ), t)

. . .
I(f(xN , µ), t)

. (63)

This vector is subsequently referred to as the rectified image at time t with parameters µ. Note
that with this definition, the image constancy assumption can be restated as I(µ∗(t), t) = I(0, t0).

We also make use of the partial derivatives of I with respect to the components of µ and the
time parameter t. These are defined as:

Iµi
(µ, t) =

∂I

∂µi

=

Iµi
(f(x1, µ), t)

Iµi
(f(x2, µ), t)

...
Iµi

(f(xN , µ), t)

, 1 ≤ i ≤ n, and It(µ, t) =
∂I

∂t
=

It(f(x1, µ), t)
It(f(x2, µ), t)

...
It(f(xN , µ), t)

.

(64)
Using this vector notation, (62) becomes

O(µ) = ‖I(µ, t) − I(0, t0)‖
2. (65)

In general, (65) defines a nonlinear optimization problem, and hence, unless the target region has
some special structure, it is unlikely that the objective function is convex. Thus, in the absence
of a good starting point, this problem will usually require some type of expensive search or global
optimization procedure to solve [98].

In the case of visual tracking, the continuity of motion provides such a starting point. Let
us assume that at some arbitrary time t > t0 the target region has the estimated configuration
µ(t). We recast the tracking problem as one of determining a vector of offsets, δµ such that
µ(t + τ) = µ(t) + δµ from an image acquired at t + τ. Incorporating this modification into (65),
we define a new objective function on δµ

O′(δµ) = ‖I(µ(t) + δµ, t + τ) − I(0, t0)‖
2. (66)

53

IEEE Virtual Reality 2003, T1 5.3 Tracking Moving Objects

If the magnitude of the components of δµ are small, then it is possible to apply continuous
optimization procedures to a linearized version of the problem [92, 97, 84, 86]. The linearization
is carried out by expanding I(µ + δµ, t + τ) in a Taylor series about µ and t,

I(µ + δµ, t + τ) = I(µ, t) + M(µ, t) δµ + τIt(µ, t) + h.o.t, (67)

where h.o.t denotes higher order terms of the expansion, and M is the Jacobian matrix of I with
respect to µ. The Jacobian matrix is the N×n matrix of partial derivatives which can be written

M(µ, t) = [Iµ1
(µ, t)|Iµ2

(µ, t)| . . . |Iµn
(µ, t)]. (68)

Here we have explicitly indicated that the values of the partial derivatives are a function of the
evaluation point (µ, t). These arguments will be suppressed when obvious from context.

By substituting (67) into (66) and ignoring the higher order terms, we have

O′(δµ) ≈ ‖I(µ, t + τ) + M δµ + τIt − I(0, t0)‖
2. (69)

We then observe that τIt(µ, t) ≈ I(µ, t + τ)− I(µ, t). Incorporating this observation and simpli-
fying, we have

O′(δµ) ≈ ‖M δµ + I(µ, t + τ) − I(0, t0)‖
2. (70)

The solution to this optimization problem is

δµ = −(MTM)−1 MT [I(µ, t + τ) − I(0, t0)] , (71)

provided the matrix MTM is invertible. When it is matrix MTM is not invertible, then we are
faced with a generalization of the aperture problem, i.e. the target region does not have sufficient
structure to determine all of the elements of µ uniquely.

Defining the error vector e(t+ τ) = I(µ(t), t+ τ)− I(0, t0), solution of (65) at time t+ τ given
a solution at time t is

µ(t + τ) = µ(t) − (MTM)−1 MT e(t + τ). (72)

It is interesting to note that (72) is in the form of a proportional feedback system. The values
in µ form the state vector of the system and parameterize the change of coordinates f used
to rectify the most recent image based on past estimates. The error term, e(t + τ), drives the
system to a state where e(t + τ) = 0. Since the error is formed as a difference with the original
reference template, this implies that the system has an inherent stability—the system will adjust
the parameter estimates until the rectified image is identical (or as close as possible in a mean-
squared sense) to the reference template. It is also interesting to note that if µ(t) = µ∗(t) at each
estimation step, then e ≈ It, (the image temporal derivative) and δµ is a least-squares estimate
of the motion field at time t + τ.

Recall that vector inner product is equivalent to computing a cross correlation of two discrete
signals. Thus, the vector Mte has n components, each of which is the cross correlation of Iµi

with e. The n×n matrix (MtM)−1 is a linear change of coordinates on this vector. In particular,
if the individual rows of M are orthogonal, then (MtM)−1 is a diagonal matrix containing the
inverse of the norm of the row vectors. In this case, (71) is computing a vector of normalized
cross-correlations.

54

IEEE Virtual Reality 2003, T1 5.3 Tracking Moving Objects

We can think of each column Iµi
as a “motion template” which directly represents specific

types of target motion in terms of the changes in brightness induced by this motion. These
templates, through a cross correlation process with e are used determine the values of each
individual motion component. When the estimation is exact, then the correlation is with It the
result is an estimate of inter-frame motion. If the prior estimates are not exact (as is usually the
case), then an additional correction is added to account for past estimation error. In particular,
if µ̇∗ = 0, then It = 0 and it follows that ‖e‖ is monotone decreasing and under reasonable
conditions µ −→ µ∗ as t −→ ∞.

5.3.2 An Efficient Tracking Algorithm

To this point, we have not specified the contents of the Jacobian matrix M. This matrix is
composed of entries of the form

Mi,j =
∂I(f(xi, µ), t)

∂µj

(73)

= ∇fI(f(xi, µ), t) · fµj
(x, µ),

where the last expression follows from an application of the chain rule. Because M depends on
time-varying quantities, in principle it must be recomputed at each time step, a computationally
expensive procedure. We now show that it is often possible to factor M(t) to increase the
computational effectiveness of the algorithm.

We first recall that the Jacobian matrix of the transformation f regarded as a function of µ is
the 2 × n matrix

fµ =

[

∂f

∂µ1

∣

∣

∣

∂f

∂µ2

∣

∣

∣ . . .
∣

∣

∣

∂f

∂µn

]

. (74)

Similarly, the Jacobian of f regarded as a function of x = (x, y)t is the 2 × 2 matrix

fx =

[

∂f

∂x

∣

∣

∣

∂f

∂y

]

. (75)

By making use of (74), we observe that the entire ith row of M can be written

Mi = ∇fI(f(xi, µ), t)t fµ. (76)

Let us assume that the constancy assumption (61) holds at time t for the estimate µ(t). By
differentiating both sides of (61) and making use of (75) we obtain

∇xI(x, t0) = f t
x ∇fI(f(x, µ), t). (77)

Combining this expression with (76), we see that the ith row of M is given by

Mi = ∇xI(xi, t0)
t f−1

x fµ. (78)

The complete Jacobian matrix consists of rows obtained by computing this expression for each
1 ≤ i ≤ N.

55

IEEE Virtual Reality 2003, T1 5.3 Tracking Moving Objects

From (78), we observe that, for any choice of image deformations, the image spatial gradients
need only to be calculated once on the reference template. This is not surprising given that the
target at time t > t0 is only a distortion of the target at time t0, and so its image gradients are
also a distortion of those at t0.

The non-constant factor in M(t) is a consequence of the fact that, in general, fx and fµ involve
components of µ and hence vary with time. If we assume that f is an affine function of image
coordinates, then we see that fx involves only factors of µ and hence the term f−1

x fµ involves
terms which are linear in the components of x. It is easy to show that we can write then write
M(t) as

M(t) = M(t0) A(t)−1

where A(t) is a full-rank n × n matrix.
Let us define

Λ(t) = (M(t)tM(t))−1M(t)t

From the previous definition it then follows that

Λ(t) = A(t) Λ(t0),

and an efficient tracking algorithm for affine image deformations consists of the following steps:

offline:

• Define the target region.

• Acquire and store the reference template.

• Compute and store Λ(t0) using the reference template.

online:

• Use the most recent motion parameter estimates to acquire and warp the target region
in the current image.

• Compute the difference between the warped target region and the reference template.

• Multiply this vector by A(t)Λ(t0) and add the result to the current parameter esti-
mate.

We now present three examples illustrating these concepts.

Pure Translation In the case of pure translation, the allowed image motions are parameterized
by the vector u = (u, v) giving

f(x,u) = x + u.

It follows immediately that fx and fµ are both the 2 × 2 identity matrix, and therefore

M(t) = M(t0) = [Ix(t0) |Iy(t0)] .

56

IEEE Virtual Reality 2003, T1 5.3 Tracking Moving Objects

Substituting this definition into (74), we see that the motion templates are then simply the
spatial gradients of the target region

Iu(u, t) =
∂I

∂u
=

Ix(x1 + u, t)
Ix(x2 + u, t)

...
Ix(xN ,u, t)

and Iv(u, t) =
∂I

∂v
=

Iy(x1 + u, t)
Iy(x2 + u, t)

...
Iy(xN + u, t)

.

Hence, the computed motion values are simply the cross-correlation between the spatial and
temporal derivatives of the image as expected.

The resulting linear system is nonsingular if the image gradients in the template region are
not collinear.

Translation, Rotation and Scale In [92], it is reported that translation plus rotation and
scale are effective for tracking objects. Suppose that the target region undergoes a rotation
through an angle θ, a scaling by s, and a translation by u. The change of coordinates is given by

f(x,u, θ, s) = sR(θ)x + u

where R(θ) is

[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]

We then compute

fx = sR(θ) (79)

fµ =

[

1
0

|
0
1

| s
dR(θ)

dθ
x | R(θ)x

]

(80)

f−1
x fµ =

[

Rt(θ)x | Rt(θ)
dR(θ)

dθ)
x |

1

s
x

]

(81)

=

[

Rt(θ)x

∣

∣

∣

∣

∣

−y
x

∣

∣

∣

∣

1

s
x

]

. (82)

By substituting the final expression into (76) and rearranging the result, it can be shown that
the ith row of M(t0) corresponding to image location xi = (x, y)t with gradient ∇xI = (Ix, Iy)

t

be expressed as
Mi = (Ix, Iy,−yIx + xIy, xIx + yIy) A−1(θ, s) (83)

where

A(θ, s) =

sR(θ) 0 0
0 1 0
0 0 s

 and A−1(θ, s) = A(−θ, 1/s)

This result can be intuitively justified as follows. The matrix M(0) is the linearization of the
system about θ = 0 and s = 1. At time t the target has orientation θ(t) and s(t). Image warping

57

IEEE Virtual Reality 2003, T1 5.4 Illumination-Insensitive Tracking

effectively rotates the target by −θ and scales by 1/s so the displacements of the target are
computed in the original target coordinate system. A then applies a change of coordinates to
rotate and scale the computed displacements from the original target coordinate system back to
the actual target coordinates.

Affine Motion The image distortions of planar objects viewed under orthographic projection
are described by a six-parameter linear change of coordinates. Suppose that we define

µ = (u, v, a, b, c, d)t

f(x; µ) =

[

a c
b d

]

x +

[

u
v

]

= Ax + u (84)

After some minor algebraic manipulations, we obtain

Γ(x) =

[

1 0 x 0 y 0
0 1 0 x 0 y

]

(85)

and

Σ(µ) =

A−1 0 0
0 A−1 0
0 0 A−1

 . (86)

Note that Σ is once again invertible which allows for additional computational savings as before.

5.4 Illumination-Insensitive Tracking

The systems described above are inherently sensitive to changes in illumination across the target
region. Illumination changes over time produce brightness changes that would be interpreted by
the machinery of the previous section as motion. This is not surprising, as we are effectively
computing a structured optical flow, and optical flow methods are well-known to be sensitive
to illumination changes [97]. Thus, shadowing or shading changes across the target object over
time lead to bias, or, in the worst case, complete loss of the target.

Recently, it has been shown that often a relatively small number of “basis” images can be used
to account for large changes in illumination [100, 80, 82, 81]. Briefly, the reason for this is as
follows. Consider a point p on a Lambertian surface and a collimated light source characterized
by a vector s ∈ IR3, such that the direction of s gives the direction of the light rays and ‖s‖ gives
the intensity of the light source. The irradiance at the point p is given by

E = an · s (87)

where n is the unit in-wards normal vector to the surface at p and a the non-negative absorption
coefficient (albedo) of the surface at the point p [97]. This shows that the irradiance at the point
p, and hence the gray level seen by a camera, is linear on s ∈ IR3.

Therefore, in the absence of self-shadowing, given three images of a Lambertian surface from
the same viewpoint taken under three known, linearly independent light source directions, the

58

IEEE Virtual Reality 2003, T1 5.4 Illumination-Insensitive Tracking

albedo and surface normal can be recovered; this is the well-known method of photometric
stereo [101, 100]. Alternatively, one can reconstruct the image of the surface under a novel
lighting direction by a linear combination of the three original images [100]. In other words,
if the surface is purely Lambertian and there is no shadowing, then all images under varying
illumination lie within a 3-D linear subspace of IRN , the space of all possible images (where N
is the number of pixels in the images).

A complication comes when handling shadowing: all images are no longer guaranteed to lie
in a linear subspace [82]. Nevertheless, as done in [80], we can still use a linear model as an
approximation. Naturally, we need more than three images and a higher than three dimensional
linear subspace if we hope to provide good approximation to these effects. However, a small set of
basis images can account for much of the shading changes that occur on patches of non-specular
surfaces.

Returning to the problem of SSD tracking, suppose now that we have a basis of image vectors
B1,B2, . . . ,Bm where the i − th element of each of the basis vectors corresponds to the image
location xi ∈ R. Let us choose the first basis vector to be the template image, i.e. B1 = I(0, t0).
To model the brightness changes, let us choose the second basis vector to be a column of ones,
i.e. B2 = (1, 1, . . . , 1)T .3 Let us choose the remaining basis vectors by performing SVD (singular
value decomposition) on a set of training images of the target, taken under varying illumination.
We denote the collection of basis vectors by the matrix B = [B1|B2| . . . |Bm].

Suppose now that µ(t) = µ∗(t) so that the template image and the current target region are
registered geometrically at time t. The remaining difference between them is due to illumination.
From the above discussion, it follows that inter-frame changes in the current target region can
be approximated by the template image plus a linear combination of the basis vectors B, i.e.

I(µ + δµ, t + τ) = I(µ, t) + Mδµ + Itτ + Bλ + h.o.t (88)

where the vector λ = (λ1, λ2, . . . , λm)T . Note that because the template image and an image of
ones are included in the basis B, we implicitly handle both variation due to contrast changes
and variation due to brightness changes. The remaining basis vectors are used to handle more
subtle variation – variation that depends both on the geometry of the target object and on the
nature of the light sources.

Using the vector-space formulation for motion recovery established in the previous section, it
is clear that illumination and geometry can be recovered in one global optimization step solved
via linear methods. Incorporating illumination into (66) we have

O′(δµ, λ) = ‖I(µ(t) + δµ, t + τ) + Bλ − I(0, t0)‖
2. (89)

Substituting (88) into (89) and performing the same simplifications and approximations as
before, we arrive at

O′(δµ, λ) = ‖Mδµ + Bλ + I(µ(t), t + τ) − I(0, t0)‖
2. (90)

3In practice, choosing a value close to the mean of the brightness of the image produces a more stable linear
system.

59

IEEE Virtual Reality 2003, T1 5.5 Making Tracking Resistant to Occlusion

Solving ∇O′(µ, λ) = 0 yields

[

δµ
λ

]

= −

[

MT M MTB
BTM BTB

]−1 [

MT

BT

]

e(t + τ). (91)

In general, we are only interested in the motion parameters. Reworking (91) to eliminate
explicit computation of illumination, we get

δµ = −(MT (1 − B(BTB)−1BT)M)−1MT (1 − B(BTB)−1BT) e(t + τ). (92)

The above set of equations can be factored as described in the previous section so that M
can be considered time-invariant. Likewise, the illumination basis is time-invariant, and so the
matrix pre-multiplying e can be written as the product of a large time-invariant matrix and
a small time-varying matrix is before. Furthermore, the dimensionality of the time-invariant
portion of the system depends only on the number of motion fields to be computed, not on the
illumination model. Hence, we have shown how to compute image motion while accounting for
variations in illumination using no more on-line computation than would be required to compute
pure motion.

5.5 Making Tracking Resistant to Occlusion

As we track objects over a large space, it is not uncommon that other objects “intrude” into the
picture. For example, we may be tracking a target region which is the side of a building when
suddenly a parked car begins to occlude a portion of that region, or the object may rotate and
the tracked region may “slide off” onto the background. Such occlusions will bias the motion
parameter estimates and, in the long term can potentially cause mistracking. In this section, we
describe how to avoid such problems. For the sake of simplicity, we develop a solution to this
problem for the case where we are only recovering motion and not illumination.

A common approach to this problem is to assume that occlusions create large image differences
which can be viewed as “outliers” by the estimation process [92]. The error metric is then
modified to be less sensitive to “outliers” by solving a robust optimization problem of the form

OR(µ) =
∑

x∈R

ρ(I(f(x, µ), t) − I(x, t0)) (93)

where ρ is one of a variety of “robust” regression metrics [102].
It is well-known that optimization of (93) is closely related to another approach of robust

estimation—iteratively re-weighted least squares (IRLS) In particular, we have chosen to imple-
ment the optimization using a somewhat unusual form of IRLS due to Dutter and Huber [83].
In order to formulate the algorithm, we introduce the notation of an “inner iteration” which is
performed one or more times at each time step. We will use a superscript to denote this iteration.

Let δµi denote the value of δµ computed by the ith inner iteration with δµ0 = 0, and define
the vector of residuals in the ith iteration, ri as

ri = e(t + τ) − M(t)δµi. (94)

60

IEEE Virtual Reality 2003, T1 5.5 Making Tracking Resistant to Occlusion

We introduce a diagonal weighting matrix Wi which has entries

Wi
k,k = η(ri

k) = ρ′(ri
k)/r

i
k. (95)

The complete inner iteration cycle at time t + τ is to perform the estimation step

δµi+1 = δµi + Λ(t)W(ri)ri (96)

followed by (94) and (95). This process is repeated for k iterations.
This form of IRLS is particularly efficient for our problem. First, it does not require re-

computation of Λ and, since the weighting matrix is diagonal, does not add significantly to the
overall computation time of the algorithm. Second, the error vector e is fixed over all inner
iterations, so these iterations do not require the additional overhead of acquiring and warping
images.

As discussed in [83], on linear problems this procedure is guaranteed to converge to a unique
global minimum for a large variety of choices of ρ. In this article, ρ is taken to be a so-called
“windsorizing” function [83] which is of the form:

ρ(r) =

{

r2/2 if |r| ≤ τ
c|r| − c2/2 if |r| > τ

(97)

where r is assumed to have unit variance; if not it must be appropriately normalized by dividing
by the standard deviation of the data. τ is a user-defined threshold which places a limit on the
variations of the residuals before they are considered outliers. This function has the advantage
of guaranteeing global convergence of the IRLS method while being cheap to compute. The
updating function for matrix entries is

η(r) =
{

1 if |r| ≤ τ
c/|r| if |r| > τ

(98)

To this point, we have not specified boundary conditions for W in the initial estimation
step. Given that tracking is a continuous process, it is natural to choose the initial weighting
matrix at time t + τ to be closely related to that computed at the end of the outer iteration
at time t. In doing so, two issues arise. First, the fact that the linear system we are solving
is a local linearization of a nonlinear system mean that, in cases when inter-frame motion is
large, the effect of higher-order terms of the Taylor series expansion will cause areas of the image
to “masquerade” as outliers. Second, if we assume that areas of the image with low weights
correspond to intruders, it makes sense to add a “buffer zone” around those areas for the next
iteration.

Both of these problems can be deal with noting that the diagonal elements of W are in one-
to-one correspondence with image locations of the target region. Thus, W can also be thought
of as an image, where “dark areas” (those locations with low value) are areas of occlusion, while
“bright areas” (those with value 1) are the expected target. Thus, classical image-processing
techniques can be applied to this “image.” In particular, it is possible to use simple morphology
techniques to reduce sensitivity. Define Q(x) to be the nine pixel values in the eight-neighborhood
of the image coordinate x plus the value at x itself. We define two operators:

61

IEEE Virtual Reality 2003, T1 5.5 Making Tracking Resistant to Occlusion

X Y Rotation Scale Aspect Ratio Shear

Figure 42: The columns of the motion Jacobian matrix for the planar target and their geometric
interpretations.

close(x) = max
v∈Q(x)

v (99)

open(x) = min
v∈Q(x)

v (100)

If these operators are applied to the image corresponding to the weighting matrix, the former has
the effect of removing small areas of outlier pixels, while the latter increases their size. Applying
close followed by open has the effect of removing small areas of outliers, and increasing the size
of large ones. The former removes isolated areas of outliers (usually the result of linearization
error), while the latter increases the area of outlier regions ensuring that outliers are less likely
to interfere with tracking in the subsequent step. Thus, we often apply one step of close and two
or three steps of open between outer iterations.

5.5.1 Planar Tracking

As a baseline, we first consider tracking a non-specular planar object—the cover of a book.
Affine warping augmented with brightness and contrast compensation is the best possible linear
approximation to this case (it is exact for an orthographic camera model and purely Lambertian
surface). As a point of comparison, recent work by Black and Jepson [92] utilized the rigid
motion plus scaling model for SSD-based region tracking. Obviously this reduced model is more
efficient and may be more stable since fewer parameters need to be computed, but it does neglect
the effects of changing aspect ratio and shear.

We tested both the rigid motion plus scale (RM+S) and full affine (FA) motion models on
the same live video sequence of the book cover in motion. Figure 42 shows the set of motion
templates (the columns of the motion matrix) for an 81 × 72 region of a book cover tracked at
one third resolution. Figure 43 shows the results of tracking. The upper series of images shows
several images of the object with the region tracked indicated with a black frame (the RM+S
algorithm) and a white frame (the FA algorithm). The middle row of images shows the output
of the warping operator from the FA algorithm. If the computed parameters were physically
correct, these images would be identical. However, because of the inability to correct for aspect
ratio and skew, the best fit leads to a skewed image. The bottom row shows the output of the
warping operator for the RM+S algorithm. Here we see that the full affine warping is much
better at accommodating the full range of image distortions. The graph at the bottom of the

62

IEEE Virtual Reality 2003, T1 5.6 Direct Plane Tracking in Stereo Images

figure shows the least squares residual (in squared gray-values per pixel). Here, the importance
of the correct geometric model is clearly evident.

5.6 Direct Plane Tracking in Stereo Images

The advances in the hardware development make tracking in disparity domain feasable. Disparity
is a direct result of a stereo processing on two camera images. The plane identification and
tracking is simplified in the disparity domain because of the additional depth information stored
for each pixel of the disparity “image”.

Many methods have been proposed to solve the problem of planar-surface tracking for binocular
[122, 121], calibrated and uncalibrated cameras (similar to using sequences of images [111, 110,
113]). A common solution involves a disparity map computation. A disparity map is a matrix
of correspondence offsets between two images, often a pair of stereo images [124]. The disparity
map calculation employs an expensive neighborhood correlation routines that often yields sparse
maps for typical scenes. However, the method makes no assumptions about the environment and
has been widely used for the case of general stereo vision. Modern system are able to calculate
up to 16 frames/s, which may be sufficient for slow motions in the images, but still not fast
enough for fast changing scenes.

In contrast to the general solution with a disparity map, our method exploits a property that
planar surfaces exhibit when viewed through a non-verged stereo camera. The disparity, is a
linear function whose coefficients are the plane’s parameters. We use a direct method to perform
the tracking. Direct methods use quantities that are calculated directly from images values
as opposed to feature-based methods discussed earlier [116, 122]. This method should allow a
higher processing rate of the images allowing to keep correspondences even in the modern high
frame-rate camera systems.

The key component of our work is the plane tracking algorithm that operates directly in the
image domain of the acquired images [109].

In the following discussion, let (x, y, z) be a point in world coordinates and (u, v) be a point
in pixel coordinates.

5.6.1 Planar Disparities

To efficiently track a plane, we can make use of a property that planar surfaces exhibit when
viewed from non-verged stereo cameras. Namely, a plane becomes a linear function that maps
pixels in one image to the corresponding location on the plane in the other image. In indoor
environments many surfaces can be approximated with planes E .

E : ax + by + cz = d (101)

In a stereo system with non-verged, unit focal length (f=1) cameras the image planes are
coplanar. In this case, the disparity value D(u, v) of a point (u,v) in the image can be estimated
from its depth z to

D(u, v) =
B

z
, (102)

63

IEEE Virtual Reality 2003, T1 5.6 Direct Plane Tracking in Stereo Images

Frame 0 Frame 50 Frame 70 Frame 120 Frame 150 Frame 230

Residuals: Planar Test

FA

RM+S

Gray values

Frames

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00

Figure 43: Above, several images of a planar region and the corresponding warped image used by
a tracker computing position, orientation and scale, and one computing a full affine deformation.
The image at the left is the initial reference image. Below, the graph of the SSD residuals.

64

IEEE Virtual Reality 2003, T1 5.6 Direct Plane Tracking in Stereo Images

with B describing the distance between the cameras of the stereo system [124].
We estimate the disparity D(u, v) of the plane E at an image point (u, v) using the unit focal

length camera (f=1) projection to

∀z 6= 0 : a
x

z
+ b

y

z
+ c =

d

z
au + bv + c = k · D(u, v) (103)

with u =
x

z
, v =

y

z
, k =

d

B

The vector n = (a b c)T is normal to the plane E and describes the orientation of the plane
relative to the camera.

The equation (103) can be written in the form

D(u, v) =

ρ1

ρ2

ρ3

 ·

u
v
1

 = n∗ ·

u
v
1

 (104)

with ρ1 =
a

k
, ρ2 =

b

k
, ρ3 =

c

k

This form uses modified parameters ρ1, ρ2, ρ3 of the plane E relating the image data u, vto D(u, v).

5.6.2 Plane Tracking

From the observation made in Section 5.6.1, we see that tracking the parameters p = ρ1, ρ2, ρ3

of the linear map (104) is equivalent to tracking the planar surface. Thus, assuming inter-frame
motion is relatively small and both brightness and contrast shifts can be removed, we pose this
problem as one of optimization.

Parameter Update Consider a rectified pair of stereo image, L and R. Based on (104), we
relate the images with the following formula. Let D(u, v) = ρ1u + ρ2v + ρ3.

L(u, v) = R(u − D(u, v), v) (105)

The plane parameters for the current pair are estimated through the minimization of the following
least-squares objective function. To enforce the brightness constancy constraint [115], we zero-
mean the images: given an image I, I = I −

∑

I.

E(p) =
∑

(L(u, v) − R(u − D(u, v), v))2 (106)

Let δp represent the set of offsets. Assuming a small magnitude for δp we can solve the mini-
mization by linearizing the expression through a Taylor expansion about p.

E(δp) ≈
∑

(L(u, v) − R(u − D(u, v), v)

+uIxδρ1 + vIxδρ2 + Ixδρ3)
2 (107)

65

IEEE Virtual Reality 2003, T1 5.6 Direct Plane Tracking in Stereo Images

Here, Ix refers to the spatial gradient of the right image. We neglect the higher order terms of
the Taylor series. The system is solved using the Singular-Value Decomposition [123]. It is first
convenient to define the error term: e(u, v) = L(u, v) − R(u − D(u, v), v).

e(u1, v1)
e(u1, v2)
.
e(um, vn)

=

u1Ixu1
v1Ixu1

Ixu1

u1Ixu2
v2Ixu2

Ixu2

. .
umIxum

vnIxum
Ixum

δρ1

δρ2

δρ3

 (108)

Mask Management Thus far, we have shown how to optimize the parameters of a plane in
a static scene. To extend the approach to a tracking setting, we incorporate a mask into the
framework. The mask is a binary weighting matrix with an entry per-pixel denoting the pixel’s
inclusion or exclusion from the current tracked plane. Such a mask removes inaccurate and
poor pixel matches from the SVD solution decreasing its processing demand and increasing its
stability. Equation (107) is extended to (109) incorporating such a mask; W (u, v) corresponds
to the value of the mask at (u, v).

E(δp) ≈
∑

δW (u,v)=1[(L(u, v) − R(u − D(u, v), v)

+uIxδρ1 + vIxδρ1 + Ixδρ2)
2] (109)

Each frame, we compute a normalized cross-correlation (�) measure to fully recompute the
mask matrix based on the current parameters.

ηu,v = L(u, v) � R(u − D(u, v), v) (110)

Since (109) is only sensitive to pixels demonstrating horizontal gradients, we also mask pixels
with low horizontal variance. To do so, we sample the correlation response along the epipolar
line.

αu,v =
L(u, v) � R(u − D(u, v) + δ, v)

η

βu,v =
L(u, v) � R(u − D(u, v) − δ, v)

η
(111)

W (u, v) = (ηu,v > τ) ∧ (αu,v > ε) ∧ (βu,v > ε) (112)

In (112), 0 < τ < 1 and ε > 1. In (111,112), the selection of δ,τ , and ε is dependent on the
optics of the system and the scene. To increase the robustness of the mask generated in this
manner, we also perform a morphological dilation followed by an erosion [114]. This has the
effect of removing noisy correlation response and joining contiguous regions.

66

IEEE Virtual Reality 2003, T1

6 Implementation of Real-Time Texture Blending and

IBMR systems

Keith Yerex and Martin Jagersand

Our renderer manages to do the equivilant of a fairly large matrix multiplication (about [60000×
50] ∗ [50 × 1]) each frame easily at interactive framerates. Even with a very fast cpu this is not
possible. We accomplish it by taking advantage of texture blending capabilities available on all
current graphics accellerators. There multiple ways to blend textures in hardware, as well as
different hardware vendors, and software options for accessing the hardware. We will mostly
discuss OpenGL/NVidia implementation, but first, let’s breifly look at all the options.

6.0.3 Software choices: OpenGL or DirectX

For software, there is DirectX and OpenGL. OpenGL is available on all platforms, making it our
sdk of choice since we use Linux, but DirectX has some advantages. OpenGL uses proprietary
extensions to access the latest features of new graphics hardware, which can become confusing
since each manufacturer will have different extensions with similar uses (until extensions are
standardized by the OpenGL ARB [Architecture Review Board]). DirectX has more uniform
ways of accessing different hardware, since proprietary extensions are not allowed. The down
side is that with every new generation of hardware released, their is a new version of DirectX to
learn.

In hardware, there are two major players in high end consumer graphics accellerators: Ati and
NVidia. Ati’s Radeon 9700 has been the leader in the market for a while now, with the best
performance and features. However, NVidia has recently launched their new GeForce FX line,
with slightly better performance, and a far better feature set. Of course Ati will be releasing
their new Radeon 9800 soon, so it is pretty hard just to keep up to date with the progression,
let alone afford the latest and greatest new card every 6 months. In any case, these days even
cheaper hardware like NVidia’s GeForce2go laptop chips are easily fast enough to do what we
need.

Texture blending can be performed in either a single pass, or multiple passes. Older hardware
only supports multi-pass blending, which is the simplest. With multi-pass blending, you first
draw some geometry with one texture, then set the blending function (add/subtract/...) and
coefficients, and draw the entire geometry again with a second texture. The results are blended
together according to the blending function and coefficients. Multi-pass blending can be accessed
with the OpenGL 1.3 imaging subset supported by many cards.

Single-pass blending means that multiple textures are loaded simultaneously, along with the
parameters for how to combine them, and then the geometry is rendered once. Textures are
combined and rendered simultaneously. This method saves the rendering pipeline from processing
all the geometric data more than once (camera transforms, clipping etc.), which can be expensive
if the geometry is detailed. Primitive single pass blending can be accessed through the OpenGL
Multitexturing extension, but to access the all blending features of current graphics cards, we
have to use proprietrary OpenGL extensions created separately by each vender. ATI has it’s
fragment shader extension, and NVidia has the register combiners and texture shader extensions

67

IEEE Virtual Reality 2003, T1

(both accessed through pixel shaders in DirectX). However these issues will be standardized
in future ARB extensions. The number of textures that can be processed in a single pass is
hardware dependant (NVidia GeForce 3/4 can access 4 textures at once, ATI Radeon 9700 does
8, and the GeForceFX does 16).

In DirectX texture blending is controlled by pixel shaders. These are small programs that
execute (on the graphics processor) for each fragment rendered. Pixel shaders are written in
an assembly language with instructions for texture accessing, and blending that operate on 4D
vector registers. In DirectX 8.0 these are the blending instructions available:

add: component addition

cnd: conditional copy [something like this: if(a>0.5)return b; else

return c;]

dp3: 3D dot product

lrp: linear interpolation

mad: scaled addition (multiply and add)

mov: copy

mul: component multiplication

sub: component subtraction

Other instructions control loading data from textures into registers. This interface provides a
very configurable and yet simple way to control texture blending. There are limitations, however,
on the number of instructions of each type allowed per pixel shader. In Pixel Shader version 1.0,
8 arithmetic instructions, and 4 texture access instructions are allowed. To make things more
complicated, there are a few instructions that count for more or less than expected, varying with
the pixel shader version number

6.0.4 NVIDIA Register Combiners

In our programs, we have used NVidia’s register combiners OpenGL extension for texture blend-
ing. This interface more closely mirrors how NVidia hardware actually works, making it a little
more difficult to work with. With register combiners, there are a number of general combiner
stages, followed by a final combinder stage. Each general combiner stage can do one of two op-
erations: two dot products, or two multiplications and one addition. The alpha component, and
rgb vector are controled separateley, you can add two scaled numbers in the alpha channel while
doing two dot products in on the rgb components. The final combiner stage does two multipli-
cations, and an addition (like this: finalcolor3D = a ∗ b + (1− a)c + d) on the rgb components,
and just loads the alpha component from a register. Register combiners are controlled by setting
the number of general combiners active, and then setting the input registers and output registers
of each stage. Using the output registers of previous stages as inputs to later stages, you can
bassically write a program just like a DirectX pixel shader. The number of general combiner
stages available is hardware dependant (2 on GeForce 2Go, 8 on GeForce 3)

For our application, we may need to blend up to 100 textures, which makes it difficult to use
single-pass blending. First, we will look at how it can be implemented with standard multi-pass
blending.

68

IEEE Virtual Reality 2003, T1

The basic idea is simply to draw the mean, followed by successively blending in each eigenvector
with its coefficient. But it isn’t quite that simple. OpenGL blending (GL BLEND) doesn’t
support signed numbers, and eigenvectors will be composed of negative and positive pixels. To
get aronud that, we can simply separate the eigenvectors in to a positive texture and a negative
texture, effectiveley wasting half the pixels in each texture by filling them with zeroes. Then we
can render twice for each eigenvector: once to do the subraction, and once to do the addition
(both scaled by the blending coefficient). Here is the pseudo code for this implementation:

for(each q)

{

// draw the mean

BindTexture(Īq);

DrawQuad(q);

// add basis textures

for(each i)

{

SetBlendCoefficient(|yqi(t)|);

BindTexture(B+
qi);

if(yqi(t) > 0) SetBlendEquation(ADD);

else SetBlendEquation(SUBTRACT);

DrawQuad(q);

BindTexture(B−

qi);

if(yqi(t) > 0) SetBlendEquation(SUBTRACT);

else SetBlendEquation(ADD);

DrawQuad(q);

}

}

The multi-pass implementation works reasonably well, but can be significantly improved on
(especially in texture memory usage) by taking advantage of the programability of current graph-
ics hardware while applying multiple textures in each pass. We can blend as many textures as
possible in each pass, and still do several passes, but there are more benefits. The register com-
biners OpenGL extension supports textures in a signed format, so we can us 50% less texture
memory already. On top of that, using register combiners, we can convert between color spaces
while blending textures. This means that we can store Y,U and V eigenvectors separately, and
use more memory and rendering time on Y and less on U and V.

For each pass, we load 4 Y eigenvectors into one RGBA texture in each available texture unit
(we have GeForce 3’s so thats 4) 4 coefficients are loaded to go with each eigenvector, and then

69

IEEE Virtual Reality 2003, T1 6.1 IBMR System

register combiners are used to do dot products between each element of the eigenvector,and the
four coefficients, and then sum the results. Before adding the sum from the current pass to the
contents of the framebuffer, it is multiplied by a YUV to RGB conversion matrix. So we can
do 16 eigenvectors per pass (with GeForce3). We still have the problem that multipass blending
doesn’t support signed addition. Because of this, we will still have to render two passes to apply
the 16 eigenvectors. In the first pass, we will add, with coefficients as is. results less than zero
will be clipped to zero, and positive results will be added. Then we negate the coefficients, and
change the blending mode two subtract. Drawing the second pass, results above zero are now the
real negatives (since we negated the coefficients) and they are subtracted. In the first pass, the
mean must be included, with with a coefficient of 1. The first pass doesn’t need to be followed
by a subtraction pass, because it should result in a real image, with no negatives. That means
if we have 47 eigenvectors for Y, 15 for U, and 15 for V, plus each one has it’s mean, then we
can render in 11 passes (7 for Y, 2 for u, and 2 for v). If we had a GeForceFX it could be done
in only 2 or 3 passes.

6.0.5 Summary

Graphics accelerators are becoming more and more programmable, and increasingly powerful,
making it possible to use hardware to accelerate new graphics algorithms that the hardware
designers were not even aware of. Now not only classic model based graphics can take advantage
of current rendering hardware. Various image-based methods, like ours, can also run on standard
consumer graphics cards.

6.1 IBMR System

We have implemented and tested our method using consumer grade PC’s for video capture,
tracking and rendering. A demo pre-compiled for both Linux and windows and several movies
of sample renderings are on the tutorial web site. The tracking and capture part is based on
XVision[17]. Image point correspondences xj,i = [u, v] are obtained for each frame from real-time
SSD tracking.

In our method the approximate texture image stabilization achieved using a coarse model
reduces the difficulty of applying IBR techniques. The residual image (texture) variability can
then be coded as a linear combination of a set of spatial filters. (Figure 44). More precisely,
given a training sequence of images It and tracked points [ut,vt], a simplified geometric structure
of the scene P and a set of motion parameters xt = (Rt, at, bt) that uniquely characterize each
frame is estimated from the tracked points using affine structure from motion (section 2). The
reprojection of the structure given a set of motion parameters x = (R, a, b) is obtained by

[

u
v

]

= RP +

[

a
b

]

(113)

The projection of the estimated structure [ut,vt] into the sample images is divided into Q trian-

70

IEEE Virtual Reality 2003, T1 6.1 IBMR System

New desired pose

Model New view

I1 It

y y
1 t

= =

Texture coefficients
Warped texture

Texture
basis

Structure

+ +

Training

Motion parameters

P

Sample Images

X

1 tP P

Figure 44: A sequence of training images I1 · · · It is decomposed into geometric shape information

and dynamic texture for a set of quadrilateral patches. The scene structure X and views Pj

are determined from the projection of the structure using a structure-from-motion factorization

algorithm. The view-dependent texture is decomposed into its projection y on an estimated basis

B. For a given desired position, a novel image is generated by warping new texture synthesized

from the basis B on the projected structure. On the web site is a compiled demo rendering this

flower and some captured movies

71

IEEE Virtual Reality 2003, T1 6.1 IBMR System

gular regions Iqt that are then warped to a standard shape Iwqt to generate a texture Iwt.

It =
Q
∑

q=1

Iqt (114)

Iwqt = Iqt(W(ut,vt)) (115)

Iwt =
Q
∑

q=1

Iwqt (116)

Using the algorithm described in section 4.1 we then compute a set of basis images B that capture
the image variability caused by geometric approximations and illumination changes and the set
of corresponding blending coefficients yt.

Iwt = Byt + Ī (117)

Practically, using HW accelerated OpenGL each frame Ij is loaded into texture memory and
warped to a standard shape texture Tj based on tracked positions. (Equations 114,115,116). The
standard shape xT,i is chosen to be the average positions of the tracked points scaled to fit in a
square region as shown in Fig. 44. To compute a model we use a hand-held uncalibrated camera
to capture a sample sequence of about 100-500 frames of video under varying camera pose. We
estimate the geometric model X using structure-from-motion [20] and a texture basis B as in
Section 4.1.
New View Animation

1. For each frame in the animation compute the reprojection [u, v] from the desired pose x as
in Equation 113.

2. Estimate texture blending coefficients y by interpolating the coefficients of the nearest
neighbors from the coefficients, and poses from the training data.

3. Compute the new textures in the standard shape using Equation 117, and finally the
texture is warped to the projected structure (inverse of Equations 115 and 114). These two
operations are performed simultaneously in hardware as described in section 6.0.4

We have designed our method to work well with a range of consumer grade cameras. In the
example shown in Fig. 44 a $100 pyro1394 web cam with significant lens distortion was used
to capture a flower. The flower has a complex geometry, which would be difficult to capture in
detail. Instead an enveloping geometry with only eight triangular facets was estimated from eight
tracked points. A texture basis B is estimated from the normalized texture images, and used to
render new views from a mouse controlled viewpoint in the supplied demo program (web-site).
Note how a realistic 3D effect is synthesized by modulating the texture basis. If static textures
had been used the rendering would look like the 8 facet geometric polygon with glued on pictures.

6.1.1 User interface

The software used in the lab (and available from on the tutorial web site) consists of three main
parts:

72

IEEE Virtual Reality 2003, T1 6.1 IBMR System

1. A real-time tracking program “capture ui” interfaces to a digital camera and uses XVision
real time tracking to maintain point correspondences in the video sequence. It also grabs
sample frames of intensity images.

2. A structure and texture editor is used to view and verify the geometric model, as well as
provide an interface to control the texture selection and generation.

3. A real-time renderer takes a processed models and renders it under varying virtual camera
pose controlled by mouse input.

6.1.2 Video capture and tracking

To track and capture video the “capture ui” interface is used. It can connect to either consumer
IEEE 1394 standard web cams in yuv422 mode or to higher quality machine vision cameras, (we
use Basler A301fc) in raw Bayer pattern mode. The camera mode is selected on the initial pop-up
box. Once the camera is select red, a second real time process “mexv2” will be spawned. This
process implements the video pipeline and real time tracking, and will pop up a video window
“XVision2”. See Fig. 45. To capture an object select a region to be tracked by clicking “add
tracker” in the trackers window, and then click on the desired scene point in the “XVision2”
window. Normally, trackers should be added so that the object or scene region of interest is
subdivided into roughly planar patches.

Figure 45: Video capture and tracking user interface

Next select the number of frames to capture. Usually 128-256 is sufficient, but if the scene
geometry is more complex than the approximation obtainable from the tracked points more
trackers frames can be used. Press the capture button and move the camera (or scene) to

73

IEEE Virtual Reality 2003, T1 6.1 IBMR System

evenly cover the viewing range desired in the model. After capturing the structure editor will be
automatically launched.

6.1.3 Structure and texture editor

The “editor” is used to verify the structure and if desired change structure or texture coordinates.
After a capture, the editor is launched with the just captured model and sample images. At this
point the captured model can be either saved, modified or processed into a format readable by
the real time renderer. If started alone, a prompt for a model file name will appear.

The editor has three modes. Toggling between the modes is done using the three buttons
“edit”, “triangulation” and “bluescreen”, Fig. 46. In the first “edit” mode, the accuracy of
the captured geometry can be evaluated by comparing the tracked points (black circles) to the
reprojected points (blue circles), while stepping through the captured images by clicking or
dragging the image slider at the bottom. If they differ significantly, (more than a few pixels) the
likely cause is that the real time tracking lost the point for some frames. This can be corrected in
the affected frames by selecting the point. Click select button, left click on one (or more) point(s).
To quit select mode click the middle button. Once selected points can be moved using the move
points(frame) button in one or a range of frames. As an alternative to manually moving the
points, mistracked points can be corrected using the current structure reprojection by selecting
the points, a range of frames and clicking the “correct points” button. This latter only works
well if the point was correctly tracked in most of the frames, and hence it’s 3D coordinates can
be found accurately. Points that are unnecessary or to difficult to correct can be deleted from
the whole sequence with the delete button.

Figure 46: Structure editor mode

In the second mode the triangulation used to extract and represent the dynamic texture
can be modified, Fig. 47. A captured structure is initially triangulated using standard Delauney

74

IEEE Virtual Reality 2003, T1 6.1 IBMR System

triangulation. This triangulation often does not put triangles to best correspond to the real scene
surfaces. In the triangulation editor unfortunate triangles can be deleted and new triangles can
be added by clicking on three points. Additionally, the resolution or relative area of texture given
to a particular triangle can be modified by clicking and dragging the triangles in the “texture
editor” window. The “opengl” window shows the actual texture representation for the image
frame selected.

Figure 47: The triangulation and texture editor

In the third mode “blue screen” (not shown), a blue screen color can be selected by clicking
in the image. Pixels with this (or close) color will be made transparent.

Once the structure and triangulation are satisfactory, the capture is processed into a format
that can be read by the renderer by pressing the “process” button. These files are by default
deposited in the ./renderer/ subdirectory.

75

IEEE Virtual Reality 2003, T1 6.1 IBMR System

6.1.4 Real-time renderer

The real time renderer reads several files from the current directory, and starts a glut window,
where the scene or object viewpoint can be interactively varied using the mouse. Holding down
different mouse button selects which pair of camera pose parameters are mapped to mouse x-y
motion.

Figure 48: Real time renderer

76

IEEE Virtual Reality 2003, T1

7 Discussion and Outlook

Image Based Modeling and Rendering is a relatively new field, in the intersection between Com-
puter Graphics and Computer Vision. In the past, the approach to research has been somewhat
different in these two fields. In computer vision, researchers have often taken a fundamental
principled approach, and so far relatively little of computer vision research has found widespread
application. In computer graphics on the other hand the focus of the field has been on de-
veloping methods and algorithms of immediate practical use. One reason for this difference is
that in the past, cameras and video digitizing hardware was expensive and rarely seen outside
research labs. On top of that, to do any real-time video processing special purpose computers
such as “Datacube” were needed. For graphics there has been a potential output device since the
video display unit replaced the teletype. On the side of personal computers, even the first ones
stimulated interest in graphics programming, and while resources were primitive, programmers
managed to come up with hacks and tricks to implement worthwhile graphics for e.g. computer
games.

Recently, rapid progress in computer performance combined with the availability of inexpen-
sive digital video cameras, from $100 ieee1394 web cams to decent quality camcorders, has made
possible real-time video input and processing on average consumer PC’s. Combined with easy
to use capture and rendering software this could potentially take consumer and small business
image editing from 2D picture editing to 3D capture, modeling and rendering. Potential appli-
cations are plentiful. People could capture and send “3D photos”, joint as tele-present life-like
figures in virtual meetings, and include themselves visually accurate as characters in multi-player
computer games. One step up form the home consumer market, in architecture and design real
objects and scenes can be captured and combined with both real and synthetic models into new
designs. Institutions such as museums can build virtual exhibitions, where artifacts now located
in different parts of the world can be brought together in their original scenes.

Overall, widespread use of image-based modeling would require easy to use systems. While
early approaches to both ray-set and geometry based capture needed calibrated cameras, recent
work has shown that uncalibrated video suffices. Hence, the time where capturing and using a
3D model is as easy as using a cam-corder to shoot a video clip may not be very far away.

Martin Jagersand (editor)

77

IEEE Virtual Reality 2003, T1 REFERENCES

References

[1] T. Beier and S. Neely. Feature-based image methamorphosis. In Computer Graphics (SIG-
GRAPH’92), pages 35–42, 1992.

[2] P. Brand, R. Mohr, and Ph. Bobet. Distortion optique : correction dans un modele projectif.
Actes du 9eme Congres AFCET de Reconnainssance des Formes et Intelligence Artificielle,
pages 87–98, 1994.

[3] C.-F. Chang, G. Bishop, and A. Lastra. Ldi tree: a hierarchical representation for image-
based rendering. In Computer Graphics (SIGGRAPH’99), 1999.

[4] S. Chen. Quicktime VR - an image-based approach to virtual environment navigation. In
Computer Graphics (SIGGRAPH’95), pages 29–38, 1995.

[5] S. Chen and L. Williams. View interpolation for image synthesis. In Computer Graphics
(SIGGRAPH’93), pages 279–288, 1993.

[6] D. Cobzas, K. Yerex, and M. Jagersand. Dynamic textures for image-based rendering of
fine-scale 3d structure and animation of non-rigid motion. In Eurographics, 2002.

[7] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling and rendering architecture from
phtographs. In Computer Graphics (SIGGRAPH’96), 1996.

[8] G. Doretto and S. Soatto. Editable dynamic textures. In ACM SIGGRAPH Sketches and
Applications, 2002.

[9] F. Dornaika and R. Chung. Image mosaicing under arbitrary camera motion. In Asian
Conference on Computer Vision, Taipei, Taiwan, 2000.

[10] O. Faugeras. Camera self-calibration: theory and experiments. In ECCV, pages 321–334,
1992.

[11] O. D. Faugeras. Three Dimensional Computer Vision: A Geometric Viewpoint. MIT Press,
Boston, 1993.

[12] O. D. Faugeras. Stratification of 3D vision: Projective, affine, and metric representations.
Journal of the Optical Society of America, A, 12(7):465–484, 1995.

[13] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles
and Practice. Addison-Wesley, 1997.

[14] Agence France-Presse. Photograph accompanying ”It’s Up, It’s Good: Houston Sends
Knicks to Round 2”. New York Times, CXLVIII(51,525):D1, 5/17/1999.

[15] S. J. Gortler, R. Grzeszczuk, and R. Szeliski. The lumigraph. In Computer Graphics
(SIGGRAPH’96), pages 43–54, 1996.

78

IEEE Virtual Reality 2003, T1 REFERENCES

[16] G. D. Hager. A modular system for robust positioning using feedback from stereo vision.
IEEE Transactions on Robotics and Automation, 13(4):582–595, August 1997.

[17] Gregory D. Hager and Peter N. Belhumeur. Efficient region tracking with parametric mod-
els of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(10):1025–1039, 1998.

[18] R. Hartley. Eucledian reconstruction from uncalibrated views. Application of Invariance in
Computer Vision LNCS 825, pages 237–256, 1994.

[19] R. Hartley. Multilinear relationships between coordinates of corresponding image points
and lines. In Sophus Lie Symposium,Norway, 1995.

[20] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2000.

[21] P. Heckbert. Fundamentals of Texture Mapping. Msc thesis. Technical Report No. UCB/CSD
89/516, University of California, Berkeley, 1989.

[22] A. Heyden. Projective structure and motion from image sequances using subspace methods.
In SCIA, pages 963–968, 1997.

[23] A. Heyden. Algebraic varieties in multiview geometry. In ICCV, pages 3–19, 1998.

[24] A. Heyden and K. Åström. Eucledian reconstruction from image sequances with varying an
dunknown focal length and principal point. In CVRP, 1997.

[25] M. Irani, P. Anandan, and S. Hsu. Mosaic based representation of video sequences and
their applications. In Proc. of the Fifth International Conference on Computer Vsion, pages
605–611, 1995.

[26] M. Jagersand. Image based view synthesis of articulated agents. In Computer Vision and
Pattern Recognition, 1997.

[27] M. Jagersand. Image based predictive display for tele-manipulation. In Int. Conf. on
Robotics and Automation, 1999.

[28] S.B. Kang and R. Szeliski. 3D scene data recovery using omnidirectional multibaseline stereo.
In Proc. of the IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR’96),
pages 364–370, 1996.

[29] S. Laveau and O.D. Faugeras. 3-D representation as a collection of images. In Proc. of the
IEEE Int. Conf. on Pattern Recognition (CVPR’97), pages 689–691, Jerusalem,Israel, 1994.

[30] Kuang-Chih Lee, Jeffrey Ho, and David Kriegman. Nine points of light: Acquiring subspaces
for face recognition under variable lighting. In Computer Vision and Pattern Recognition,
2001.

79

IEEE Virtual Reality 2003, T1 REFERENCES

[31] M. Levoy and P. Hanrahan. Light field rendering. In Computer Graphics (SIGGRAPH’96),
pages 31–42, 1996.

[32] R. A. Manning and C. R. Dyer. Interpolating view and scene motion by dynamic view
morphing. In Proc. of the IEEE Int. Conf. on Computer Vision and Pattern Recognition
(CVPR’99), pages 388–394, 1999.

[33] D. K. McAllister, L. Nyland, V. Popescu, A. Lastra, and C. McCue. Real-time rendering
of real world environments. In Proc. of Eurographics Workshop on Rendering, Spain, June
1999.

[34] L. McMillan. An Image-Based Approach to Three-Dimensional Computer Graphics. Ph.D.
Dissertation. UNC CS TR97-013, University of North Carolina, 1997.

[35] L. McMillan and G. Bishop. Plenoptic modeling: Am image-based rendering system. In
Computer Graphics (SIGGRAPH’95), pages 39–46, 1995.

[36] Tomas Möller and Eric Haines. Real-time Rendering. A.K. Peterson, 2002.

[37] H. Murase and S. Nayar. Visual learning and recognition of 3d objects from appearance.
International Journal of Computer Vision, 14:5–24, 1995.

[38] S. Nayar. Catadioptric okmnidirectional camera. In Proc. of the IEEE Int. Conf. on Com-
puter Vision and Pattern Recognition (CVPR’97), pages 482–488, 1997.

[39] Manuel M. Oliviera, Gary Bishop, and David McAllister. Relief texture mapping. In Com-
puter Graphics (SIGGRAPH’00), 2000.

[40] S. Peleg and M. Ben-Ezra. Stereo panorama with a single camera. In Proc. of the IEEE
Int. Conf. on Computer Vision and Pattern Recognition (CVPR’99), 1999.

[41] S. Peleg and J. Herman. Panoramic mosaics by manifold projection. In Proc. of the IEEE
Int. Conf. on Computer Vision and Pattern Recognition (CVPR’97), pages 338–343, 1997.

[42] C. Poelman and T. Kanade. A paraperspective factorization method for shape and motion
recovery. In ECCV, pages 97–108, 1994.

[43] M. Pollefeys and L.Van Gool. Self-calibration from the absolute conic on the plane at
infinity. LNCS 1296, pages 175–182, 1997.

[44] Point Grey Research. http://www.ptgrey.com.

[45] S. M. Seitz and C. R. Dyer. View morphing. In Computer Graphics (SIGGRAPH’96), pages
21–30, 1996.

[46] J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth images. In Computer Graphics
(SIGGRAPH’98), 1998.

80

IEEE Virtual Reality 2003, T1 REFERENCES

[47] H.-Y. Shum and L.-W. He. Rendering with concentric mosaics. In Computer Graphics
(SIGGRAPH’99), pages 299–306, 1999.

[48] H.-Y. Shum and R. Szeliski. Panoramic image mosaics. Technical Report MSR-TR-97-23,
Microsoft Research, 1997.

[49] I. Stamos and P. K. Allen. Integration of range and image sensing for photorealistic 3d
modeling. In Proc. of IEEE Int. Conf. on Robotics and Automation, pages 1435–1440, 2000.

[50] Peter Sturm and Bill Triggs. A factorization based algorithm for multi-image projective
structure and motion. In ECCV (2), pages 709–720, 1996.

[51] R. Szeliski. Video mosaics for virtual environments. IEEE Computer Graphics and Appli-
cations, pages 22–30, March 1996.

[52] R. Szeliski and H.-Y. Shum. Creating full view panoramic image mosaics and environment
maps. In Computer Graphics (SIGGRAPH’97), pages 251–258, 1997.

[53] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A
factorization method. International Journal of Computer Vision, 9:137–154, 1992.

[54] P. Torr. Motion segmentation and outliers detection. PhD thesis, University of Oxford,
1995.

[55] P. Torr and A. Zisserman. Robust parametrization and computation of the trifocal tensor.
Image and Visual Computing, 15:591–605, 1997.

[56] W. Triggs. The geometry of projective reconstruction i: Matching constraints and the joint
image. In ICCV, pages 338–343, 1995.

[57] W. Triggs. Auto-calibration and the absolute quadric. In CVRP, pages 609–614, 1997.

[58] R. Y. Tsai. A versitile camera clibration technique for high-accuracy 3D machine vision
metrology using off-the-shelf tv cameras and lenses. IEEE Transactions and Robotics and
Automation, 3(4):323–344, 1987.

[59] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience,
3:71–86, 1991.

[60] D. Weinshall and C. Tomasi. Linear and incremental aquisition of invariant shape models
from image sequences. In Proc. of 4th Int. Conf. on Compute Vision, pages 675–682, 1993.

[61] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, and D. H. Salesin. Multiperspective
panoramas for cell animation. In Computer Graphics (SIGGRAPH’97), 1997.

[62] J. Y. Zheng and S. Tsuji. Panoramic representation for route recognition by a mobile robot.
International Journal of Computer Vision, 9(1):55–76, 1992.

81

IEEE Virtual Reality 2003, T1 REFERENCES

[63] P. Allen, B. Yoshimi, and A. Timcenko, “Hand-eye coordination for robotics tracking and
grasping,” in Visual Servoing (K. Hashimoto, ed.), pp. 33–70, World Scientific, 1994.

[64] S. Hutchinson, G. D. Hager, and P. Corke, “A tutorial introduction to visual servo control,”
IEEE Trans. Robot. Automat, vol. 12, no. 5, 1996.

[65] G. D. Hager and P. Belhumeur, “Efficient Region Tracking With Parametric Models of Ge-
ometry and Illumination”, EEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20(10), pp.1125-1139, 1998.

[66] N. Papanikolopoulos, P. Khosla, and T. Kanade, “Visual tracking of a moving target by
a camera mounted on a robot: A combination of control and vision,” IEEE Trans. Robot.
Automat, vol. 9, no. 1, 1993.

[67] E. Dickmanns and V. Graefe, “Dynamic monocular machine vision,” Machine Vision and
Applications, vol. 1, pp. 223–240, 1988.

[68] A. F. Bobick and A. D. Wilson, “A state-based technique for the summarization of recog-
nition of gesture,” in Proceedings of the ICCV, pp. 382–388, 1995.

[69] T. Darrell, B. Moghaddam, and A. Pentland, “Active face tracking and pose estimation in
an interactive room,” in Proc. IEEE Conf. Comp. Vision and Patt. Recog., pp. 67–72, 1996.

[70] D. Gavrila and L. Davis, “Tracking humans in action: A 3D model-based approach,” in
Proc. Image Understanding Workshop, pp. 737–746, 1996.

[71] R. Howarth and H. Buxton, “Visual surveillance monitoring and watching,” in Proc. Euro-
pean Conf. on Computer Vision, pp. II:321–334, 1996.

[72] T. Frank, M. Haag, H. Kollnig, and H.-H. Nagel, “Tracking of occluded vehicles in traffic
scenes,” in Proc. European Conf. on Computer Vision, pp. II:485–494, 1996.

[73] R. C. Harrell, D. C. Slaughter, and P. D. Adsit, “A fruit-tracking system for robotic har-
vesting,” Machine Vision and Applications, vol. 2, pp. 69–80, 1989.

[74] D. Reynard, A. Wildenberg, A. Blake, and J. Marchant, “Learning dynamics of complex
motions from image sequences,” in Proc. European Conf. on Computer Vision, pp. I:357–
368, 1996.

[75] E. Bardinet, L. Cohen, and N. Ayache, “Tracking medical 3D data with a deformable
parametric model,” in Proc. European Conf. on Computer Vision, pp. I:317–328, 1996.

[76] P. Shi, G. Robinson, T. Constable, A. Sinusas, and J. Duncan, “A model-based integrated
approach to track myocardial deformation using displacement and velocity constraints,” in
Proc. Internal Conf. on Computer Vision, pp. 687–692, 1995.

[77] E. Boyer, “Object models from contour sequences,” in Proc. European Conf. on Computer
Vision, pp. II:109–118, 1996.

82

IEEE Virtual Reality 2003, T1 REFERENCES

[78] L. Shapiro, Affine Analysis of Image Sequences. Cambridge Univ. Press, 1995.

[79] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: A
factorization method,” Int. J. Computer Vision, vol. 9, no. 2, pp. 137–154, 1992.

[80] P. Hallinan, “A low-dimensional representation of human faces for arbitrary lighting condi-
tions,” in Proc. IEEE Conf. on Comp. Vision and Patt. Recog., pp. 995–999, 1994.

[81] R. Epstein, P. Hallinan, and A. Yuille, “5 ± 2 Eigenimages suffice: An empirical investigation
of low-dimensional lighting models,” Technical Report 94-11, Harvard University, 1994.

[82] P. N. Belhumeur and D. J. Kriegman, “What is the set of images of an object under all pos-
sible lighting conditions,” in Proc. IEEE Conf. on Comp. Vision and Patt. Recog., pp. 270–
277, 1996.

[83] R. Dutter and P. Huber, “Numerical methods for the nonlinear robust regression problem,”
J. Statist. Comput. Simulation, vol. 13, no. 2, pp. 79–113, 1981.

[84] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application
to stereo vision,” in Proc. Int. Joint Conf. Artificial Intelligence, pp. 674–679, 1981.

[85] P. Anandan, “A computational framework and an algorithm for the measurement of struc-
ture from motion,” Int. J. Computer Vision, vol. 2, pp. 283–310, 1989.

[86] J. Shi and C. Tomasi, “Good features to track,” in Proc. IEEE Conf. Comp. Vision and
Patt. Recog., pp. 593–600, IEEE Computer Society Press, 1994.

[87] J. Rehg and T. Kanade, “Visual tracking of high DOF articulated structures: An application
to human hand tracking,” in Computer Vision – ECCV ’94, vol. B, pp. 35–46, 1994.

[88] C. Bregler, “Learning and recognizing human dynamics in video sequences,” in Proc. IEEE
Conf. Comp. Vision and Patt. Recog., pp. 568–574, 1997.

[89] J. Rehg and A. Witkin, “Visual tracking with deformation models,” in Proc. IEEE Int.
Conf. Robot. and Automat., pp. 844–850, 1991.

[90] M. Black and Y. Yacoob, “Tracking and recognizing rigid and non-rigid facial motions using
local parametric models of image motion,” in Proceedings of the ICCV, pp. 374–381, 1995.

[91] H. Murase and S. Nayar, “Visual learning and recognition of 3-D objects from appearence,”
Int. J. Computer Vision, vol. 14, no. 5–24, 1995.

[92] M. Black and A. Jepson, “Eigentracking: Robust matching and tracking of articulated
objects using a view-based representation,” in Proc. European Conf. on Computer Vision,
pp. 329–342, 1996.

[93] M. Isard and A. Blake, “Contour tracking by stochastic propagation of conditional density,”
in European Conf. on Computer Vision, pp. I:343–356, 1996.

83

IEEE Virtual Reality 2003, T1 REFERENCES

[94] D. G. Lowe, “Robust model-based motion tracking through the integration of search and
estimation,” Int. Journal of Computer Vision, vol. 8, no. 2, pp. 113–122, 1992.

[95] D. B. Gennery, “Visual tracking of known three-dimensional objects,” Int. J. Computer
Vision, vol. 7, no. 3, pp. 243–270, 1992.

[96] A. Blake, R. Curwen, and A. Zisserman, “A framework for spatio-temporal control in the
tracking of visual contour,” Int. J. Computer Vision, vol. 11, no. 2, pp. 127–145, 1993.

[97] B. Horn, Computer Vision. Cambridge, Mass.: MIT Press, 1986.

[98] M. Betke and N. Makris, “Fast object recognition in noisy images using simulated anneal-
ing,” in Proceedings of the ICCV, pp. 523–530, 1995.

[99] R. Szeliski, “Image mosaicing for tele-reality applications,” in Proceedings of the Workshop
on Applications of Computer Vision, pp. 44–53, 1994.

[100] A. Shashua, Geometry and Photometry in 3D Visual Recognition. PhD thesis, MIT, 1992.

[101] R. Woodham, “Analysing images of curved surfaces,” Artificial Intelligence, vol. 17,
pp. 117–140, 1981.

[102] P. Huber, Robust Statistics. New York, NY: John Wiley & Sons, 1981.

[103] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision. Addison Wesley, 1993.

[104] G. D. Hager and K. Toyama, “XVision: A portable substrate for real-time vision applica-
tions,” Computer Vision and Image Understanding, vol. 69, no. 1, 1998.

[105] S. McKenna, S. Gong, and J. Collins, “Face tracking and pose representation,” in British
Maching Vision Conference, 1996.

[106] G. D. Hager and K. Toyama, “The “X-vision” system: A general purpose substrate for
real-time vision applications,” Comp. Vision, Image Understanding., vol. 69, pp. 23–27,
January 1998.

[107] P. Belhumeur and G. D. Hager, “Tracking in 3D: Image variability decomposition for
recovering object pose and illumination,” in Proc. Int. Conf. Pattern Anal. Applic., 1998.
Also available as Yale Comp. Sci #1141.

[108] S. Ullman and R. Basri, “Recognition by a linear combination of models,” IEEE Trans.
Pattern Anal. Mach. Intelligence, vol. 13, pp. 992–1006, 1991.

[109] Jason Corso and Gregory D. Hager. Planar surface tracking using direct stereo. Technical
report, The Johns Hopkins University, 2002. CIRL Lab Technical Report.

[110] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun. Structure from motion without correspon-
dence. Technical Report CMU-RI-TR-99-44, Carnegie Mellon University, 1999.

84

IEEE Virtual Reality 2003, T1 REFERENCES

[111] F. Dellaert, C. Thorpe, and S. Thrun. Super-resolved texture tracking of planar surface
patches. In Proceedings of IEEE/RSJ International Conference on Intelligent Robotic Sys-
tems, 1998.

[112] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thurn. Monte carlo localiza-
tion for mobile robots. In Proc. IEEE Int. Conf. on Robotics and Automation, 1999.

[113] V. Ferrari, T. Tuytelaars, and L. Van Gool. Real-time affine region tracking and coplanar
grouping. In IEEE Computer Soc. Conf. on Computer Vision and Pattern Recognition,
2001.

[114] G. Hager and P. Belhumeur. Efficient region tracking with parametric models of geom-
etry and illumination. IEEE Transactions of Pattern Analysis and Machine Intelligence,
20(10):1125–1139, 1998.

[115] B. Horn. Robot Vision. The MIT Press, 1986.

[116] M. Irani and P. Anandan. All about direct methods. Technical report,
http://link.springer.de/link/services/series/
0558/bibs/1883/18830267.htm, 2002.

[117] K. Kanatani. Detection of surface orientation and motion from texture by stereological
technique. Artificial Intelligence, 24:213–237, 1984.

[118] K. Kanatani. Tracing planar surface motion from a projection without knowing the corre-
spondence. Computer Vision, Graphics, And Image Processing, 29:1–12, 1985.

[119] D. Keren, S. Peleg, and R. Brada. Image sequence enhancement using sub-pixel displace-
ments. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
1988.

[120] B. Lucas and T. Kanade. An iterative image registratoin technique with an application to
stereo vision. In Proceedings DARPA Image Understanding Workshop, 1981.

[121] S. Pei and L. Liou. Tracking a planar patch in three-dimensional space by affine transfor-
mation in monocular and binocular vision. Pattern Recognition, 26(1):23–31, 1993.

[122] G. Stein and A. Shashua. Direct estimation of motion and extended scene structure from
a moving stereo rig. IEEE Conference on Computer Vision and Pattern Recognition, 1998.

[123] G. Strang. Linear Algebra and Its Applications. Saunders HBJ, 1988.

[124] Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Computer Vision.
Prentice Hall, 1998.

85

IEEE Virtual Reality 2003, T1

A Biographies

Darius Burschka graduated from Technische Universität München, Germany, was a post doc at
Yale University, and is now a research scientist in the Computational Interaction and Robotics
Lab (CIRL) at the Johns Hopkins University. His research centers around sensing systems and
methods, particilarly real-time vision, tracking and three-dimensional reconstruction, for the use
in human-computer interfaces and mobile robotics.

Zachary Dodds received the PhD from Yale University in 2000. He is now an assistant professor
of computer science at Harvey Mudd College in Claremont, CA. His research centers around
the geometry of imaging and hand-eye coordination. He has investigated the specification of
alignments based stereo camera information. Theoretically he has shown what alignments are
verifiable under different levels of camera calibration. Practically, he has implemented a number
of complete specification languages for visual servoing tasks.

Dana Cobzas is a PhD student at the University of Alberta. Her interest are in the area of
image based modeling, with applications in graphics rendering and image-based mobile robot
navigation. She has contributed several new methods for registration of camera and 3D laser
range sensory data, and applied these to an image-based model acquisition system for indoor
mobile robot localizaqtion and navigation. Lately she has also been researching and implementing
Structure-From-Motion (SFM) methods used to build 3D models from uncalibrated video alone.

Gregory D. Hager received the PhD in computer science from the University of Pennsylvania
in 1988. He then held appointments at University of Karlsruhe, the Fraunhofer Institute and
Yale University. He is now a full professor in Computer Science at Johns Hopkins University
and a member of the Center for Computer Integrated Surgical Systems and Technology. His
current research interests include visual tracking, vision-based control, medical robotics, and
human-computer interaction.

Martin Jagersand graduated from the University of Rochester in 1997, was then a post doc
at Yale University and research scientist at Johns Hopkins University. He is now an assistant
professor at the University of Alberta. His research centers around dynamic vision – how the
visual image changes under different camera or object/scene motions. He has applied this to
robotics, developing a novel metod for vision-based motion control of an uncalibrated robot
and vision system. On the vision and graphics side he has applied the same kind of modeling
synthesize novel animations of camera motion or articulated agent actions.

Keith Yerex graduated from the University of Alberta in 2002 and is now a researcher at Virtual
Universe Corporation. His interests are in the intersection of computer graphics and vision.
Particularly, he has shown how to combine geometry and texture obtained from uncalibrated
video and efficiently use this in real-time image-based rendering. He is also interested in image-
based approaches to lighting and animation of non-rigid motion.

86

