A 3-Tier Model from 2D Video

Martin Jagersand

joint work with Neil Birkbeck, Dana Cobzas, Adam Rachmielowski, Keith Yerex University of Alberta Computing Science

Martin Jagersand U of Alberta

1. Overview of Research Interests & Projects

- •Mathematical imaging models
- Computer vision
- Medical imaging
- Robotics
- Visual Servoing

Current project with U of Alberta CSA, Neptec, Xiphos and Barrett in Space Tele-robotics

- Human-in-the-loop teleoperation is a current mission bottleneck
- •Current ground-based tele-manipulation inefficient
 - Transmission delays
 - Non-anthophomorphic arms
- •Space craft don't fit enough operators

Shuttle flight trainer, Johnson Space Ctr

Predictive Display for Tele-robotics

Problem: Even small delays (~¹/₄ s) degrade operator performance Solution: Predict and synthesize immediate visual feedback

Local operator

Model renders new views synchronously Remote site

Martin Jagersand

Model is captured by remote camera and transmitted asynchronously Martin Jagersand U of Alberta

- •What type of model?
 - CAD line model
 - Video image warping
 - Textured graphics model
- •How is it acquired?
 - A-priori
 - Sensed from scene once
 - Updated on-line

Rachmielowski, Jagersand

Martin Jagersand U of Alberta Variational Segmentation of Tumours

Segmentation = <u>surface/curve_evolution</u> such that an

energy functional is minimized

<u>Energy</u> :defined using data + [shape/atlas priors] + geometric priors (regularizers such that it has minimum at the desired segmentation

Surface/curve evolution: calculus of variation/PDE's

And summer

Martin Jagersand U of Alberta

•Inexpensive

•Quick and convenient for the user

•Integrates with existing SW e.g. Blender, Maya

•Inexpensive

\$100: Webcams, Digital Cams

\$100,000 Laser scanners etc.

Martin Jagersand U of Alberta

Low budget 3D from vide

•Inexpensive

Modeling geom primitives into scenes: >>Hours

•Quick and convenient for the user

•Integrates with existing SW e.g. Blender, Maya

Capturing 3D from 2D video: minutes

•Inexpensive

•Quick and convenient for the user

•Integrates with existing SW e.g. Blender, Maya

Application Case Study Modeling Inuit Artifacts

Martin Jagersand

U of Alberta

- New acquisition at the UofA: A group of 8 sculptures depicting Inuit seal hunt
- Acquired from sculptor by Hudson Bay Company

Application Case Study Modeling Inuit Artifacts

Results:

1. A collection of 3D models of each component

Martin Jagersand

of Alberta

2. Assembly of the individual models into <u>animations and Internet web study material</u>.

Preliminaries: Capturing Macro geometry:

- Shape From Silhouette
 - Works for objects
 - Robust
 - Visual hull not true object surface
- Structure From Motion
 - Works for Scenes
 - Typically sparse
 - Sometimes fragile (no salient points in scene)
- (Dense "Stereo" -- Later)
 - Use as second refinement step

Martin Jagersand

U of Alberta

tier Macro, Meso, Micro model

Martin Jagersand

- Multi-Tiered Models:
 - Commonly:
 - Two tiers: 3D Geometry and appearance (* texture mapping)
 - Used in graphics applications, recovered in Vision applications
 - Three-Tier
 - Macro scale: describes scene geometry (triangulated mesh)
 - Meso scale: fine scale geometric detail (displacement map)
 - Micro: fine scale geometry and reflectance (Texture basis)
 - Captured by sequential refinement

Geometry alone does not solve mode himg. Need: Multi-Scale Model

Multi-Scale model: Macro geometry, Meso depth, Micro texture

Three scales map naturally to CPU^{of} arred GPU hardware layers

Key issue: Efficient memory access and processing

- 1. Macro: Conventional geometry processing
- 2. Meso: Pixel shader
 - Fixed code, variable data access

3. Micro: Shader or Register comb.

- Fixed code, fixed data access

10x

10x

Speedup

2. Meso Structure: Depth with respect to a plane

+

base geometry

displacement map

displacement mapped geometry

Martin Jagersand

U of Alberta

Flat texture

Displacement mapped

Deformable mesh

- 1. Sample d and ray at N (say15) points.
- 2. Find point location j of intersection
- 3. Approximate d with line, calculate intersection
- 4. Potentially iterate if needed for accuracy

Over 100 fps on consumer graphics cards

3. Micro structure: Spatial texture basis

Martin Jagersand U of Alberta

$- \times$ more execution and data access pattern

=> very fast implementation in graphics hardware

How/why do dynamic textures work?

3D geometry and texture warp map between views and texture images

View

I,

ľ

Re-projected geometry

Texture warp

Martin Jagersand

K

Problem: Texture images different

Martin Jagersand U of Alberta

Sources of errors:

3D geometry and texture warp map between views and texture images

 View
 Re-projected geometry
 Texture

 Image: Construction of the surface /= texture plane
 Texture
 Texture

 Image: Construction of the surface /= texture plane
 Texture
 Texture

1: Planar error: Incorrect texture coordinates /

Spatial basis intro

Martin Jagersand

1. Moving sine wave can be modeled:

$$I(t) = \sin(u + at)$$

= $\sin(u)\cos(at) + \cos(u)\sin(at)$
= $\sin(u)y_1(t) + \cos(u)y_2(t)$
Spatially fixed basis

2. Small image motion

$$I = I_0 + \frac{\partial I}{\partial u} \Delta u + \frac{\partial I}{\partial v} \Delta v$$

Spatially fixed basis

Linear basis for spatio-temporal variation

Martin Jagersand

On the object/texture plane:

- Variation resulting from small warp perturbations

Similarly: Can derive linear basis for out of plane and light variation!

Geometric spatio-temporal variability

Image "warp"

 $T(\mathbf{x}) = I(W(\mathbf{x}, \mu))$

Image variability caused by an imperfect warp $\Delta T = I(W(\mathbf{x}, \mu + \Delta \mu)) - T_w$

First order approximation

$$\Delta T = I(W(\mathbf{x}, \mu)) + \nabla T \frac{\partial W}{\partial \mu} - T_{w} = \nabla T \frac{\partial W}{\partial \mu}$$

Martin Jagersand

U of Alberta

Concrete examples

– Image plane

-Out of plane

Variability due to a planar projective warp (homography)

Homography warp

$$\begin{bmatrix} u'\\v'\end{bmatrix} = \mathcal{W}_h(\mathbf{x}_h, \mathbf{h}) = \frac{1}{1+h_7u+h_8v} \begin{bmatrix} h_1u & h_3v & h_5\\h_2u & h_4v & h_6 \end{bmatrix}$$

• Projective variability:

$$\Delta \mathbf{T}_{h} = \frac{1}{c_{1}} \begin{bmatrix} \frac{\partial \mathbf{T}}{\partial u}, \frac{\partial \mathbf{T}}{\partial v} \end{bmatrix} \begin{bmatrix} u & 0 & v & 0 & 1 & 0 & -\frac{uc_{2}}{c_{1}} & -\frac{vc_{2}}{c_{1}} \\ 0 & u & 0 & v & 0 & 1 & -\frac{uc_{3}}{c_{1}} & -\frac{vc_{3}}{c_{1}} \end{bmatrix} \begin{bmatrix} \Delta h_{1} \\ \vdots \\ \Delta h_{8} \end{bmatrix}$$
$$= [\mathbf{B}_{1} \dots \mathbf{B}_{8}] [y_{1}, \dots, y_{8}]^{T} = B_{h} \mathbf{y}_{h}$$

• Where $c_1 = 1 + h_7 u + h_8 v$, $c_2 = h_1 u + h_3 v + h_5$ and $c_3 = h_2 u + h_4 v + h_6$

Variability due to a planar projective warp (homography)

Homography warp

$$\begin{bmatrix} u'\\v'\end{bmatrix} = \mathcal{W}_h(\mathbf{x}_h, \mathbf{h}) = \frac{1}{1+h_7u+h_8v} \begin{bmatrix} h_1u & h_3v & h_5\\h_2u & h_4v & h_6 \end{bmatrix}$$

• Projective variability:

$$\Delta \mathbf{T}_{h} = \frac{1}{c_{1}} \begin{bmatrix} \frac{\partial \mathbf{T}}{\partial u}, \frac{\partial \mathbf{T}}{\partial v} \end{bmatrix} \begin{bmatrix} u & 0 & v & 0 & 1 & 0 & -\frac{uc_{2}}{c_{1}} & -\frac{vc_{2}}{c_{1}} \\ 0 & u & 0 & v & 0 & 1 & -\frac{uc_{3}}{c_{1}} & -\frac{vc_{3}}{c_{1}} \end{bmatrix} \begin{bmatrix} \Delta h_{1} \\ \vdots \\ \Delta h_{8} \end{bmatrix}$$

Out-of-plane variability

Alexand

Martin Jagersand U of Alberta

•Let $r = [\alpha, \beta]$ angle for ray to scene point

2.32

• Pre-warp texture plane rearrangement: Scene $\begin{bmatrix} \delta u \\ \delta v \end{bmatrix} = \mathcal{W}_p(\mathbf{x}, \mathbf{d}) = \mathbf{d}(\mathbf{u}, \mathbf{v}) \begin{bmatrix} \tan \alpha \\ \tan \beta \end{bmatrix}$ Depth w.r.t. model facet •Texture basis $\Delta \mathbf{T}_{\mathbf{p}} = \mathbf{d}(\mathbf{u}, \mathbf{v}) \begin{bmatrix} \frac{\partial \mathbf{T}}{\partial \mathbf{u}}, \frac{\partial \mathbf{T}}{\partial \mathbf{v}} \end{bmatrix} \begin{bmatrix} \frac{1}{\cos^{2} \alpha} & \mathbf{0} \\ \mathbf{0} & \frac{1}{\cos^{2} \beta} \end{bmatrix} \begin{bmatrix} \mathbf{\Delta} \alpha \\ \mathbf{\Delta} \beta \end{bmatrix} =$ $= \mathbf{B}_{\mathbf{p}} \mathbf{y}_{\mathbf{p}}$ Texture plane \mathbf{C}^2

Photometric variation

Martin Jagersand

Analytic formula for irradiance for a convex Lambertianobject under distant illumination (with attached shadows)- spherical harmonics

[Barsi and Jacobs, Ramamoorthi and Hanrahan 2001]

$$T(\alpha,\beta,\theta,\phi) \approx \sum_{l=0}^{2} \sum_{k=-l}^{l} L_{lk}(\alpha,\beta) A_{l} Y_{lk}(\theta,\phi)$$

 $T = [B_1 \cdots B_9][L_1 \cdots L_9]^T$

Example of photometric variation

Martin Jagersand

Similarly, composite texture intensity variability

$$\Delta \mathbf{T} = \Delta \mathbf{T}_s + \Delta \mathbf{T}_d + \Delta \mathbf{T}_l + \Delta \mathbf{T}_e$$

Planar Depth Light Res Err

Can be modeled as sum of basis $\Delta \mathbf{T} = \mathbf{B}_{s} \mathbf{y}_{s} + \mathbf{B}_{d} \mathbf{y}_{d} + \mathbf{B}_{l} \mathbf{y}_{l} + \Delta \mathbf{T}_{e}$ $= \mathbf{B} \mathbf{y} + \Delta \mathbf{T}_{e}$

How to compute?

From a 3D graphics model:

- 1. Texture intensity derivatives
- 2. Jacobian of warp or displacement function
- Results in about 20 components:
 - T₀
 - 8 for planar,
 - 2 out-of plane (parallax),
 - 3-9 light

From video:

• We can expect an approximately 20dim variation in the space of all input texture images.

Martin Jagersand

=> Extract this subspace

How to compute from images (cont)..

1. Take input video sequence, use SFS/SFM geometry to warp into texture space

Geometry Texture

Martin Jagersand

of Alberta

PCA

Are analytic image derivative^{Martin Jagersand} and PCA basis the same?

• Same up to a linear transform!

Example renderings from 3D models

Recap: hierarchical model scale levels

1. <u>Macro:</u>

- SFM, SFS can generate coarse geometry but not detailed enough for realistic rendering
- Integrate tracking and structure computation
 Scale: dozen pixels and up

2. <u>Meso</u> :

 Refine coarse geometry and acquire reflectancevariational surface evolution

Scale: 1-dozen pixels

- 3. Micro spatial basis :
 - Represents appearance and corrects for small geometric texture errors limited by linearity of image Scale: 0-5 pixels

Martin Jagersand

U of Alberta

Comparison

- 1. Static texturing: (Many, e.g. Baumgartner et al. 3DSOM)
 - Average color projected to point.
 - Better: Pick color minimizing reprojection error over all input images
 - Works when model geometry is close to ground truth and light simple

2. Viewdependent texture (Debevec et al)

Pick color from closest input photograph (or interpolate from nearest 3)
 Works when possible to store large numbers of images

3. Lumigraph / Surface light field (Buehler et al / Wood et al)

- Store all ray colors (plenoptic function) intersecting a proxy surface
 Works if proxy surface close to true geometry
- 4. Dynamic texture (Ours: Jagersand '97/ Matusik / Ikeuchi99 /Vasilescu04...
 - Derive a Taylor expansion and represent derivatives of view dependency
 Works for light and small (1-5 pixel) geometric displacements.

videos

Martin Jagersand

From Simple to Complex Scenes^{Martin Jagersand} 4 test cases

- 1. Simple Geom: SFS alone ok
- General Geom: SFS + Variational Shape and Reflectance fitting (+View dep texture)
- 3. Complex Light: Dynamic Texture / Lumigraph
- 4. Challenge for Computer Vision

From Simple to Complex Scenes

- 1. Simple Geom: SFS alone ok
- General Geom: SFS + Variational Shape and Reflectance fitting (+View dep texture)
- 3. Complex Light: Dynamic Texture / Lumigraph

4. Challenge for Computer

Vision

${}^{\circ}$					
	err (var)	temple	house	eleph.	wreath
	Static	10.8(1.5)	11.8(1.2)	19.0(1.4)	28.4(2.8)
	VDTM	8.3(1.9)	9.8(1.3)	10.1(1.9)	21.4(3.5)
	Lumigr	10.8(2.5)	9.8(1.2)	5.9(0.7)	14.3(1.3)
	DynTex	7.3(1.0)	9.4(1.0)	6.6(0.7)	13.4(1.2)
T 1 1 1 N + 1 + 1 + 0 - 1					

Table 1. Numerical texture errors and variance. %-scale.

U of Alberta

COD.

Martin Jagersand

• Jade Elephant

Complex Reflectance (specularities and scattering)

Specular highlight

Capturing non-rigid animatable models current PhD project, Neil Birkbeck

Final Model: Geometry/Appearance Subspaces and Interpolation Data

Questions?

More information: Downloadable renderer+models www.cs.ualberta.ca/~vis/ibmr •Capturing software + IEEE VR tutorial text www.cs.ualberta.ca/~vis/VR2003tut •Main references for this talk: Jagersand et al "Three Tier Model" 3DPVT 2008 ... Jagersand "Image-based Animation..." CVPR 1997 •More papers: www.cs.ualberta.ca/~jag

Martin Jagersand U of Alberta

CAMERA-BASED **3D** CAPTURE SYSTEM

Video: see web page: www.cs.ualberta.ca/~vis/ibmr/movies/capsys_1min.avi