A 3-Tier Model from 2D Video

Martin Jagersand

joint work with Neil Birkbeck, Dana Cobzas, Adam Rachmielowski, Keith Yerex

1. Overview of

Research Interests \& Projects

- Mathematical imaging models
- Computer vision
- Medical imaging
- Robotics
- Visual Servoing

Human-in-the-loop teleoperation is a current mission bottleneck

- Current ground-based tele-manipulation inefficient
- Transmission delays
- Non-anthophomorphic arms
- Space craft don't fit enough operators

Shuttle flight trainer, Johnson Space Ctr

Predictive Display for Tele-robotics

Problem: Even small delays ($\sim 1 / 4 \mathrm{~s}$) degrade operator performance Solution: Predict and synthesize immediate visual feedback

Types of Predictive Display

-What type of model?

- CAD line model
- Video image warping
- Textured graphics model
-How is it acquired?

- A-priori
- Sensed from scene once
- Updated on-line

Segmentation $=$ surface/curve evolution such that an energy functional is minimized
Energy :defined using data + [shape/atlas priors] + geometric priors (regularizers such that it has minimum at the desired segmentation
Surface/curve evolution: calculus of variation/PDE's

Winter in the Rockies

Low budget 3D from video

- Inexpensive
- Quick and convenient for the user
- Integrates with existing SW e.g. Blender, Maya

Low budget 3D from video

- Inexpensive

\$100: Webcams, Digital Cams

\$100,000 Laser scanners etc.

Low budget 3D f

-Inexpensive

Modeling geom primitives into scenes: >>Hours

-Quick and convenient for the user

- Integrates with existin SW e.g. Blender, May

Capturing 3D from 2D video: minutes

Low budget 3D from video

-Inexpensive

- Quick and convenient for the user
- Integrates with existing SW e.g. Blender, Maya

Application Case Study

- New acquisition at the UofA: A group of 8 sculptures depicting Inuit seal hunt
- Acquired from sculptor by Hudson Bay Company

Application Case Study

Results:

1. A collection of 3 D models of each component

2. Assembly of the individual models into animations and Internet web study material.

Preliminaries:

- Shape From Silhouette
- Works for objects
- Robust
- Visual hull not true object surface
- Structure From Motion
- Works for Scenes
- Typically sparse
- Sometimes fragile (no salient points in scene)
- (Dense "Stereo" -- Later)
- Use as second refinement step

3-tier Macro, Meso, Micro model

- Multi-Tiered Models:
- Commonly:

- Two tiers: 3D Geometry and appearance (* texture mapping)
- Used in graphics applications, recovered in Vision applications
- Three-Tier
- Macro scale: describes scene geometry (triangulated mesh)
- Meso scale: fine scale geometric detail (displacement map)
- Micro: fine scale geometry and reflectance (Texture basis)
- Captured by sequential refinement

Input Video

Multi-Scale model: Macro geometry, Meso depth, Micro texture

Three scales map naturally to CPƯanand

GPU hardware layers

Key issue: Efficient memory access and processing

1. Macro: Conventional geometry processing
2. Meso: Pixel shader

- Fixed code, variable data access

3. Micro: Shader or Register comb.	10x
$-\quad$ Fixed code, fixed data access	

Depth with respect to a plane

Flat texture

Displacement mapped

Computing Meso structure: U of Alberta

Per-point cost function

$$
\begin{gathered}
\Phi(\mathbf{X}, \mathbf{n})=\sum_{i} h\left(\underset{4}{\mathbf{X}}, P_{i}\right)\left\|I_{i}\left(P_{i}(\mathbf{X})\right)-R\left(\mathbf{X}, \mathbf{n}, \mathbf{L}_{i}\right)\right\| \\
\text { Visibility+sampling reflectance }
\end{gathered}
$$

$$
\frac{\partial S}{\partial t}=(2 \Phi k-\langle\nabla \Phi, \mathbf{n}\rangle) \mathbf{n}
$$

Deformable mesh

Rendering Meso Structure:

GPU: 83 pixel shader instructions,

> view ray
secant line

1. Sample d and ray at N (say15) points.
2. Find point location j of intersection
3. Approximate d with line, calculate intersection
4. Potentially iterate if needed for accuracy

Results:

Over 100 fps on consumer graphics cards

Modulated texture

Traditional texture

=> very fast implementation in graphics hardware

How/why do dynamic textures work?

3D geometry and texture warp map between views and texture images

Sources of errors:

3D geometry and texture warp map between views and texture images

View

Re-projected geometry

2: Out of plane error: Object surface /= texture plane

1: Planar error: Incorrect texture coordinates

Spatial basis intro

1. Moving sine wave can be modeled:

$$
\begin{aligned}
I(t) & =\sin (u+a t) \\
& =\sin (u) \cos (a t)+\cos (u) \sin (a t) \\
& =\sin (u) y_{1}(t)+\cos (u) y_{2}(t) \\
& \quad \text { Spatially fixed basis }
\end{aligned}
$$

2. Small image motion

$$
I=I_{0}+\frac{\partial I}{\partial u} \Delta u+\frac{\partial I}{\partial v} \Delta v
$$

Spatially fixed basis

Linear basis for

On the object/texture plane:

- Variation resulting from small warp perturbations
- Taylor expansion:

Similarly: Can derive linear basis for out of plane and light variation!

Geometric spatio-temporal wemem U of Alberta

Image "warp"

$$
T(\mathbf{x})=I(W(\mathbf{x}, \mu))
$$

Image variability caused by an imperfect warp

$$
\Delta T=I(W(\mathbf{x}, \mu+\Delta \mu))-T_{w}
$$

First order approximation

$$
\Delta T=I(W(\mathbf{x}, \mu))+\nabla T \frac{\partial W}{\partial \mu}-T_{w}=\nabla T \frac{\partial W}{\partial \mu}
$$

Concrete examples

- Image plane
- Out of plane

Variability due to a planar projective

- Homography warp

$$
\left[\begin{array}{c}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\mathcal{W}_{h}\left(\mathbf{x}_{h}, \mathbf{h}\right)=\frac{1}{1+h_{\tau} u+h_{8 v}}\left[\begin{array}{lll}
h_{1} u & h_{3} v & h_{5} \\
h_{2} u & h_{4} v & h_{6}
\end{array}\right]
$$

- Projective variability:

$$
\begin{aligned}
\Delta \mathbf{T}_{h} & =\frac{1}{c_{1}}\left[\frac{\partial \mathbf{T}}{\partial u}, \frac{\partial \mathbf{T}}{\partial v}\right]\left[\begin{array}{cccccccc}
u & 0 & v & 0 & 1 & 0 & -\frac{u c_{2}}{c_{1}} & -\frac{v c_{2}}{c_{1}} \\
0 & u & 0 & v & 0 & 1 & -\frac{u c_{3}}{c_{1}} & -\frac{v c_{3}}{c_{1}}
\end{array}\right]\left[\begin{array}{c}
\Delta h_{1} \\
\vdots \\
\Delta h_{8}
\end{array}\right] \\
& =\left[\mathbf{B}_{1} \ldots \mathbf{B}_{8}\right]\left[y_{1}, \ldots, y_{8}\right]^{T}=B_{h} \mathbf{y}_{h}
\end{aligned}
$$

- Where

$$
c_{1}=1+h_{7} u+h_{8} v \quad, c_{2}=h_{1} u+h_{3} v+h_{5}
$$

and

$$
c_{3}=h_{2} u+h_{4} v+h_{6}
$$

Variability due to a planar projećtive

- Homography warp

$$
\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\mathcal{W}_{h}\left(\mathbf{x}_{h}, \mathbf{h}\right)=\frac{1}{1+h_{7} u+h_{8} v}\left[\begin{array}{ccc}
h_{1} u & h_{3} v & h_{5} \\
h_{2} u & h_{4} v & h_{6}
\end{array}\right]
$$

- Projective variability:

Out-of-plane variability

- Let $r=[\alpha, \beta]$ angle for ray to scene point
- Pre-warp texture plane rearrangement:

$$
\left[\begin{array}{l}
\delta u \\
\delta v
\end{array}\right]=\mathcal{W}_{p}(\mathbf{x}, \mathbf{d})=\mathbf{d}(\mathbf{u}, \mathbf{v})\left[\begin{array}{c}
\tan \alpha \\
\tan \beta
\end{array}\right]
$$

- Texture basis

$$
\begin{aligned}
& \Delta \mathbf{T}_{\mathbf{p}}=\mathbf{d}(\mathbf{u}, \mathbf{v})\left[\frac{\partial \mathbf{T}}{\partial \mathbf{u}}, \frac{\partial \mathbf{T}}{\partial \mathbf{v}}\right]\left[\begin{array}{cc}
\frac{1}{\cos ^{2} \alpha} & \mathbf{0} \\
\mathbf{0} & \frac{1}{\cos ^{2} \beta}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\Delta} \alpha \\
\boldsymbol{\Delta} \beta
\end{array}\right]= \\
& =\mathbf{B}_{\mathrm{p}} \mathbf{y}_{\mathrm{p}}
\end{aligned}
$$

Depth w.r.t. model facet

Scene $=$

Photometric variation

Analytic formula for irradiance for a convex Lambertian object under distant illumination (with attached shadows)

- spherical harmonics
[Barsi and Jacobs, Ramamoorthi and Hanrahan 2001]

$$
\begin{aligned}
& T(\alpha, \beta, \theta, \phi) \approx \sum_{l=0}^{2} \sum_{k=-l}^{l} L_{l k}(\alpha, \beta) A_{l} Y_{l k}(\theta, \phi) \\
& T=\left[B_{1} \cdots B_{9}\right]\left[L_{1} \cdots L_{9}\right]^{T}
\end{aligned}
$$

Example of photometric variation

Rendered combination

Composite variability

Similarly, composite texture intensity variability

Planar Depth Light Res Err
Can be modeled as sum of basis

$$
\begin{aligned}
\Delta T & =B_{s} \mathbf{y}_{\mathrm{s}}+\mathrm{B}_{\mathrm{d}} \mathrm{y}_{\mathrm{d}}+\mathrm{B}_{\mathrm{l}} \mathrm{y}_{\mathrm{l}}+\Delta \mathrm{T}_{\mathrm{e}} \\
& =\mathrm{By}+\Delta \mathrm{T}_{\mathrm{e}}
\end{aligned}
$$

How to compute?

From a 3D graphics model:

1. Texture intensity derivatives
2. Jacobian of warp or displacement function

- Results in about 20 components:
$-\mathrm{T}_{0}$
- 8 for planar,
- 2 out-of plane (parallax),
- 3-9 light

From video:

- We can expect an approximately 20dim variation in the space of all input texture images.
=> Extract this subspace

How to compute

1. Take input video sequence, use SFS/SFM geometry to warp into texture space

Input Images

Geometry Texture

2. Extract a 20 -dim subspace through PCA

TexDemo

Are analytic image derivativesinganal Are analytic image derivative ${ }^{4 \text { An }}$ Abera and PCA basis the same?

- Same up to a linear transform!

Recap: hierarchical model

 scale levels- SFM, SFS can generate coarse geometry but not detailed enough for realistic rendering
- Integrate tracking and structure computation

Scale: dozen pixels and up

1. Macro:

2. Meso:

- Refine coarse geometry and acquire reflectancevariational surface evolution
Scale: 1-dozen pixels

3. Micro spatial basis :

- Represents appearance and corrects for small geometric texture errors limited by linearity of image Scale: 0-5 pixels

1. Static texturing: (Many, e.g. Baumgartner et al. 3DSOM)

- Average color projected to point.
- Better: Pick color minimizing reprojection error over all input images

Works when model geometry is close to ground truth and light simple
2. Viewdependent texture (Debevec et al)

- Pick color from closest input photograph (or interpolate from nearest 3)

Works when possible to store large numbers of images
3. Lumigraph / Surface light field (Buehler et al / Wood et al)

- Store all ray colors (plenoptic function) intersecting a proxy surface

Works if proxy surface close to true geometry
4. Dynamic texture (Ours: Jagersand '97/ Matusik / Ikeuchi99 /Vasilescu04...

- Derive a Taylor expansion and represent derivatives of view dependency

Works for light and small (1-5 pixel) geometric displacements.

From Simple to Complex

1. Simple Geom: SFS alone ok
2. General Geom: SFS + Variational Shape and Reflectance fitting (+View dep texture)
3. Complex Light: Dynamic Texture / Lumigraph
4. Challenge for Computer Vision

From Simple to Complex Scenest

test cases

1. Simple Geom: SFS alone ok
2. General Geom: SFS + Variational Shape and Reflectance fitting (+View dep texture)
3. Complex Light: Dynamic Texture / Lumigraph
4. Challenge for Computer
 Vision

err (var)	temple	house	eleph.	wreath
Static	$10.8(1.5)$	$11.8(1.2)$	$19.0(1.4)$	$28.4(2.8)$
VDTM	$8.3(1.9)$	$9.8(1.3)$	$10.1(1.9)$	$21.4(3.5)$
Lumigr	$10.8(2.5)$	$9.8(1.2)$	$5.9(0.7)$	$14.3(1.3)$
DynTex	$7.3(1.0)$	$9.4(1.0)$	$6.6(0.7)$	$13.4(1.2)$

Table 1. Numerical texture errors and variance. \%-scale.

Example of render differences

- Jade Elephant
- Complex Reflectance (specularities and scattering)

Specular highlight

Capturing non-rigid animatable models

Questions?

More information:

- Downloadable renderer+models
www.cs.ualberta.ca/~vis/ibmr
- Capturing software + IEEE VR tutorial text www.cs.ualberta.ca/~vis/VR2003tut
- Main references for this talk:

Jagersand et al "Three Tier Model" 3DPVT 2008
Jagersand "Image-based Animation..." CVPR 1997
-More papers: www.cs.ualberta.ca/~jag

CAMERA-BASED

3D CAPTURE

SYSTEM

Video: see web page:
www.cs.ualberta.ca/~vis/ibmr/movies/capsys_1min.avi

