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a b s t r a c t

Description logic programs (dl-programs) proposed by Eiter et al. constitute an elegant
yet powerful formalism for the integration of answer set programming with description
logics, for the Semantic Web. In this paper, we generalize the notions of completion and
loop formulas of logic programs to description logic programs and show that the answer
sets of a dl-program can be precisely captured by the models of its completion and loop
formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called
the canonical answer set semantics, which is defined by the models of completion that
satisfy what are called canonical loop formulas. A desirable property of canonical answer
sets is that they are free of circular justifications. Some properties of canonical answer
sets are also explored and we compare the canonical answer set semantics with the FLP-
semantics and the answer set semantics by translating dl-programs into logic programs
with abstract constraints. We present a clear picture on the relationship among these
semantics variations for dl-programs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Logic programming under the answer set semantics, called Answer Set Programming (ASP), is a nonmonotonic reasoning
paradigm for declarative problem solving [20,23]. Recently, there has been extensive interest in combining ASP with other
computational and reasoning paradigms. One of the main interests in this direction is the integration of ASP with ontology
reasoning, for the Semantic Web.

The SemanticWeb is an evolving development of theWorldWideWeb inwhich themeaning of information and services
on the web are defined, so that the web content can be precisely understood and used by agents [3]. For this purpose,
a layered structure including the Rules Layer built on top of the Ontology Layer has been recognized as a fundamental
framework. Description Logics (DLs) [2] provide a formal basis for the Web Ontology Language which is the standard of the
Ontology Layer [31].

Adding nonmonotonic rules to the Rules Layer would allow default reasoning with ontologies. For example, we know
thatmost natural kinds do not have a clear cut definition [1]. For instance, a precise definition of scientist seems to be difficult
by enumerating what a scientist is, and does. Though we can say that a scientist possesses expert knowledge on the subject
of his or her investigation, we still need a quantitative definition of expert knowledge, which seems impossible. Using
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nonmonotonic rules, we can perform default, typicality reasoning over categories, concepts, and roles. The integration of
DLs and (nonmonotonic) rules has been extensively investigated as a crucial problem in the study of the SemanticWeb, such
as the SemanticWeb Rule Language (SWRL) [14],MKNF knowledge bases [22], andDescription logic programs (dl-programs) [8].

There are different approaches to the integration of ASPwith description logics. The focus of this paper is on the approach
based on dl-programs. Informally, a dl-program is a pair (O, P), where O is a DL knowledge base and P is a logic program
whose rule bodiesmay contain queries, embedded in dl-atoms, to the knowledge baseO. The answer to such a query depends
on inferences by rules over the DL knowledge base O. In this way, rules are built on top of ontologies. On the other hand,
ontology reasoning is also enhanced, since it depends not only on O but also on inferences using (nonmonotonic) rules. Two
semantics for dl-programs have been proposed, one of which is based on strong answer sets and the other based on weak
answer sets.

In this paper, we generalize the notions of completion and loop formulas of logic programs [17] to dl-programs and
show that weak and strong answer sets of a dl-program can be captured precisely by the models of its completion and the
corresponding loop formulas. This provides not only a semantic characterization of answer sets for dl-programs but also an
alternative mechanism for answer set computation, using a dl-reasoner and a SAT solver.

As commentedby [8], the reason to introduce strong answer sets is because someweak answer sets seemcounterintuitive
due to ‘‘self-supporting’’ loops. Recently however, one of the co-authors of this paper, Yi-Dong Shen, discovered that strong
answer sets may also possess self-supporting loops, and a detailed analysis leads to the conclusion that the problem cannot
be easily fixed by an alternative definition of reduct, since the reduct of dl-atoms may not be able to capture dynamically
generated self-supports arising from the integrated context.

One partial solution proposed in this paper is to use loop formulas as a way to define answer sets for dl-programs that are
free of circular justifications. Thus, we definewhat are called canonical loops and canonical loop formulas. Given a dl-program,
the models of its completion satisfying the canonical loop formulas constitute a new class of answer sets, called canonical
answer sets, that are minimal and noncircular.

We also compare the canonical answer set semantics with the FLP-answer set semantics [9] for dl-programs and reveal
that the former excludes certain circular justification of the latter, i.e., canonical answer sets are FLP-answer sets, but not
vice versa in general. To study the relationships further, we map a dl-program to a logic program with abstract constraints
[21]. We show that the answer sets (in the sense of [28]) of the logic program with abstract constraints mapped from a
dl-program are canonical answer sets of the dl-program, but not vice versa. For dl-programs containing no nonmonotonic
dl-atoms, all the above considered semantics coincide with each other, except for the weak answer set semantics.

This is a substantial revision and extension of [32] in two respects. First, the definitions of loop formulas for various
semantics are simplified. Second, we present a spectrum of possible semantics for dl-programs, which include the well-
known semantics based on weak and strong answer sets, the one based on canonical answer sets proposed in [32], and the
semantics to be introduced and discussed in this paper, namely the one by mapping dl-programs to logic programs with
abstract constraints and FLP-based semantics. In particular, we present a clear picture of how these semantics are related.

The paper is organized as follows. In the next section,we recall the basic definitions of description logics and dl-programs.
In Section 3,we define completion,weak and strong loop formulas for dl-programs. The new semantics of dl-programs based
on canonical loop formulas is given in Section 4. Section 5 discusses related work, and finally Section 6 gives concluding
remarks and future work.

2. Preliminaries

In this section, we briefly review the basic notations for description logics and description logic programs [8].

2.1. Description logics

Description logics are a family of class-based (concept-based) knowledge representation formalisms. We assume a set E
of elementary datatypes and a set V of data values. A datatype theory D = (∆D, ·D) consists of a datatype (or concrete) domain
∆D and a mapping ·D that assigns to every elementary datatype a subset of ∆D and to every data value an element of ∆D.
Let Ψ = (A ∪ RA ∪ RD, I ∪ V) be a vocabulary, where A,RA,RD, and I are pairwise disjoint (denumerable) sets of atomic
concepts, abstract roles, datatype (or concrete) roles, and individuals, respectively.

A role is an element of RA ∪ R−A ∪ RD, where R−A means the set of inverses of all R ∈ RA. Concepts are inductively defined
as follows: (1) every atomic concept C ∈ A is a concept, (2) if o1, o2, . . . are individuals from I, then {o1, o2, . . .} is a concept
(called oneOf), (3) if C and D are concepts, then also (C ⊓ D), (C ⊔ D), and ¬C are concepts (called conjunction, disjunction,
and negation respectively). (4) if C is a concept, R is an abstract role from RA ∪ R−A , and n is a nonnegative integer, then
∃R.C,∀R.C,≥ nR, and ≤ nR are concepts (called exists, value, atleast, and atmost restriction, respectively), (5) if D is a
datatype, U is a datatype role from RD, and n is a nonnegative integer, then ∃U .D,∀U .D,≥ nU , and ≤ nU are concepts
(called datatype exists, value, atleast, and atmost restriction, respectively).

An axiom is an expression of one of the forms: (1) C ⊑ D, called concept inclusion axiom, where C and D are concepts;
(2) R ⊑ S, called role inclusion axiom, where either R, S ∈ RA or R, S ∈ RD; (3) Trans(R), called transitivity axiom, where
R ∈ RA; (4) C(a), called concept membership axiom, where C is a concept and a ∈ I; (5) R(a, b) (resp., U(a, v)), called role
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membership axiom where R ∈ RA (resp., U ∈ RD) a, b ∈ I (resp., a ∈ I and v is a data value), (6) a ≈ b (resp., a ≉ b), called
equality (resp., inequality) axiom where a, b ∈ I.

A description logic (DL) knowledge base O is a finite set of axioms. The SHOIN (D) knowledge base consists of a finite set
of above axioms, while the SHIF (D) knowledge base is the one of SHOIN (D), but without the oneOf constructor and
with the atleast and atmost constructors limited to 0 and 1.

The semantics of the two description logics are defined in terms of general first-order interpretations. An interpretation
I = (∆I, ·I)with respect to a datatype theory D = (∆D, ·D) consists of a nonempty (abstract) domain∆I disjoint from∆D,
and a mapping ·I that assigns to each atomic concept C ∈ A a subset of ∆I, to each individual o ∈ I an element of ∆I, to
each abstract role R ∈ RA a subset of ∆I

× ∆I, and to each datatype role U ∈ RD a subset of ∆I
× ∆D. The mapping ·I is

extended to all concepts and roles as usual (where #S denotes the cardinality of a set S):

• (R−)I = {(a, b)|(b, a) ∈ RI
};

• {o1, . . . , on}I = {oI
1, . . . , o

I
n};

• (C ⊓ D)I = CI
∩ DI, (C ⊔ D)I = CI

∪ DI, (¬C)I = ∆I
\ CI;

• (∃R.C)I = {x ∈ ∆I
|∃y : (x, y) ∈ RI

∧ y ∈ CI
};

• (∀R.C)I = {x ∈ ∆I
|∀y : (x, y) ∈ RI

→ y ∈ CI
};

• (≥ nR)I = {x ∈ ∆I
|#({y|(x, y) ∈ RI

}) ≥ n};
• (≤ nR)I = {x ∈ ∆I

|#({y|(x, y) ∈ RI
}) ≤ n};

• (∃U .D)I = {x ∈ ∆I
|∃y : (x, y) ∈ UI

∧ y ∈ DD
};

• (∀U .D)I = {x ∈ ∆I
|∀y : (x, y) ∈ UI

→ y ∈ DD
};

• (≥ nU)I = {x ∈ ∆I
|#({y|(x, y) ∈ UI

}) ≥ n};
• (≤ nU)I = {x ∈ ∆I

|#({y|(x, y) ∈ UI
}) ≤ n}.

Let I = (∆I, ·I) be an interpretation respect to D = (∆D, ·D), and F an axiom.We say that I satisfies F , written I |= F , is
defined as follows: (1) I |= C ⊑ D iff CI

⊆ DI; (2) I |= R ⊑ S iff RI
⊆ SI; (3) I |= Trans(R) iff RI is transitive; (4) I |= C(a)

iff aI
∈ CI; (5) I |= R(a, b) (aI, bI) ∈ RI (resp., I |= U(a, v) iff (aI, vD) ∈ UI); (6) I |= a ≈ b iff aI

= bI (resp., I |= a ≉ b
iff aI

≠ bI). I satisfies a DL knowledge base O, written I |= O, if I |= F for any F ∈ O. In this case, we call I amodel of O. An
axiom F is a logical consequence of a DL knowledge base O, written O |= F , if any model of O is also a model of F .

2.2. Description logic programs

LetΦ = (P ,C) be a first-order vocabularywith nonempty finite setsC andP of constant symbols and predicate symbols
respectively such that P is disjoint from A ∪ R and C ⊆ I ∪ V. Atoms are formed from the symbols in P and C as usual.

A dl-atom is an expression of the form

DL[S1 op1 p1, . . . , Sm opm pm;Q ](t⃗), (m ≥ 0) (1)

where

• each Si is either a concept, a role or its negation,1 or a special symbol in {≈, ≉};
• opi ∈ {⊎,∪- ,∩- };
• pi is a unary predicate symbol in P if Si is a concept, and a binary predicate symbol in P otherwise. The pis are called

input predicate symbols;
• Q (t⃗) is a dl-query, i.e., either (1) C(t) where t⃗ = t; (2) C ⊑ D where t⃗ is an empty argument list; (3) R(t1, t2) where

t⃗ = (t1, t2); (4) t1 ≈ t2 where t⃗ = (t1, t2); or their negations, where C and D are concepts, R is a role, and t⃗ is a tuple of
constants.

The precise meanings of {⊎,∪- ,∩- } will be defined shortly. Intuitively, S ⊎ p (resp. S∪- p) extends S (resp. ¬S) by the
extension of p, and S ∩- p constrains S to p.

For example, suppose the interface is such that if any individual x is registered for a course (the information from outside
an ontology) then x is a student (x may not be a student by the ontology before this communication), and we query if a is a
student. We can then write the dl-atom DL[Student ⊎ registered; Student](a). Similarly, DL[Student ∩- registered; ¬Student ⊓
¬Employed](a) queries if a is not a student nor employed, with the ontology enhancement that if we cannot show x is
registered, then x is not a student.

A ground dl-rule (or simply a dl-rule or rule) is an expression of the form

A← B1, . . . , Bm, not Bm+1, . . . , not Bn, (n ≥ m ≥ 0) (2)

1 We allow the negation of a role for convenience, so that we can replace ‘‘S∪- p’’ with an equivalent form ‘‘¬S ⊎ p’’ in dl-atoms. The negation of a role is
not allowed in [8].
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where A is a ground atom, each Bi (1 ≤ i ≤ n) is a ground atom2 or a dl-atom.We refer to A as its head, while the conjunction
of Bi(1 ≤ i ≤ m) and not Bj (m+ 1 ≤ j ≤ n) is its body. For convenience, we may abbreviate a rule in the form (2) as

A← Pos, not Neg (3)

where Pos = {B1, . . . , Bm} andNeg = {Bm+1, . . . , Bn}. Let r be a rule of the form (3). IfNeg = ∅ and Pos = ∅, r is a fact andwe
may write it as ‘‘A’’ instead of ‘‘A←’’. A description logic program (dl-program) K = (O, P) consists of a DL knowledge base
O and a finite set P of dl-rules. In what follows we assume the vocabulary of P is implicitly given by the constant symbols
and predicate symbols occurring in P , unless stated otherwise.

Given a dl-program K = (O, P), the Herbrand base of P , denoted by HBP , is the set of atoms occurring in P and the ones
formed from the predicate symbols of P occurring in some dl-atoms of P and the constant symbols in C. Thus HBP is in
polynomial size of K . An interpretation I (relative to P) is a subset of HBP . Such an I is amodel of an atom or dl-atom A under
O, written I |=O A, if the following holds:

• if A ∈ HBP , then I |=O A iff A ∈ I;
• if A is a dl-atom DL(λ;Q )(t⃗) of the form (1), then I |=O A iff O(I; λ) |= Q (t⃗) where O(I; λ) = O ∪

m
i=1 Ai(I)

and, for 1 ≤ i ≤ m,

Ai(I) =


{Si(e⃗)|pi(e⃗) ∈ I}, if opi = ⊎;
{¬Si(e⃗)|pi(e⃗) ∈ I}, if opi = ∪- ;
{¬Si(e⃗)|pi(e⃗) /∈ I}, if opi = ∩- ;

where e⃗ is a tuple of constants over C. As we allow negation of role, S∪- p can be replaced with ¬S ⊎ p in any dl-atom. In
addition, we can shorten S1 op p, . . . , Sk op p as (S1 ⊔ · · · ⊔ Sk) op p where Si op p appears in λ for all i (1 ≤ i ≤ k) and
op ∈ {∩- ,⊎,∪- }. Thus dl-atoms can be equivalently rewritten into ones without using the operator ∪- , and every predicate
p appears at most once for each operator ⊎ and ∩- . For instance, the dl-atom DL[S1 ⊎ p, S2 ⊎ p, S1 ∩- p, S2 ∩- p,Q ](t⃗) can be
equivalently written as DL[(S1 ⊔ S2) ⊎ p, (S1 ⊔ S2)∩- p,Q ](t⃗).

An interpretation I is a model of a dl-rule of the form (3) iff I |=O B for any B ∈ Pos and I |̸=O B′ for any B′ ∈ Neg implies
I |=O A. I is a model of a dl-program K = (O, P), written I |=O K , iff I is a model of each rule of P . I is a supported model of
K = (O, P) iff, for any h ∈ I , there is a rule (h ← Pos, not Neg) in P such that I |=O A for any A ∈ Pos and I |̸=O B for any
B ∈ Neg.

A dl-atom A is monotonic relative to a dl-program K = (O, P) if I |=O A implies I ′ |=O A, for all I ⊆ I ′ ⊆ HBP , otherwise
A is nonmonotonic. If a dl-atom does not mention ∩- then it is monotonic. However, a dl-atom may be monotonic even if it
mentions ∩- . E.g., the dl-atom DL[S ∪- p, S ∩- p; ¬S](a) is monotonic (which is a tautology). Clearly, the ∩- operator is the only
one that may cause a dl-atom to be nonmonotonic.

We use DLP to denote the set of all dl-atoms that occur in P , DL+P ⊆ DLP to denote the set of monotonic dl-atoms, and
DL?P = DLP \ DL+P . A dl-program K = (O, P) is positive if (i) P is ‘‘not’’-free, and (ii) every dl-atom is monotonic relative to
K . It is evident that if a dl-program K is positive, then K has a (set inclusion) least model.

2.3. Strong and weak answer sets

We first recall the operator γK : 2HBP → 2HBP for a positive dl-program K , which is called TK in [8]: let I ⊆ HBP , and

γK(I) = {h|(h← Pos) ∈ P and I |=O A for any A ∈ Pos}. (4)

Since γK ismonotonic, so it has the least fix-pointwhich is the unique leastmodel ofK . Such least fix-point can be iteratively
constructed as

• γ 0
K = ∅;

• γ n+1
K = γK(γ

n
K).

Let K = (O, P) be a dl-program. The strong dl-transform of K relative to O and an interpretation I ⊆ HBP , denoted by
K s,I , is the positive dl-program (O, sP I

O), where sP I
O is obtained from P by deleting

• the dl-rules of the form (2) such that either I |̸=O Bi for some i (1 ≤ i ≤ m) and Bi ∈ DL?P , or I |=O Bj for some
j (m+ 1 ≤ j ≤ n); and
• the nonmonotonic dl-atoms and not A from the remaining dl-rules where A is an atom or dl-atom.

The interpretation I is a strong answer set of K if it is the least model of K s,I .
The weak dl-transform of K relative to O and an interpretation I ⊆ HBP , denoted by Kw,I , is the positive dl-program

(O, wP I
O), wherewP I

O is obtained from P by deleting

2 Different from [8], in this paper we consider ground atoms instead of literals for convenience.
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• the dl-rules of the form (2) such that either I |̸=O Bi for some i (1 ≤ i ≤ m) and Bi ∈ DLP , or I |=O Bj for some
j (m+ 1 ≤ j ≤ n); and
• the dl-atoms and not A from the remaining dl-rules where A is an atom or dl-atom.

The interpretation I is a weak answer set of K if I is the least model of Kw,I .
For a positive dl-program K , γK is monotonic and it has the least fix-point, denoted by lfp(γK). So I ⊆ HBP is a strong

(resp., weak) answer set of a dl-program K = (O, P) if and only if I = lfp(γKs,I ) (resp., I = lfp(γKw,I )).

Proposition 2.1. Let K = (O, P) be a dl-program and K ′ be the dl-program (O, P ′) where P ′ is obtained from P by replacing
each ‘‘S ∪- p’’ with ‘‘¬S ⊎ p’’ in the dl-atoms of P. We have that, for any interpretation I ⊆ HBP , I is a weak (resp. strong) answer
set of K if and only if I is a weak (resp. strong) answer set of K ′.

Proof. It is evident by definition. �

Example 1. Consider the following dl-programs:

• K0 = (O, P0)where O = {c ⊑ c ′} and P0 = {w(a)← DL[c ⊎ p; c ′](a);
p(a) ←}. For this dl-program to make some sense, let us image this situation: c ′ and c are classes of good conference
papers and ICLP papers respectively, p(x) means that x is a paper in the TPLP special issue of ICLP 2010, w(x) means
that x is worth reading, and a stands for ‘‘this paper’’.3 Note that c and c ′ are concepts in O, and p and w are predicates
outside of O. The communication is through the dl-rule,w(a)← DL[c⊎p; c ′](a), which says that if ‘‘this paper’’ is a good
conference paper, given that any paper in the TPLP special issue of ICLP 2010 is an ICLP paper and ICLP papers are good
conference papers (by the knowledge in O), then it is worth reading. K0 has exactly one strong answer set {p(a), w(a)},
which is also its unique weak answer set.
• Now, suppose someone writes K1= (O, P1) where O= {c ⊑ c ′} and P1= {p(a) ← DL[c ⊎ p; c ′](a)}. This program has

a unique strong answer set I1 = ∅ and two weak answer sets I1 and I2 = {p(a)}. It can be seen that there is a circular
justification in the weak answer set I2: that ‘‘this paper’’ is in the TPLP special issue of ICLP 2010 is justified by the fact
that it is in it.

The interested reader may verify the following. By the definition of⊎, O(I2; c ⊎ p) = O∪{c(a)}, and clearly O |̸= c ′(a)
and {c(a), c ⊑ c ′} |= c ′(a). So the weak dl-transform relative to O and I2 is K

w,I2
1 = (O, {p(a) ←}). Since I2 coincides

with the least model of {p(a) ←}, it is a weak answer set of K1. Similarly, one can verify that the strong dl-transform
relative to O and I2 is K

s,I2
1 = (O, P1). Its least model is the empty set, so I2 is not a strong answer set of K1.

• K2 = (O, P2)where O = ∅ and P2 = {p(a)← DL[c⊎p, b∩- q; c⊓¬b](a)}. Both ∅ and {p(a)} are strong andweak answer
sets of the dl-program. However, the atom p(a) has only circular justification from {p(a)}.

These dl-programs show that strong (andweak) answer setsmay not be (set inclusion)minimal. It has been shown that if
a dl-program contains no nonmonotonic dl-atoms then its strong answer sets are minimal (Theorem 4.13 of [8]). However,
this does not hold for weak answer sets as shown by the dl-program K1 above, even if it is positive. It is known that strong
answer sets are always weak answer sets, but not vice versa (Theorem 4.23 of [8]).

3. Completion and loop formulas

In this section, we define completion, characterize weak and strong answer sets by loop formulas, and outline an
alternative method of computing weak and strong answer sets.

3.1. Completion

Given a dl-program K = (O, P), we assume an underlying propositional language LK , such that the propositional
atoms of LK include the atoms and dl-atoms occurring in P . The formulas of LK are defined as usual using the connectives
¬,∧,∨,⊃ and↔. The dl-interpretations (or simply interpretations if it is clear from context) of the language LK are the
interpretations relative to P , i.e., the subsets of HBP . For a formulaψ of LK and an interpretation I of LK , we say I is amodel
of ψ relative to O, denoted I |=O ψ , whenever (i) if ψ is an atom or a dl-atom, then it is defined as previous, and (ii) it is
extended in the usual way to connectives ∨,∧,⊃ and so on.

Let K = (O, P) be a dl-program and h an atom in HBP . The completion of h (relative to K), written COMP(h,K), is the
following formula of LK :

h↔


1≤i≤n

 
A∈Posi

A ∧


B∈Negi

¬B


,

3 The full papers presented at ICLP 2010 are published in a TPLP special issue, and the short version of this paper appeared in that special issue.
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where (h← Pos1, not Neg1), . . . , (h← Posn, not Negn) are all the rules in P whose heads are the atom h. The completion of
K , written COMP(K), is the collection of completions of all atoms in HBP .

Recall that a model M ⊆ HBP of a dl-program K = (O, P) is a supported model if for any atom a ∈ M , there is a rule in P
whose head is a and whose body is satisfied byM .

Proposition 3.1. Let K = (O, P) be a dl-program and I an interpretation of P. Then I is a supported model of K if and only if
I |=O COMP(K).

Proof. The interpretation I is a supported model of K
iff, for any h ∈ I , there exists a rule (h← Pos, not Neg) in P such that

I |=O


A∈Pos

A ∧

B∈Neg

¬B


iff I |=O COMP(h,K) for any h ∈ I
iff I |=O COMP(K). �

Proposition 3.2. Every weak (resp. strong) answer set of a dl-program K is a supported model of K .

Proof. (1) Let I be a strong answer set of K . It is sufficient to show that, for any h ∈ I , I |=O COMP(h,K) by Proposition 3.1.
We have that
h ∈ I
⇒ there is a dl-rule (r ′ : h← Pos1) in sP I

O such that I |=O A for any A ∈ Pos1
⇒ there is a dl-rule (r : h← Pos1, Pos2, not Neg) in P such that r ′ is obtained from r by the strong dl-transformation, where
Pos2 is a set of nonmonotonic dl-atoms, i.e., (i) I |=O B for any B ∈ Pos2, and (ii) I |̸=O B′ for any B′ ∈ Neg
⇒ I |=O


A∈Pos1∪Pos2

A ∧


B∈Neg ¬B.
Consequently, I is a supported model of K .
(2) The proof is similar when I is a weak answer set of K . �

3.2. Weak loop formulas

In order to captureweak answer sets of dl-programsusing completion and loop formulas,wedefineweak loops. Formally,
let K = (O, P) be a dl-program. The weak positive dependency graph of K , written GwK , is the directed graph (V , E), where
V = HBP (note that a dl-atom is not in V ), and (u, v) ∈ E if there is a dl-rule of the form (2) in P such that A = u and Bi = v
for some i (1 ≤ i ≤ m). A nonempty subset L of HBP is a weak loop of K if there is a cycle in GwK which goes through only
and all the nodes in L. The nodes on the cycle may repeat. A loop L is maximal if there is no loop L′ such that L ⊂ L′, i.e., a
strongly connected component of GwK . A maximal loop L is terminating if there is no path from one node of L to any other
maximal loop.

Given a weak loop L of a dl-program K = (O, P), the weak loop formula of L (relative to K), written wLF(L,K), is the
following formula of LK :

L ⊃


1≤i≤n

 
A∈Posi

A ∧


B∈Negi

¬B


where (h1 ← Pos1, not Neg1), . . . , (hn ← Posn, not Negn) are all the rules in P such that hi ∈ L and Posi ∩ L = ∅ for any
i (1 ≤ i ≤ n).

Theorem 3.3. Let K = (O, P) be a dl-program and I an interpretation of P. Then I is a weak answer set of K if and only if
I |=O COMP(K) ∪ wLF(K), where wLF(K) is the set of weak loop formulas of all weak loops of K .

Proof. (⇒) By Proposition 3.2, we only need to show that I |=O wLF(L,K) for any weak loop L of K . Suppose I |̸=O
wLF(L,K), i.e.,

I |=O


L and I |̸=O


A∈Pos

A ∧

B∈Neg

¬B


(5)

for any rule (h← Pos, not Neg) in P such that h ∈ L and Pos ∩ L = ∅. It implies that I ∩ L ≠ ∅. Without loss of generality,
suppose L = {h1, . . . , hk} and h1 ∈ I ∩ L. Because I is a weak answer set of K , I = lfp(γKw,I ). It follows that h1 ∈ lfp(γKw,I ).
Let k1 be the least number such that h1 ∈ γ

k1+1
Kw,I . ThuswP I

O must have a rule

r1 : h1 ← Pos1

such that γ k1
Kw,I |=O A for any A ∈ Pos1. Suppose r1 is obtained from the following rule

h1 ← Pos1, Adl1, not Neg1
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in P by the weak dl-transformation, where Adl1 is a set of dl-atoms. Thus I |=O A for any A ∈ Adl1 and I |̸=O B for any
B ∈ Neg1. By (5) we have Pos1 ∩ L ≠ ∅. From h1 /∈ Pos1, it follows (L \ {h1}) ∩ Pos1 ≠ ∅. Without loss of generality, suppose
h2 ∈ Pos1. Similarly, there exists the least number k2 such that h2 ∈ γ

k2+1
Kw,I . Using this construction, we can get a sequence

(k1, k2, . . . , ) of natural numbers and a sequence (h1, h2 . . . , ) of atoms in L ∩ I such that, for any i ≥ 1,

• ki is the smallest number such that hi ∈ γ
ki+1
Kw,I ,

• (hi ← Posi) is a rule inwP I
O such that Posi ⊆ γ

ki
Kw,I , and

• ki > kj for any j > i.

Since I ∩ L is finite, there must be some i, j (0 ≤ i < j) such that hi = hj. This implies that ki = kj. This is a paradox. Thus
I |=O wLF(L,K).

(⇐) First, we show I ⊆ lfp(γKw,I ). Let Γ be the set of rules inwP I
O whose bodies are satisfied by I . Since I is a supported

model of K , the heads of rules in Γ are also satisfied by I . Moreover, I is the set of atoms occurring in Γ . Let I∗ = lfp(γ
K
w,I
Γ
),

where KΓ = (O,Γ ). Let I− = I \ I∗ and ΓI− be the set of rules in Γ whose heads are in I−. If I− = ∅, i.e., ΓI− = ∅ then
I ⊆ lfp(γKw,I ) since I ⊆ I∗ and I∗ ⊆ lfp(γKw,I ). Suppose I− ≠ ∅. We show that (O,ΓI−) has at least one terminating loop.

For any rule (r : h← Pos) inΓI− , Pos ⊆ I since I |= A for any A ∈ Pos andwP I
O mentions only atoms. However Pos\I∗ ≠ ∅

otherwise I∗ |= A for any A ∈ Pos and then r /∈ ΓI− . It follows that

Pos ∩ (I \ I∗) ≠ ∅.

Suppose h′ ∈ Pos∩ I−. Then there is an edge (h, h′) in the weak positive dependency graph of (O,ΓI−). So we can construct
a sequence of atoms

(h1, h2, . . . , hi, . . .)

such that hi ∈ I− for any i ≥ 1 and (hi, hi+1) is an edge of the weak positive dependency graph of (O,ΓI−). Since I− is
finite, the above sequence must contain a loop. If a graph has a loop, then it has at least one terminating loop. Now suppose
L = {h1, . . . , hk} is a terminating loop of ΓI− . We further claim that, for any rule (h← Pos) in ΓI− such that h ∈ L:

I− ∩ Pos ⊆ L.

Otherwise,we can construct another path (h, h′, . . .) in the positiveweak dependency graph of (O,ΓI−) such that h′ ∈ I∩Pos
and h′ /∈ L. Thuswe have a path from L to anothermaximal loop of theweak dependency graph of (O,ΓI−), which contradicts
the fact that L is a terminating loop.

Because L is also a weak loop of K , I |=O wLF(L,K) and L ⊆ I−, it follows that P should have at least one rule

r ′ : h′ ← Pos′, not Neg′

such that h′ ∈ L, Pos′ ∩ L = ∅, I |=O A for any A ∈ Pos′ and I |̸=O B for any B ∈ Neg′. Suppose (r∗ : h′ ← Pos∗) is the rule
obtained from r ′ by the weak dl-transformation. Evidently, r∗ ∈ Γ . Furthermore r∗ ∈ ΓI− since h′ ∈ L ⊆ I−. This implies
that I− ∩ Pos∗ ⊆ Lwhich contradicts Pos∗ ∩ L = ∅ since I− ∩ Pos∗ ≠ ∅. Consequently, I− = ∅ and then I ⊆ I∗ = lfp(γ

K
w,I
Γ
).

It follows that I ⊆ lfp(γ
K
w,I
Γ
) ⊆ lfp(γKw,I ) by Γ ⊆ wP I

O.

Second, we prove lfp(γKw,I ) ⊆ I . Let I ′ = lfp(γKw,I ) \ I . Suppose I ′ ≠ ∅. Let h be an arbitrary atom in I ′. There is the
least number k such that h ∈ γ k+1

Kw,I . So there exists a rule (r ′ : h ← Pos′) in wP I
O such that Pos′ ⊆ γ k

Kw,I . Since h /∈ I and
I |=O COMP(h,K), we have that, for any rule (h← Pos, not Neg) in P ,

I |̸=O


A∈Pos

A ∧

B∈Neg

¬B.

It follows I \ Pos ≠ ∅. Thus there exists an atom h′ ∈ Pos such that h ∈ γ k
Kw,I \ I . So we can construct a sequence of numbers

(k1, k2, . . .) and a sequence (h1, h2, . . .) of atoms in I ′ such that, for any i ≥ 1,

• ki is the least number such that hi ∈ γ
ki+1
Kw,I ,

• (hi ← Posi) is a rule inwP I
O such that Posi ⊆ γ

ki
Kw,I , and

• ki > kj for any j > i.

Since I ′ is finite, there exists i, j(0 ≤ i < j) such that hi = hj which implies that ki = kj. It contradicts ki > kj. Thus I ′ = ∅,
i.e., lfp(γKw,I ) ⊆ I .

Consequently I is a weak answer set of K . �
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3.3. Strong loop formulas

Let K = (O, P) be a dl-program. The strong positive dependency graph of K , denoted by Gs
K , is the directed graph (V , E),

where V = HBP and (p(c⃗), q(c⃗ ′)) ∈ E if there is a rule of the form (2) in P such that, (1) A = p(c⃗) and, (2) for some
i (1 ≤ i ≤ m), either

• Bi = q(c⃗ ′), or
• Bi is amonotonic dl-atommentioning the predicate q and c⃗ ′ is a tuple of constantsmatching the arity of q. (If this condition

is ignored then it becomes the definition of weak positive dependency graph.)

A nonempty subset L of HBP is a strong loop of K if there is a cycle in Gs
K which passes only and all the nodes in L.

To define strong loop formulas of a dl-program K = (O, P), we need to extend the vocabulary Φ , such that, for any
predicate symbol p and a nonempty set of atoms L, Φ contains the predicate symbol pL that has the same arity as that
of p. Given an interpretation I of K , the loop extension of I relative to K , written LE(I,K), is the set of atoms in I and
pL(c⃗) where p is a predicate occurring in some dl-atom of P , L ⊆ HBP and L ≠ ∅, and p(c⃗) ∈ I \ L. In other words,
LE(I,K) = I ∪ {pL(c⃗)|p(c⃗) ∈ I \ L, L ≠ ∅ and L ⊆ HBP}.

Let L be a nonempty set of atoms and let A = DL[λ;Q ](t⃗) be a dl-atom. The irrelevant formula of A relative to L, written
by IF(A, L) is DL[λL;Q ](t⃗)where λL is obtained from λ by replacing each predicate symbol p with pL if p(c⃗) ∈ L for some c⃗.

We are now in a position to define strong loop formulas. Let L be a strong loop of K = (O, P). The strong loop formula of
L (relative to K), written sLF(L,K), is the following formula of LK :

L ⊃


1≤i≤n

 
A∈Posi

γ (A, L) ∧


B∈Negi

¬B


where

• (h1 ← Pos1, not Neg1), . . . , (hn ← Posn, not Negn) are all the rules in P such that hi ∈ L and Posi ∩ L = ∅ for all
i (1 ≤ i ≤ n),
• γ (A, L) = IF(A, L) if A ∈ DL+P , and A otherwise.

In general, we have to recognize the monotonicity of dl-atoms in order to construct strong loops of dl-programs. In this
sense, the strong loops and strong loop formulas are defined semantically. If a dl-atom does not mention the operator ∩-
then it is monotonic. Thus for the class of dl-programs in which no monotonic dl-atoms mention ∩- , the strong loops and
strong loop formulas are given syntactically, since it is sufficient to determine the monotonicity of a dl-atom by checking
whether it contains the operator ∩- .

Example 2. Let K = (∅, P) be a dl-program where P consists of

p(a)← DL[c ⊎ p; c](a); p(a)← not DL[c ⊎ p; c](a).

The dl-program K has a unique strong loop L = {p(a)}, but does not have any weak loops. Its completion is the formula

p(a)↔ DL[c ⊎ p; c](a) ∨ ¬DL[c ⊎ p; c](a)

which is equal to the formula p(a)↔ ⊤, i.e., p(a). The strong loop formula sLF(L,K) is the formula

p(a) ⊃ DL[c ⊎ pL; c](a) ∨ ¬DL[c ⊎ p; c](a).

The interpretation I = {p(a)} is amodel ofCOMP(K) relative to the knowledge baseO = ∅. However, LE(I,K) |̸=O sLF(L,K)
since p(a) ∈ LE(I,K) and pL(a) ∉ LE(I,K).

Lemma 3.4. Let K = (O, P) be a dl-program, I ⊆ HBP and L be an arbitrary nonempty set of atoms. Then we have if A is a
dl-atom in DLP then LE(I,K) |=O IF(A, L) iff I \ L |=O A.

Proof. Let I ′ = LE(I,K). We have that p(c⃗) ∈ I iff p(c⃗) ∈ I ′ for any p(c⃗) ∈ HBP . Furthermore, for any atom pL(c⃗), pL(c⃗) ∈ I ′
iff p(c⃗) ∈ I \ L. For clarity and without loss of generality, let A = DL[S⊎p, S ′ ∩- q;Q ](t⃗). The statement in (ii) obviously holds
if the predicates p and q do not occur in L, since IF(A, L) = A. Let us assume that the predicates p and q appear in L.
I ′ |=O IF(A, L)
⇔ I ′ |=O DL[S ⊎ pL, S ′ ∩- qL;Q ](t⃗)
⇔ O ∪ {S(e⃗)|pL(e⃗) ∈ I ′} ∪ {¬S ′(e⃗)|qL(e⃗) /∈ I ′} |= Q (t⃗)
⇔ O ∪ {S(e⃗)|p(e⃗) ∈ I \ L} ∪ {¬S ′(e⃗)|q(e⃗) /∈ I \ L} |= Q (t⃗)
⇔ I \ L |=O DL[S ⊎ p, S ′ ∩- q;Q ](t⃗)
⇔ I \ L |=O A.

The other two cases, namely (a) p appears in L but not q, and (b) q appears in L but not p, can be similarly proved. The
proof can be easily extended to the case A = DL[S1 ⊎ p1, . . . , Sm ⊎ pm, S ′1 ∩- q1, . . . , S ′n ∩- qn;Q ](t⃗). �

Lemma 3.5. Let K = (O, P) be a dl-program and I ⊆ HBP such that I |=O COMP(K). Then we have that lfp(γKs,I ) ⊆ I .
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Proof. Let I ′ = lfp(γKs,I ) and I− = I ′ \ I . Suppose I ′ ⊈ I then I− ≠ ∅. For any h ∈ I−, there exists the least natural number
k and a rule (r : h← Pos) in sP I

O such that γ k
Ks,I |=O A for any A ∈ Pos. But we know that h /∈ I and I |=O COMP(h,K)which

implies that, for any rule (r ′ : h← Pos′, not Neg′) in P:

I |̸=O


A∈Pos′

A ∧


B∈Neg′
¬B.

It follows that I |̸=O A for some A ∈ Pos. It follows that either

(i) there is an atom h′ ∈ Pos ∩ γ k
Ks,I such that h′ /∈ I , or

(ii) there is a monotonic dl-atom A = DL[λ;Q ](t⃗) in Pos such that, for some S ⊎ p (or S ∪- p) occurring in λ, there is an atom
h′ = p(c⃗) such that h′ ∈ γ k

Ks,I and p(c⃗) /∈ I .

It is evident that h′ ≠ h and h′ ∈ I−. Thus we can construct a sequence (k1, k1, . . .) of natural numbers and a sequence
(h1, h2, . . .) of atoms in I− such that, for any i ≥ 1,

• ki is the least number such that hi ∈ γ
ki+1
Ks,I ,

• (hi ← Posi) is in sP I
O such that γ ki

Ks,I |=O A for any A ∈ Posi, and
• ki > kj for any j > i.

Since I− is finite, in the above sequence of atoms there must exist i, j (0 ≤ i < j) such that hi = hj. It follows that ki = kj
which contradicts ki > kj. Consequently, I− = ∅, i.e., I ′ ⊆ I . �

Theorem 3.6. Let K = (O, P) be a dl-program and I an interpretation of P. Then we have that I is a strong answer set of K if
and only if LE(I,K) |=O COMP(K) ∪ sLF(K), where sLF(K) is the set of strong loop formulas of all strong loops of K .

Proof. Let I ′ = LE(I,K). Clearly I ′ ∩ HBP = I .
(⇒) By Proposition 3.2 we have that I is a supported model, and by Proposition 3.1 follows I |=O COMP(K) and then

clearly LE(I,K) |=O COMP(K). It thus remains to prove that, for any strong loop L of K , I ′ |=O sLF(L,K). Suppose
L = {h1, . . . , hk} is a strong loop of K and I ′ |̸=O sLF(L,K), i.e.,

I ′ |=O


L and I ′ |̸=O


1≤i≤n

 
A∈Posi

γ (A, L) ∧


B∈Negi

¬B


where (h1 ← Pos1, not Neg1), . . . , (hn ← Posn, not Negn) are all the rules in P such that hi ∈ L and Posi ∩ L = ∅ for any
i (1 ≤ i ≤ n). It follows that, for any i (1 ≤ i ≤ n),

I ′ |̸=O


A∈Posi

γ (A, L) ∧


B∈Negi

¬B. (6)

Since I ′ |=O


L, we have that I ′ ∩ L ≠ ∅ and thus I ∩ L ≠ ∅. Without loss of generality, let us assume h1 ∈ I ∩ L. Recall that
I is a strong answer set of K , i.e., I = lfp(γKs,I ). Thus there is the least number k1 such that h1 ∈ γ

k1+1
Ks,I . So there is a rule

(r1 : h1 ← Pos1) in sP I
O such that γ k1

Ks,I |=O A for any A ∈ Pos1. It is evident that h1 /∈ Pos1. It follows that P has a rule

r ′1 : h1 ← Pos1,Ndl1, not Neg1,

where Ndl1 is a set of nonmonotonic dl-atoms, such that r1 is obtained from r ′1 by the strong dl-transformation, i.e., I |=O A
for any A ∈ Ndl1 and I |̸=O B for any B ∈ Neg1. It is clear that, I ′ |=O A for each A ∈ Ndl1 and I ′ |̸=O B for any B ∈ Neg1 due to
I ′ ∩ HBP = I . By (6), at least one of the following two cases holds:

• Pos1 ∩ L ≠ ∅. In this case, there is an atom h ∈ Pos1 ∩ L and h ≠ h1.
• I ′ |̸=O IF(A, L) for some monotonic dl-atom A = DL[λ;Q ](t⃗) in Pos1. By Lemma 3.4, we have I \ L |̸=O A. Since A is

monotonic, then we further have γ k1
Ks,I \ L |̸=O A. But we know that γ k1

Ks,I |=O A. It follows that, there exists an atom

p(c⃗) ∈ L ∩ γ k1
Ks,I , p(c⃗) ≠ h1 and S ⊎ p (or S ∪- p) appears in L for some S.

By the above analysis, we can have a sequence of natural numbers (k1, k2, . . . , ) and a sequence (h1, h2, . . .) of atoms in
L such that, for any i ≥ 1,

• ki is the least natural number such that hi ∈ γ
ki+1
Ks,I ,

• (hi ← Posi) is the rule in sP I
O such that γ ki+1

Ks,I |=O A for any A ∈ Posi, and
• ki > kj for any j > i.
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Since L is finite, there must be some i, j (1 ≤ i < j) such that hi = hj, which implies that ki = kj. This is a contradiction.
Consequently, I ′ |=O sLF(L,K).

(⇐) Let I = I ′ ∩ HBP . By Proposition 3.1, I is a supported model of K . Let Γ be the set of rules in sP I
O whose bodies are

satisfied by I relative to O. Clearly, for any rule (h← Pos) in Γ , h ∈ I . And conversely, for any h ∈ I , there exists at least one
rule (h← Pos) in Γ . Let I∗ = lfp(γ

K
s,I
Γ
) where KΓ = (O,Γ ). Evidently, I∗ ⊆ I . Let I− = I \ I∗. Suppose I− ≠ ∅. Let ΓI− be

the set of rules in Γ whose heads belong to I−. We claim that the dl-program (O,ΓI−)must have one terminating loop.
Let h ∈ I− and suppose (h← Pos) is a rule in ΓI− . We have that

I∗ |̸=O


A∈Pos

A and I∗ ∪ I− |=O


A∈Pos

A.

It follows that there is an atom or dl-atom A in Pos such that I∗ |̸=O A. This implies that at least one of the following cases
holds:

• there is an atom h′ ∈ Pos, h′ ∈ I−;
• there exists a monotonic dl-atom A = DL[λ;Q ](t⃗) in Pos such that I∗ |̸=O A, which implies that there exists some S ⊎ p

(or S ∪- p) appearing in λ and p(c⃗) ∈ I \ I∗ for some atom p(c⃗) since I |=O A, otherwise I∗ |=O A.

It follows that there exists an edge (h, h′) in the positive strong dependency graph G of the dl-program (O,ΓI−) where
h′ ∈ I−. Consequently, we can construct a sequence

(h0, h1, . . . , hi, . . .)

of atoms in I− such that, for any i ≥ 0, (hi, hi+1) is an edge of G. Since I− is finite, the constructed sequence must contain a
loop. Furthermore, G has at least one terminating loop. Let L be a terminating loop of (O,ΓI−), h ∈ L and

r : h← Pos

be an arbitrary rule in ΓI− . Obviously L ⊆ I−. Because L is a terminating loop of (O,ΓI−), it follows that the following cases
hold:

• I− ∩ Pos ⊆ L, and
• for every monotonic dl-atom DL[λ;Q ](t⃗) in Pos, if S ⊎ p (or S ∪- p) appear in λ for some S then we have p(c⃗) ∈ I− implies

p(c⃗) ∈ L.

Clearly L is also a strong loop of K . Due to I ′ |=O sLF(L,K), L ⊆ I−, and I− ⊆ I ′, we have I ′ |=O


L. Thus, P has at least
one rule

r ′ : h′ ← Pos′, not Neg′

such that h′ ∈ L, Pos′ ∩ L = ∅ and

I ′ |=O

 
A∈Pos′

γ (A, L) ∧


B∈Neg′
¬B

 .
It follows that I |=O A for each nonmonotonic dl-atom A ∈ Pos′ and I |̸=O B for each B ∈ Neg′. Let (r ′′ : h′ ← Pos′′) be
the rule in sP I

O that is obtained from r ′ by the strong dl-transformation. Clearly, r ′′ ∈ Γ by Lemma 3.4. Furthermore, due to
h′ ∈ L ⊆ I−, we have

r ′′ ∈ ΓI− .

By Pos′′ ∩ I− ⊆ L we have Pos′ ∩ I− ⊆ L. It follows that Pos′ ∩ I− = ∅ by Pos′ ∩ L = ∅. So we have Pos′ ∩ HBP ⊆ I∗ since
I |= A for every A ∈ Pos′ ∩ HBP . It follows that Pos′′ ∩ HBP ⊆ I∗. Since r ′′ ∈ ΓI− , Pos′′ must have a monotonic dl-atom
A = DL[λ;Q ](t⃗) such that I∗ |̸=O A, i.e., I \ I− |̸=O A. By Lemma 3.4, we have I \ L |=O A since I ′ |=O γ (A, L). Thus there must
exist an atom p(c⃗) ∈ (I \ L) \ (I \ I−)(= I− \ L) and S ⊎ p (or S ∪- p) appears in λ since A is monotonic. Recall that p(c⃗) ∈ I−
implies p(c⃗) ∈ L. It follows that I \ L |̸=O A by I \ I− |̸=O A. It is a contradiction.

Consequently, I \ I− = ∅. It follows I ⊆ I∗. We have that lfp(γ
K

s,I
Γ
) ⊆ lfp(γKs,I ) by Γ ⊆ sP I

O. It follows that I ⊆ lfp(γKs,I ).
By Lemma 3.5, lfp(γKs,I ) ⊆ I since I |=O COMP(K). Consequently, I = lfp(γKs,I ). Thus I is a strong answer set of K . �

Since a weak loop of a dl-program K is also a strong loop of K , as a by-product, our loop formula characterizations yield
an alternative proof that strong answer sets are also weak answer sets.

Proposition 3.7. Let K = (O, P) be a dl-program, I an interpretation of P and L a weak loop of K . Then we have LE(I,K) |=O
sLF(L,K) ⊃ wLF(L,K).
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Proof. Let I ′ = LE(I,K). Suppose I ′ |=O sLF(L,K) and I ′ |̸=O wLF(L,K). We have that I ′ ∩ L ≠ ∅ and, for each dl-rule
(h← Pos, not Neg) in P such that h ∈ L and Pos ∩ L = ∅,

I ′ |̸=O


A∈Pos

A ∧

B∈Neg

¬B.

As L is also a strong loop of K and I ′ |=O sLF(L,K), there exists at least one rule (h′ ← Pos′, not Neg′) in P such that h′ ∈ L,
Pos′ ∩ L = ∅ and

I ′ |=O


A′∈Pos′

γ (A′, L) ∧


B′∈Neg′
¬B′.

For each formula ψ of LK , I ′ |=O ψ implies that I |=O ψ since ψ mentions only the predicates occurring in K . Notice
further that if A′ is a monotonic dl-atom, then I \ L |=O A by Lemma 3.4, thus by monotonicity I |=O A. It follows that

I |=O


A′∈Pos′

A′ ∧


B′∈Neg′
¬B′

which contradicts I |̸=O wLF(L,K). �

3.4. An alternative method of computing weak and strong answer sets

Theorems 3.3 and 3.6 serve as the basis for an alternative method of computing weak and strong answer sets using a
SAT solver, along with a dl-reasoner R with the following property: R is sound, complete, and terminating for entailment
checking. Let K = (O, P) be a dl-program and T = COMP(K). We replace all dl-atoms in T with new propositional atoms
to produce T ′. Let ξA be the new atom in T ′, for the dl-atom A in T , and X be the set of all such new atoms in T ′. Below, we
outline an algorithm to compute the weak answer sets of K (here we only describe how to compute first such an answer
set). To compute a strong answer set, replace the word weak with strong.

(i) Generate a model I of T ; if there is none, then there is no weak answer set.
(ii) Check if I is a weak answer set of K ,

(a) if yes, return I as a weak answer set of K .
(b) if no, add a weak loop formula into T that is not satisfied by I relative to O, and goto (i).

To generate a model of T , we compute a model M of T ′ using a SAT solver, and then use R to check the entailment: for
each dl-atom A in T , if M |= ξA then M |=O A otherwise M |̸=O A. Let M ′ = M/X . Recall that X is the set of new atoms in T ′.
It is not difficult to verify thatM ′ is a model of K .

Proposition 3.8. Let ψ be a formula of LK , M a set of atoms of LK and

M ′ = M ∪ {ξA|A is a dl-atom occurring in ψ and M |=O A}.

Then M |=O ψ iff M ′ |= ψ ′ where ψ ′ is the formula obtained from ψ by replacing every occurrence of a dl-atom A with a fresh
atom ξA, i.e., different dl-atoms are replaced with different propositional variables.

Proof. We prove this by induction on the structure of ψ .

• ψ is an atom p(t⃗). It is evident that M |= ψ iffM ′ |= ψ ′ by ψ ′ = ψ ,M ′ and M contain the same atoms of LK .
• ψ is a dl-atom A. Since ψ ′ = ξA,M ′ |= ψ ′ iff ξA ∈ M ′ iff M |=O A.
• ψ = ¬ϕ. We have thatM |=O ¬ϕ iffM |̸=O ϕ iffM ′ |̸= ϕ′ (by the inductive assumption) iffM ′ |= ¬ϕ′.
• ψ = ψ1 ∨ ψ2. We have that M |=O ψ1 ∨ ψ2 iff M |=O ψ1 or M |=O ψ2 iff M ′ |= ψ ′1 or M |=O ψ

′

2 (by the inductive
assumption) iff M ′ |= ψ ′1 ∨ ψ

′

2 iffM ′ |= (ψ1 ∨ ψ2)
′.

The proof for the other connectives is similar. �

The strong andweak answer set semantics of dl-programs have been implemented in the prototype system swlp,4 which
is done by a guess-and-check approach. Informally, given a dl-program K = (O, P), the algorithm below can be used to
compute weak answer sets of K:

(1) replace each dl-atom α in P by a fresh atom aα;
(2) add to the result of Step (1) all the rules of the form, for each dl-atom α,

aα ← not ¬aα, and ¬aα ← not aα.

The resulting program is denoted by Pguess.

4 https://www.mat.unical.it/ianni/swlp/.

https://www.mat.unical.it/ianni/swlp/
https://www.mat.unical.it/ianni/swlp/
https://www.mat.unical.it/ianni/swlp/
https://www.mat.unical.it/ianni/swlp/
https://www.mat.unical.it/ianni/swlp/
https://www.mat.unical.it/ianni/swlp/
https://www.mat.unical.it/ianni/swlp/
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(3) For each answer set I of Pguess and each dl-atom α in DLP , check whether aα ∈ I iff I |=O α. If the condition holds, then
I ∩ HBP is a weak answer set of K .

In Step (2), classical negation is introduced, which can be handled easily in answer set solvers like dlv [16]. In Step (3),
any answer set solver can be applied to enumerate the answer sets of Pguess and a dl-reasoner can be used to check the
condition I |=O α. The reader can refer to [8] for the details of the implementation and interesting dl-programs, using the
ASP solver dlv and a dl-reasoner.

In terms of our approach, we use a SAT solver to compute amodel I of the completion of Pguess such that I |= aα iff I |=O α,
and then check whether I is a weak answer set of K . Thus a main difference in the method outlined here is that we use a
SAT solver to generate candidate models, which allows taking the advantages of the state-of-the-art SAT technology.

For strong answer sets, the construction of a strong loop formula requires checking monotonicity of dl-atoms. However,
for the class of dl-programs mentioning no ∩- , this checking is not needed and the construction of a strong loop formula is
hence tractable.

4. Canonical answer sets

4.1. Motivation: the problem of self-support

As commented by Eiter et al. [8], someweak answer setsmay be considered counterintuitive because of ‘‘self-supporting’’
loops. For instance, consider the weak answer set {p(a)} of the dl-program K1 in Example 1. The evidence of the truth of
p(a) is inferred by means of a self-supporting loop: ‘‘p(a) ⇐ DL[c ⊎ p; c ′](a) ⇐ p(a)’’, which involves not only the dl-
atom DL[c ⊎ p; c ′](a) but the DL knowledge base O. Thus the truth of p(a) depends on the truth of itself. This self-support is
excluded by the strong loop formula of the loop L = {p(a)}.

Let us consider the dl-program K2 in Example 1 again. Note that {p(a)} is a strong answer set of K2. The truth of the
atom p(a) depends on the truth of [c ⊓¬b](a)which depends on the truth of p(a) and¬q(a). Thus the truth of p(a) depends
on the truth of itself. The self-supporting loop is: ‘‘p(a) ⇐ DL[c ⊎ p, b∩- q; c ⊓ ¬b](a) ⇐ (p(a) ∧ ¬q(a))’’. In this sense,
some strong answer sets may be considered counterintuitive as well.

The notion of ‘‘circular justification’’ was formally defined by [18] to characterize self-supports for lparse [29] programs,
which was motivated by the notion of unfoundedness for logic programs [30] and logic programs with aggregates [7]. With
slightmodifications,we extend the concept of circular justification to dl-programs. Formally, letK = (O, P) be a dl-program
and I ⊆ HBP be a supported model of K . I is said to be circularly justified (or simply circular) if there is a nonempty subset
M of I such that

I \M |̸=O


A∈Pos

A ∧

B∈Neg

¬B (7)

for every dl-rule (h← Pos, not Neg) in P with h ∈ M and I |=O


A∈Pos A∧


B∈Neg ¬B. Otherwise, we say that I is noncircular.
Intuitively speaking, Condition (7) means that the atoms in M have no support from outside of M , i.e., they have to depend
on themselves.

Example 3. Let K = (∅, P)where P consists of

p(a)← not DL[b∩- p; ¬b](a).

It is not difficult to verify that K has two weak answer sets ∅ and {p(a)}. They are strong answer sets of K as well. In terms
of the above definition, {p(a)} is circular.

It is interesting to note that weak answer sets allow self-supporting loops involving any dl-atoms (either monotonic
or nonmonotonic), while strong answer sets allow self-supporting loops only involving nonmonotonic dl-atoms and their
default negations. These considerations motivate us to define a new semantics which is free of circular justifications.

4.2. Canonical answer sets by loop formulas

Let K = (O, P) be a dl-program. The canonical dependency graph of K , written as Gc
K , is the directed graph (V , E), where

V = HBP and (u, v) ∈ E if there is a rule of the form (2) in P such that A = u and there exists an interpretation I ⊆ HBP such
that either of the following two conditions holds:

(1) I |̸=O Bi and I∪{v} |=O Bi, for some i (1 ≤ i ≤ m). In this case, we say that v is a positive monotonic (resp., nonmonotonic)
dependency of Bi if Bi is a monotonic (resp., nonmonotonic) dl-atom. Intuitively, the truth of Bi may depend on that of v
while the truth of umay depend on that of Bi. Thus the truth of u may depend on that of v.

(2) I |=O Bj and I ∪ {v} |̸=O Bj, for some j (1+ m ≤ j ≤ n). Clearly, Bj must be nonmonotonic. In this case, we say that v is
a negative nonmonotonic dependency of Bj. Intuitively, the truth of u may depend on that of ‘‘not Bj’’, while its truth may
depend on that of v. Thus the truth of umay depend on that of v.
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Algorithm 1 Psup(A, I1, I2)

1: I∗ ← I2
2: M ← I2 \ I1
3: for all h ∈ M ∩ I∗ do
4: h∗ ← h
5: if I∗ \ {h∗} |=O A then
6: I∗ ← I∗ \ {h∗}
7: continue
8: end if
9: break

10: end for
11: return (I∗, h∗)

A nonempty subset L of HBP is a canonical loop of K if there is a cycle in Gc
K that goes through only and all the nodes in L. It

is clear that if Bi = v then the interpretation I = {v} satisfies v while I \ {v} does not. Thus the notion of canonical loops
is a generalization of that of weak loops given in Section 3.2, and a generalization of the notion of loops for normal logic
programs [17].

Note further that the canonical dependency graph is not a generalization of the strong positive dependency graph,
since some strong loops are not canonical loops. For example, with the dl-program K = (∅, P), where P = {p(a) ←
DL[c ∪- p, c ∩- p,¬c](a)}, the dl-atom A = DL[c ∪- p, c ∩- p,¬c](a) is equivalent to ⊤. So it is monotonic. It follows that
L = {p(a)} is a strong loop of K . However, L is not a canonical loop of K , because there is no interpretation I such that
I |̸=O A and I ∪ {p(a)} |=O A.

Due to the two kinds of dependences in a canonical dependency graph defined above, to define canonical loop formulas,
we need two kinds of irrelevant formulas: let L be a set of atoms and A = DL[λ;Q ](t⃗) a nonmonotonic dl-atom. The
positive canonical irrelevant formula5 of A with respect to L, written as pCF(A, L), is DL[λL;Q ](t⃗) where λL is obtained from
λ by replacing each predicate p with pL if L contains an atom p(c⃗) which is a positive nonmonotonic dependency of A. The
negative canonical irrelevant formula of Awith respect to L, written as nCF(A, L), is DL[λL;Q ](t⃗)where λL is obtained from λ
by replacing each predicate p with pL if L contains an atom p(c⃗)which is a negative nonmonotonic dependency of A.

Lemma 4.1. Let K = (O, P) be a dl-program, A ∈ DLP and I1 ⊂ I2 ⊆ HBP .

(1) If I1 |̸=O A and I2 |=O A then there exists an interpretation I∗ and an atom h∗ ∈ I2 \ I1 such that I1 ⊂ I∗ ⊆ I2, I∗ |=O A and
I∗ \ {h∗} |̸=O A.

(2) If A is nonmonotonic, I1 |=O A and I2 |̸=O A then there exists an interpretation I∗ and an atom h∗ ∈ I2 \ I1 such that
I1 ⊆ I∗ ⊂ I2, I∗ ∪ {h∗} |̸=O A and I∗ |=O A.

Proof. (1) Clearly I2 \ I1 ≠ ∅ by the assumption. We construct the interpretation I∗ by Algorithm 1: Psup(A, I1, I2). Since
both I2 and M are finite, the algorithm definitely terminates. Since M is a nonempty subset of I2, the forall loop will run at
least once. Suppose Psup(A, I1, I2) is executed and terminated. There are only two possible cases leading to its termination:

• There is no h ∈ M ∩ I∗ (line 3). It follows that I∗ = I1 and I∗ |=O A. The latter contradicts I1 |̸=O A. Thus this case is
impossible.
• The ‘‘break’’ is executed (line 9). It follows that I∗ ⊆ I2 and I∗ \ {h∗} |̸=O A.

Thus the above algorithm returns (I∗, h∗) such that I∗ |=O A and I∗ \ {h∗} |̸=O A.
(2) We have Algorithm 2 for this purpose. Similarly, since both M and I2 are finite then the algorithm Nsup(A, I1, I2)

definitely terminates and the forall loop will be executed at least once. Suppose Nsup(A, I1, I2) is executed and terminated.
If Nsup(A, I1, I2) terminates because ofM \ I∗ = ∅ in the forall loop thenwe have I∗ = I2 and I∗ |=O A. The latter contradicts
I2 |̸=O A. Thus the only case leading to the termination of Nsup(A, I1, I2) is the ‘‘break’’ (line 10). In that case, we have that
I∗ ∪ {h∗} |̸=O A and I∗ |=O A. It is obvious I1 ⊆ I∗. �

Lemma 4.2. Let K = (O, P) be a dl-program, I ⊆ HBP , L a set of atoms and A = DL[λ;Q ](t⃗) a nonmonotonic dl-atom in DL?P .

(1) If LE(I,K) |=O pCF(A, L) then I \ L |=O A,
(2) If LE(I,K) |̸=O nCF(A, L) then I \ L |̸=O A.

Proof. Let I ′ = LE(I,K), and for clarity and without loss of generality, suppose λ = (S1 ⊎ p1, S2 ∩- p2).
(1) Suppose p1 ≠ p2. There is no atom p2(c⃗) which is a positive nonmonotonic dependency of A. If there is no atom

p1(c⃗) ∈ L such that p1(c⃗) is a positive nonmonotonic dependency of A then pCF(A, L) = A. It follows that I |=O A since
I ′ |=O A and I ′ ∩ HBP = I . Suppose I \ L |̸=O A. From (1) of Lemma 4.1, there is an atom h ∈ I \ (I \ L), i.e., h ∈ L, and an

5 This is different from the original definition in [32], but it is equivalent to the original one under loop extended interpretations.
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Algorithm 2 Nsup(A, I1, I2)

1: I∗ ← I1
2: M ← I2 \ I1
3: for all h ∈ M \ I∗ do
4: if I∗ ∪ {h} |=O A then
5: I∗ ← I∗ ∪ {h}
6: continue
7: end if
8: h∗ ← h
9: I∗ ← I∗ ∪ {h∗}

10: break
11: end for
12: return (I∗, h∗)

interpretation I∗ such that I∗ |̸=O A and I∗ ∪ {h} |=O A. It is evident that hmust mention the predicate p1. It follows that h is
a positive nonmonotonic dependency of A which contradicts the assumption. Thus I \ L |=O A.

Suppose there is an atom p1(c⃗) ∈ L such that p1(c⃗) is a positive nonmonotonic dependency of A. By p1L(c⃗) ∈ I ′ iff
p1(c⃗) ∈ I \ L, we have that
I ′ |=O pCF(A, L)
⇒ O ∪ {S1(e⃗)|p1L(c⃗) ∈ I ′} ∪ {¬S2(e⃗)|p2(e⃗) /∈ I ′} |= Q (t⃗)
⇒ O ∪ {S1(e⃗)|p1(c⃗) ∈ I \ L} ∪ {¬S2(e⃗)|p2(e⃗) /∈ I} |= Q (t⃗)
⇒ O ∪ {S1(e⃗)|p1(c⃗) ∈ I \ L} ∪ {¬S2(e⃗)|p2(e⃗) /∈ I \ L} |= Q (t⃗)
⇒ I \ L |=O DL[S1 ⊎ p1, S2 ∩- p2;Q ](t⃗)
⇒ I \ L |=O A.

It is similar to show that I \ L |=O A for the case p1 = p2.
(2) Suppose p1 ≠ p2. There is no atom p1(c⃗) which is a negative nonmonotonic dependency of A. If there is no atom

p2(c⃗) ∈ L such that p2(c⃗) is a negative nonmonotonic dependency of A then nCF(A, L) = A. It follows that I |̸=O A since
I ′ |̸=O A and I ′ = LE(I,K). Suppose I \ L |=O A. By (2) of Lemma 4.1, there is an atom h ∈ I \ (I \ L), i.e., h ∈ L, and an
interpretation I∗ such that I∗ |=O A and I∗ ∪ {h} |̸=O A. As h must mention the predicate p2, it follows that h is a negative
nonmonotonic dependency of A which contradicts the assumption. Thus I \ L |̸=O A.

Suppose there is an atom p2(c⃗) ∈ L such that p2(c⃗) is a negative nonmonotonic dependency of A. By p2L(c⃗) ∈ I ′ iff
p2(c⃗) ∈ I \ L, we have that
I ′ |̸= nCF(A, L)
⇒ O ∪ {S1(e⃗)|p1(e⃗) ∈ I ′} ∪ {¬S2(e⃗)|p2L(e⃗) ∉ I ′} |̸= Q (t⃗)
⇒ O ∪ {S1(e⃗)|p1(e⃗) ∈ I} ∪ {¬S2(e⃗)|p2(e⃗) ∉ I \ L} |̸= Q (t⃗)
⇒ O ∪ {S1(e⃗)|p1(e⃗) ∈ I \ L} ∪ {¬S2(e⃗)|p2(e⃗) ∉ I \ L} |̸= Q (t⃗)
⇒ I \ L |̸=O DL[S1 ⊎ p1, S2 ∩- p2;Q ](t⃗)
⇒ I \ L |̸=O A.

It is similar to show that I \ L |̸=O A for the case p1 = p2. �

Please note that the converses of (1) and (2) in the above lemma do not generally hold. For example, let K = (O, P) be a
dl-programwhere O = ∅, A = DL[S1⊎p1, S2 ∩- p2; S1⊓¬S2](a) occurring in P , I1 = {p1(a), p2(a)}, I2 = {p1(a)}, L1 = {p2(a)}
and L2 = {p1(a)}. Because there is no interpretation I such that I |̸=O A and I ∪ L1 |=O A, it follows pCF(A, L1) = A. Similarly,
we have nCF(A, L2) = A. Note that I1 \ L1 |=O A. However LE(I1,K) |̸=O pCF(A, L1) since I1 |̸=O A. Similarly, we have that
I2 \ L2 |̸=O A and LE(I2,K) |=O nCF(A, L2) since I2 |̸=O A. Even if we add the condition I |=O A, the converse of (1) does not
hold either. For instance, let O = ∅, A = DL[S1 ⊎ p1, S2 ∩- p2; S1 ∪ ¬S2](a) and I = L = {p1(a), p2(a)}. We can verify that
I |=O A and I \ L |=O A, however I ′ |̸=O pCF(A, L).

We are now in the position to define canonical loop formulas. Let K = (O, P) be a dl-program,M ⊆ HBP and L a loop of
K . The canonical loop formula of L relative to K under M , written as cLF(L,M,K), is the following formula

L ⊃


1≤i≤n

 
A∈Posi

δ1(A, L) ∧


B∈Negi

¬δ2(B, L)


where

• (h1 ← Pos1, not Neg1), . . . , (hn ← Posn, not Negn) are all the rules in P such that hi ∈ L, Posi ∩ L = ∅, M |=O A for every
A ∈ Posi andM |̸=O B for every B ∈ Negi for all i (1 ≤ i ≤ n),
• δ1(A, L) = pCF(A, L) if A ∈ DL?P , and γ (A, L) otherwise,
• δ2(B, L) = nCF(B, L) if B ∈ DL?P , and B otherwise.
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Fig. 1. The positive dependency relations on HBP .

Given a dl-program K = (O, P) and an interpretation I ⊆ HBP . We call I a canonical answer set of K if LE(I,K) |=O
COMP(K) ∪ cLF(I,K), where cLF(I,K) = {cLF(L, I,K)|L is a canonical loop of K}. It is not difficult to prove that every
canonical answer set of a dl-program K is a supported model of K .

Example 4. Consider the dl-programK2 in Example 1, i.e.,K2 = (O, P2)whereO = ∅ and P2 = {p(a)← DL[c⊎p, b∩- q; c⊓
¬b](a)}. The dl-atom DL[c ⊎ p, b∩- q; c ⊓ ¬b](a) is nonmonotonic. We have that ∅ |̸=O DL[c ⊎ p, b∩- q; c ⊓ ¬b](a) and
{p(a)} |=O DL[c ⊎ p, b∩- q; c ⊓ ¬b](a). Thus L = {p(a)} is a canonical loop of K2. Let I = {p(a)}. The canonical loop formula
cLF(L, I,K) is the following formula

p(a) ⊃ DL[c ⊎ pL, b∩- q; c ⊓ ¬b](a).

It is not difficult to see that LE(I,K) = I ∪ {pL′(a)} where L′ = {q(a)}. Evidently, LE(I,K) |̸=O cLF(L, I,K) due to
pL(a) /∈ LE(I,K). So that I is not a canonical answer set of K2, even if I |=O COMP(K2).

The next example demonstrates the difference among the positive dependency graphs of dl-programs.

Example 5. Let K = (O, P) be a dl-program where O = ∅ and P consists of the following rules:

p(a1)← DL[c ⊎ p, c](a1), p(a3)← not DL[c ∩- p,¬c](a3),
p(a2)← DL[c ⊎ p, b∩- q; c ⊓ ¬b](a2), p(a4)← p(a4).

The only weak positive dependency on HBP is (p(a4), p(a4)), the strong positive dependency includes (p(a1), p(a1)) besides
the weak one, while the canonical positive dependency contains (p(a2), p(a2)) and (p(a3), p(a3)) in addition to the strong
ones. Fig. 1 depicts the various dependency relations on HBP . The weak positive dependency graph is GwK = (V , E)
where V = {p(ai), q(ai)|1 ≤ i ≤ 4} and E = {(p(a4), p(a4))}, while the strong one is Gs

K = (V , E ′) where E ′ =
E ∪ {(p(a1), p(ai))|1 ≤ i ≤ 4}. The canonical dependency graph is Gc

K = (V , E
′′)where E ′′ = {(p(ai), p(ai))|1 ≤ i ≤ 4}.

Comparing with the previous definitions of loop formulas, in addition to the irrelevant formulas of nonmonotonic dl-
atoms, the definition of canonical loop formulas has a notable distinction: it is given under a setM of atoms whose purpose
is to restrict that the support of any atom in L come from the rules whose bodies are satisfied byM (relative to a knowledge
base). The next proposition shows that the canonical loops and canonical loop formulas for dl-programs are indeed a
generalization of loops and loop formulas for normal logic programs [17] respectively.

Proposition 4.3. Let K = (O, P) be a dl-program where P is a normal logic program and O = ∅, L ⊆ HBP and M a model of the
completion of P.

(1) L is a loop of P if and only if L is a canonical loop of K .
(2) M |= LF(L, P) if and only if M |=O cLF(L,M, P), where LF(L, P) is the loop formula associated with L under P [17].

Proof. (1) Clearly, since for each atom h there always exists an interpretation I = {h} such that I |=O h and I \ {h} |̸=O h.
(2) Note that M |=O cLF(L, I,K) iff there is a rule (r : h ← Pos, not Neg) in P such that h ∈ L, Pos ∩ L = ∅,

M |=O


A∈Pos A ∧


B∈Neg ¬B and

M |=O


A∈Pos

δ1(A, L) ∧

B∈Neg

¬δ2(B, L). (8)

Since r mentions no dl-atoms, it implies that δ1(A, L) = A and δ2(B, L) = B. Thus Eq. (8) holds iffM |=


A∈Pos A∧


B∈Neg ¬B.
Consequently,M |=O cLF(L, I,K) iffM |= LF(L, P). �

Proposition 4.4. Let K = (O, P) be a dl-program and I a canonical answer set of K . Then I is minimal in the sense that K has
no canonical answer set I ′ such that I ′ ⊂ I .
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Proof. Suppose there is a canonical answer set I1 of K such that I1 ⊂ I . Let M = I \ I1. Since I |=O COMP(K) and
I1 |=O COMP(K), for each atom h ∈ M , there is no rule (h← Pos, not Neg) in P such that

I1 |=O


A∈Pos

A ∧

B∈Neg

¬B. (9)

Similarly, there is at least one rule (h← Pos′, not Neg′) in P such that

I |=O


A∈Pos′

A ∧


B∈Neg′
¬B.

It follows that at least one of the following conditions holds:

• There is an atom h′ ∈ Pos′ such that h′ ∈ M .
• There is a dl-atom A ∈ Pos′ such that I1 |̸=O A. By I |=O A, there is an atom h′ ∈ I \ I1, i.e., h′ ∈ M , and an interpretation

I∗ such that I∗ |̸=O A and I∗ ∪ {h′} |=O A by (1) of Lemma 4.1.
• There is a nonmonotonic dl-atom B ∈ Neg′ such that I1 |=O B. By I |̸=O B, there is an atom h′ ∈ I \ I1, i.e., h′ ∈ M , and an

interpretation I∗ such that I∗ |=O B and I∗ ∪ {h′} |̸=O B by (2) of Lemma 4.1.

It follows that (h, h′) is an edge of Gc
K . Due to that h is an arbitrary atom in M and M is finite, there must exist a canonical

loop L of K such that L ⊆ M . We can further assume L is terminating, i.e., (a) L is a maximal subset of M and (b) L is a
canonical loop of K and (c) Gc

K has no path from one atom of L to an atom of another maximal canonical loop L′ of K with
L′ ⊆ M . Since LE(I,K) |=O cLF(L, I,K), there is at least one rule (h← Pos′′, not Neg′′) in P such that h ∈ L, Pos′′ ∩ L = ∅,

I |=O


A∈Pos′′

A ∧


B∈Neg′′
¬B and LE(I,K) |=O


A∈Pos′′

δ1(A, L) ∧


B∈Neg′′
¬δ2(B, L).

By Lemmas 3.4 and 4.2, we have that

I \ L |=O


A∈Pos′′

A ∧


B∈Neg′′
¬B. (10)

If L ⊂ M then I1 ⊂ I \L. In terms of the previous analysis, there is an atom h′′ ∈ (I \L)\ I1, i.e., h′′ ∈ M \L, such that (h, h′′)
is an edge of Gc

K . Thus Gc
K must have a path from h to another canonical loop L′′ of K , where L′′ ⊆ M , which contradicts

with L is a terminating canonical loop. So we have L = M . According to Eq. (10), we have I1 |=O


A∈Pos′′ A ∧


B∈Neg′′ ¬B
which contradicts the condition (9). Consequently, I1 cannot be a canonical answer set of K . This completes the proof. �

The following two propositions show that the canonical answer sets of dl-programs are noncircular strong answer sets.
Thus canonical answer sets are weak answer sets as well.

Proposition 4.5. Let K = (O, P) be a dl-program and I ⊆ HBP a canonical answer set of K . Then I is noncircular.

Proof. Suppose I is circular, i.e., there exists a nonempty subset M of I such that, for each (h ← Pos, not Neg) in P with
h ∈ M and I |=O


A∈Pos A ∧


B∈Neg ¬B, the following condition holds:

I \M |̸=O


A∈Pos

A ∧

B∈Neg

¬B. (11)

Without loss of generality, we assumeM is such a minimal one. It follows that at least one of the following cases hold:

• Pos ∩M ≠ ∅which implies that there is an atom h′ ∈ Pos ∩M .
• There is a dl-atom A ∈ Pos such that I \ M |̸=O A. Knowing that I |=O A, it follows that there is an interpretation I∗ ⊆ I

and an atom h′ ∈ I \ (I \M), i.e., h′ ∈ M such that I∗ |=O A and I∗ \ {h′} |̸=O A by (1) of Lemma 4.1. So that h′ is a positive
nonmonotonic dependency of A.
• There is a nonmonotonic dl-atom B ∈ Neg such that I \ M |=O B. Knowing that I |̸=O B, it follows that there is an

interpretation I∗ and an atom h′ ∈ I \ (I \M), i.e., h′ ∈ M such that I∗ |=O B and I∗ ∪ {h′} |̸=O B by (2) of Lemma 4.1. So
that h′ is a negative nonmonotonic dependency of A.

Thus we have that (h, h′) is an edge of the canonical dependency graph of K . Because h ∈ M is arbitrary and M is finite,
there is a terminating canonical loop in the generated subgraph of Gc

K on M , i.e., the graph G′ = (V , E) where V = M and
(u, v) ∈ E if (u, v) is an edge of Gc

K . Let L ⊆ M be such a terminating canonical loop.
By LE(I,K) |=O cLF(L, I,K) and L ⊆ I , we have that there is at least one rule (h← Pos′, not Neg′) in P such that h ∈ L,

L ∩ Pos′ = ∅,

I |=O


A∈Pos′

A ∧


B∈Neg′
¬B and LE(I,K) |=O


A∈Pos′

δ1(A, L) ∧


B∈Neg′
¬δ2(B, L).
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It follows that, by Lemmas 3.4 and 4.2,

I \ L |=O


A∈Pos′

A ∧


B∈Neg′
¬B.

ThusM ≠ L and hence by Eq. (11) I \M ⊂ I \ L. However, by a similar analysis, we have that G′ has a path from one atom
in L to another loop of G′. It contradicts the fact that L is a terminating canonical loop of G′. Thus I must be noncircular. �

Unfortunately, the notion of noncircular justification is not a complete characterization of self-supportedness as
illustrated by the next example.

Example 6. Let K = (O, P)where O = {¬S1(b), S2(a)} and P consists of

p(b)← p(a),
p(a)← DL[S1 ⊎ p, S2 ∩- p; S2](b).

All the interpretations ∅, {p(b)} and I = {p(a), p(b)} satisfy (relative to O) the dl-atom DL[S1 ⊎ p, S2 ∩- p; S2](b)while {p(a)}
does not. So that p(b) is the only positive nonmonotonic dependency of that dl-atom and then the only canonical (and
strong) loop is L = {p(a), p(b)}. The canonical loop formula cLF(L, I,K) is

p(a) ∨ p(b) ⊃ DL[S1 ⊎ pL, S2 ∩- pL; S2](b).

We can verify that LE(I,K) |=O cLF(L, I,K) and I |=O COMP(K). Consequently, I is a canonical answer set of K and also a
strong answer set of K . It is not difficult to check that I is not circularly justified.

Proposition 4.6. Let K = (O, P) be a dl-program and I ⊆ HBP a canonical answer set of K . Then I is a strong answer set of K .

Proof. Let I ′ = LE(I,K). Suppose I is not a strong answer set of K . Since I |=O COMP(K), there must exist a strong loop L
of K such that I ′ |̸=O sLF(L,K). It follows that, I ′ |=O


L and

I ′ |̸=O


A∈Pos

γ (A, L) ∧

B∈Neg

¬B (12)

for every rule (h← Pos, not Neg) in P with Pos ∩ L = ∅. Without loss of generality, we assume L is a minimal one such that
I ′ |̸=O sLF(L,K).

LetM = L ∩ I . It is evident thatM ≠ ∅ and I \M = I \ L. Let h′ be an atom inM . Because h′ ∈ I , there exists at least one
rule (h′ ← Pos′, not Neg′) in P such that

I |=O


A∈Pos′

A ∧


B∈Neg′
¬B.

It follows that at least one of the following conditions holds:

• Pos′ ∩ L ≠ ∅. It shows that there is an atom h′′ ∈ Pos′ ∩M .
• There is a monotonic dl-atom A ∈ Pos′ such that I ′ |̸=O IF(A, L). It shows that I \ L |̸=O A by Lemma 3.4, i.e., I \ M |̸=O A.

Since I |=O A, there must exist an interpretation I∗ and an atom h′′ ∈ I \ (I \ M), i.e., h′′ ∈ M such that I∗ |=O A and
I∗ \ {h′′} |̸=O A by (1) of Lemma 4.1.

So that (h′, h′′) is an edge of the canonical dependency graph of K . As h′ is arbitrary andM is finite, the generated subgraph
G′ of Gc

K on M must have a terminating canonical loop M ′. It is clear that M ′ ⊆ M . Since M ′ ⊆ I and I ′ |=O cLF(M ′, I,K),
there is at least one rule (h′′ ← Pos′′, not Neg′′) in P such that h′′ ∈ M ′, Pos′′ ∩M ′ = ∅,

I |=O


A∈Pos′′

A ∧


B∈Neg′′
¬B and I ′ |=O


A∈Pos′′

δ1(A,M ′) ∧


B∈Neg′′
¬δ2(B,M ′).

It follows that, by Lemmas 3.4 and 4.2,

I \M ′ |=O


A∈Pos′′

A ∧


B∈Neg′′
¬B.

However, by Eq. (12) at least one of the following conditions hold:

• Pos′′ ∩ L ∩ I ≠ ∅, i.e., Pos′′ ∩M ≠ ∅. It follows that there is an atom h∗ ∈ Pos′′ ∩M such that h∗ ∈ M \M ′.
• There is a monotonic dl-atom A ∈ Pos′′ such that I \M |̸=O A. But we know that I \M ′ |=O A by Lemma 4.2. It shows that

there is an atom h∗ ∈ M \M ′ such that I∗ |̸=O A and I∗ ∪ {h∗} |=O A for some interpretation I∗ by Lemma 4.1.

It follows that (h′′, h∗) is also an edge of Gc
K . SinceM is finite, G′ must have a path from h′′ to another canonical loop of G′. It

contradicts the fact thatM ′ is a terminating canonical loop of G′. Consequently, I is a strong answer set of K . �

The following example shows that there are noncircular strong answer sets that are not canonical ones.
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Example 7. Let K = (∅, P) be a dl-program where P consists of

q(a)← DL[c1 ⊎ p, c2 ∩- q; c1 ⊔ ¬c2](a),
p(a)← q(a).

Consider the interpretation I = {p(a), q(a)}which is the unique strong answer set of K . We have that I is the least model of
K s,I , so that I is a strong answer set of K . It is not difficult to check that I is not circularly justified. However, we know that
L = I is a canonical loop of K . Because I |=O DL[c1 ⊎ p, c2 ∩- q; c1 ⊔¬c2](a) and I \ {p(a)} |̸=O DL[c1 ⊎ p, c2 ∩- q; c1 ⊔¬c2](a),
p(a) is a positive nonmonotonic dependency of q(a). The canonical loop formula cLF(L, I,K) is the following formula

p(a) ∨ q(a) ⊃ DL[c1 ⊎ pL, c2 ∩- q; c1 ⊔ ¬c2](a).

It is evident that LE(I,K) |̸=O cLF(L, I,K). Thus I is not a canonical answer set of K . In fact, K has no canonical answer set.

The above example, together with Propositions 4.4 and 4.6, implies the following.

Corollary 4.7. Each canonical answer set of a dl-program K is a minimal strong answer set of K , but not vice versa.

The following proposition, together with Proposition 4.5, implies that the existence of nonmonotonic dl-atoms is the
only cause that a strong answer set of a dl-program is circular.

Proposition 4.8. Let K = (O, P) be a dl-program in which P does not mention any nonmonotonic dl-atoms. Then I ⊆ HBP is a
canonical answer set of K if and only if I is a strong answer set of K .

Proof. Let I ′ = LE(I,K). By Proposition 4.6, it is sufficient to show that if I is a strong answer set of K then I is a canonical
answer set of K . Suppose I is a strong answer set of K but I is not a canonical answer set of K . Since I |=O COMP(K), it
follows that there exists at least one canonical loop L of K such that I ′ |̸=O cLF(L, I,K).

Recall that all dl-atoms appearing in P are monotonic. If A is a monotonic dl-atom and there is an atom p(c⃗) and an
interpretation I∗ such that I∗ |̸=O A and I∗ ∪ {p(c⃗)} |=O A then Amust contain S ⊎ p (or S ∪- p) for some S. It follows that L is
also a strong loop of K and then I ′ |=O sLF(L,K) by Theorem 3.6, i.e., P has at least one rule (h← Pos, not Neg) such that
h ∈ L, Pos ∩ L = ∅ and

I ′ |=O


A∈Pos

γ (A, L) ∧

B∈Neg

¬B.

Please note that again there are no nonmonotonic dl-atoms in Pos ∪ Neg. It follows that

I ′ |=O


A∈Pos

δ1(A, L) ∧

B∈Neg

¬δ2(B, L) and I |=O


A∈Pos

A ∧

B∈Neg

¬B

by Lemma 3.4. Thus we have I ′ |=O cLF(L, I,K). This is a contradiction. It contradicts I ′ |̸=O cLF(L, I,K). Consequently I is a
canonical answer set of K . �

5. Some other semantical considerations

There are two well-known generalizations of dl-programs, HEX-programs [9] and constraint programs [28]. Thus there
exist two more different semantics for dl-programs borrowed from HEX-programs and constraint programs respectively.
We investigate the relationship among those semantics for dl-programs below.

5.1. FLP-semantics for dl-programs

Dl-programs had been extended to HEX programs that combines answer set programs with higher-order atoms and
external atoms [9]. In particular, the external atoms can refer, as dl-atoms in dl-programs, to concepts belonging to a
classical knowledge base or ontology. In such a case one can compare the semantics of the HEX program with that of the
corresponding dl-program. The semantics of HEX programs is based on the notion of FLP-reduct [10]. We also note that the
semantics of dl-programs has been investigated from the perspective of the quantified logic of here-and-there [13]. For the
purpose of comparison, let us rephrase the FLP-answer set semantics of dl-programs below.

LetK = (O, P) be a dl-program and I ⊆ HBP . The FLP-reduct ofK relative to I , written asK f ,I , is the dl-program (O, fP I
O)

where fP I
O is the set of all rules of P whose bodies are satisfied by I relative to O. An interpretation I is an FLP-answer set of

a dl-program K if I is a minimal model of fP I
O (relative to O).

Proposition 5.1. The FLP-answer sets of a dl-program are incomparable, i.e., if a set I2 is an FLP-answer set of K = (O, P) then
I1 is not an FLP-answer set of K for any I2 ⊂ I1.

Proof. Suppose I1 ⊂ I2 ⊆ HBP are two FLP-answer sets of a dl-program K . It is evident that, for every rule (r : h ←
Pos, not Neg) in P , if I1 |=O A for each A ∈ Pos and I1 |̸=O B for each B ∈ Neg then I1 |=O h. Thus I1 is a model of fP I2

O which
contradicts that I2 is a minimal model of fP I2

O due to I1 ⊂ I2. �
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Proposition 5.2. Every minimal strong answer set of a dl-program is an FLP-answer set of the dl-program.

Proof. Let I be a minimal strong answer set of the dl-program K = (O, P). We have that I satisfies every rule of P (relative
to O) and thus I is a model of fP I

O. Suppose I is not an FLP-answer set of K . It follows that there exists I ′ ⊂ I such that I ′

satisfies each rule in fP I
O (relative to O). Evidently, we have s[fP I

O]
I
O ⊆ sP I

O due to fP I
O ⊆ P and, for any rule (h ← Pos) in

sP I
O \ s[fP

I
O]

I
O, I |̸=O A for some A ∈ Pos. It follows that I ′ |̸=O A since A is an atom or monotonic dl-atom and thus I ′ satisfies

each rule in sP I
O (relative to O). It implies that I ′ is a model of sP I

O. This contradicts that I is a minimal strong answer set
of K . �

Recall that canonical answer sets of a dl-program are minimal by Proposition 4.4, and canonical answer sets of a dl-
program are strong answer sets by Proposition 4.6. The below proposition follows from Proposition 5.2.

Proposition 5.3. Let K = (O, P) be a dl-program and I ⊆ HBP be a canonical answer set of K . Then we have that I is also an
FLP-answer set of K .

Let us consider the dl-program K in Example 7 again. It is not difficult to see that fP I
O = P and the minimal model of P is

I . Thus I is an FLP-answer set of K . We can also verify that I is the unique strong answer set of K . However we know that
I is not a canonical answer set of K . It shows that there are some FLP-answer sets of a dl-program that are not canonical
answer sets of the dl-program.

It has been shown that the FLP-answer set semantics coincides with the strong answer set semantics of dl-programs
that contain no nonmonotonic dl-atoms (Theorem 5 of [9]). The following Proposition asserts that FLP-answer sets of a
dl-program are strong answer sets of the dl-program.

Proposition 5.4. Let K = (O, P) be a dl-program and I ⊆ HBP an FLP-answer set of K . Then we have that I is a strong answer
set of K .

Proof. It is sufficient to show that I = lfp(γKs,I ). Let I ′ = lfp(γKs,I ).
(⊇) It is sufficient to prove that γ k

Ks,I ⊆ I for every k ≥ 0. We prove this by induction on k.
Base: It trivially holds for k = 0.
Step: Suppose it holds for k = n, i.e., γ n

Ks,I ⊆ I . For each atom h ∈ γ n+1
Ks,I , there exists a rule (r : h ← Pos,Ndl, not Neg)

in P such that (i) γ n
Ks,I |=O A for each A ∈ Pos, (ii) I |=O B for every B ∈ Ndl and, (iii) I |̸=O C for every C ∈ Neg where Pos

is the set of atoms and monotonic dl-atoms occurring in the body of the rule, and Ndl is the set of nonmonotonic dl-atoms
occurring in the rule. It follows that I |=O A for each A ∈ Pos. Thus the rule r is in fP I

O. Since I is a model of fP I
O, we have that

h ∈ I . Consequently γ n+1
Ks,I ⊆ I and then I ′ ⊆ I .

(⊆) To show I ⊆ I ′, it is sufficient to prove that I ′ is a model of fP I
O since I is a minimal model of fP I

O. Let us consider an
arbitrary rule (r : h← Pos, not Neg)of fP I

O. Note that the rule (r
′
: h← Pos′)obtained from r by the strongdl-transformation

is in sP I
O where Pos′ is the set of atoms and monotonic dl-atoms in Pos. Recall that I ′ satisfies the rule r ′ (relative to O) since

I ′ = lfp(γKs,I ), i.e., if I ′ satisfies (relative to O) the atoms and dl-atoms in Pos′ then I ′ satisfies h. It follows that I ′ satisfies r
(relative to O). Thus I ′ is a model of fP I

O. �

If a dl-atom mentions no operator ∩- then the dl-atom is monotonic, and if a dl-program K mentions no nonmonotonic
dl-atoms then the FLP-answer sets of K coincide with the strong answer sets of K . Together with Proposition 4.6, we have
the following corollary.

Corollary 5.5. Let K = (O, P) be a dl-program such that DLP = DL+P and I ⊆ HBP . Then we have that I is a strong answer set
of K iff I is a canonical answer set of K iff I is an FLP-answer set of K .

5.2. Dl-atoms as abstract constraints

Logic programs with abstract constraint atoms (or constraint programs) [21] is a quite general framework for answer set
programming [28] and we can translate dl-programs into constraint programs. In the following, we compare the semantics
of dl-programs with that of corresponding constraint programs, starting with recalling the basic notations of constraint
programs [28].

An abstract constraint atom (c-atom) is of the form (D, C), where D is a finite set of atoms and C ⊆ 2D. For a c-atom
A = (D, C), we use Ad and Ac to refer to D and C respectively. A is said to be elementary if it is of the form ({a}, {{a}}), which
may be just written as a. We use A to denote the complement of A, i.e., Ad = Ad and Ac = 2Ad \ Ac . Let M be a set of atoms
and A a c-atom.M satisfies A, written as M |= A, if M ∩ Ad ∈ Ac .

Let M and S be sets of atoms. The set S conditionally satisfies a c-atom A w.r.t. M , denoted by S |=M A if S |= A and for
every I with S ∩ Ad ⊆ I ⊆ M ∩ Ad, I ∈ Ac . Intuitively, S |=M A implies that S ′ |= A for every S ′ such that S ⊆ S ′ ⊆ M .

Formally, a logic program with c-atoms, also called a constraint program (or just a program), is a finite set of rules of the
form

A← A1, . . . , Ak, not Ak+1, . . . , not An (13)
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where A and Ai’s are arbitrary c-atoms. The literals not Aj are called negative c-atoms. For a rule r of the form (13), we define
Head(r) = A and Body(r) = Pos(r) ∪ not Neg(r) where Pos(r) = {Ai|1 ≤ i ≤ k} and Neg(r) = {Aj|k + 1 ≤ j ≤ n} and
not S = {not A|A ∈ S} for a set S of c-atoms.

A program is positive if it does not mention not in its rules. A program is basic if, for each rule of the form (13) of P , A is
either elementary or⊥.6 The above satisfaction relation for c-atoms is easily extended for programs.

For a set of atoms S and a positive basic program P , we define the operator TP as following

TP(S,M) = {p|∃r ∈ P,Head(r) = p ≠ ⊥, S |=M Body(r)}.

A model M of a positive basic P is an answer set of P ifM = T∞P (∅,M), where

• T 0
P (∅,M) = ∅,

• T i+1
P (∅,M) = TP(T i

P(∅,M),M).

If P is a positive basic program then the least fixpoint of TP(∅,M) exists for each M ⊆ HBP . M is an answer set of P if M is
the least fixpoint of TP(∅,M). For a basic program P and M a set of atoms, M is an answer set of P by complement if M is an
answer set of the program P ′, which is obtained from the rules of P by replacing each not Awith A.

Let P be a positive basic program, the completion of P , written as Comp(P), consists of the following formulas:

•


A∈Pos A ⊃ a for every rule (a← Pos) in P;
• a ⊃


(a←Pos)∈P


A∈Pos A.

Given a dl-program K = (O, P), and A an atom or dl-atom appearing in P , we define τ(A) to be the c-atom where
τ(A)d = HBP and τ(A)c = {M ⊆ HBP |M |=O A}. In what follows, we denote by PK the positive basic program obtained from
the rules of P by replacing each atom and dl-atom Awith τ(A), and then not τ(A)with τ(A).

Example 8 (Continued from Example 7). We have that PK consists of

q(a)← ({p(a), q(a)}, {∅, {p(a)}, {p(a), q(a)}});
p(a)← q(a).

Consider the interpretation I = {p(a), q(a)} again. It is not difficult to see that ∅ is the least fixpoint of TPK (∅, I). Thus I is
not an answer set of PK . It shows that the strong answer sets of dl-programs of a dl-program K do not correspond to the
answer sets (by complement) of PK .

The following lemma is evident.

Lemma 5.6. Let K = (O, P) be a dl-program, A an atom or dl-atom appearing in P and I ⊆ HBP . Then I |=O A iff I |= τ(A) iff
I ∈ [τ(A)]c iff I |̸= τ(A).

Proposition 5.7. Let K = (O, P) be a dl-program and M ⊆ HBP . Then we have M |=O COMP(K) iff M |= Comp(PK).

Proof. Note that I |=O COMP(K) iff, for each h ∈ HBP , I |=O COMP(h,K), i.e., I |=O h iff there is a rule (h← Pos, not Neg)
in P such that

I |=O


A∈Pos

A ∧

B∈Neg

¬B.

By Lemma 5.6, the above holds iff

I |=

A∈Pos

τ(A) ∧

B∈Neg

τ(B)

iff

I |=

 
A∈Pos′

τ(A) ∧


B∈Neg′
τ(B)

 ⊃ h

for any rule (h← Pos′, not Neg′) in P , and

I |= h ⊃


1≤i≤m

 
A∈Posi

τ(A) ∧


B∈Negi

τ(B)


where (h← Pos1, not Neg1), . . . , (h← Posm, not Negm) are all the rules in P whose head is h, iff I |= Comp(PK). �

6 The symbol⊥ is understood as shorthand for a c-atom of the form (D,∅).
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Algorithm 3 PMin(A, I, L)
//precondition: not derivable(A, I \ L, I), I |=O A and I \ L |=O A
1: I∗ ← I
2: for all h ∈ I∗ ∩ L s.t not derivable(A, I \ L, I∗ \ {h}) do
3: I∗ ← I∗ \ {h}

// assert: not derivable(A, I \ L, I∗)
4: end for
5: return I∗

Lemma 5.8. Let K = (O, P) be a dl-program, let A ∈ DL?P , and let L a nonempty set of atom in HBP and I ⊆ HBP .

(1) If I |=O A, I \ L |=O A and LE(I,K) |̸=O pCF(A, L) then there is a set I∗ with I \ L ⊂ I∗ ⊂ I such that I∗ |̸=O A.
(2) If I |̸=O A, I \ L |̸=O A and LE(I,K) |=O nCF(A, L) then there is a set I∗ with I \ L ⊂ I∗ ⊂ I such that I∗ |=O A.

Proof. Let I ′ = LE(I,K), and for clarity and without loss of generality, suppose A = DL[S1 ⊎ p1, S2 ∩- p2;Q ](t⃗).
(1) If there is no atom h ∈ L such that h is a positive nonmonotonic dependency of A, then pCF(A, L) = A. In this case, we

obviously have I ′ |=O pCF(A, L) since I |=O A which contradicts I ′ |̸=O pCF(A, L). Thus there is at least one atom in L which
is a positive nonmonotonic dependency of A. If p1 = p2 then we have that pCF(A, L) = DL[S1 ⊎ p1L , S2 ∩- p2L;Q ](t⃗). From
I ′ |̸=O pCF(A, L), we have I \ L |̸=O A which is a contradiction. So p1 ≠ p2 and we have that

O ∪ {S1(e⃗)|p1L(e⃗) ∈ I ′} ∪ {¬S2(e⃗)|p2(e⃗) /∈ I ′} |̸= Q (t⃗)

which implies that, by the fact that p1L(e⃗) ∈ I ′ iff p1(e⃗) ∈ I \ L,

O ∪ {S1(e⃗)|p1(e⃗) ∈ I \ L} ∪ {¬S2(e⃗)|p2(e⃗) /∈ I} |̸= Q (t⃗). (14)

Recall that I |=O A and I \ L |=O A. It follows that Lmust contain two atoms p1(c⃗) and p2(c⃗ ′) in I . For clarity and without loss
of generality, we assume both I and L mention only the atoms of the form p1(c⃗) and p2(c⃗) for some c⃗ . Let M and N be two
sets of atoms. We denote derivable(A,M,N) for

O ∪ {S1(e⃗)|p1(e⃗) ∈ M} ∪ {¬S2(e⃗)|p2(e⃗) /∈ N} |= Q (t⃗).

Consider the set I∗ returned by Algorithm 3: PMin(A, I, L). It is evident that derivable(A, I \ L, I∗) is always false in the forall
loop, I \ L ⊂ I∗ since I \ L |=O A, I∗ ⊂ I since I |=O A and, I∗ contains no atom p1(c⃗) which belongs to I ∩ L. It follows that,
for each atom p1(c⃗) ∈ I∗, p1(c⃗) ∈ I and p1(c⃗) /∈ L, i.e., p1(c⃗) ∈ I \ L. So that derivable(A, I∗, I∗) is false, i.e., I∗ |̸=O A.

(2) If there is no atom h ∈ L such that h is a negative nonmonotonic dependency of A, then nCF(A, L) = A. In this case, we
obviously have I ′ |̸=O nCF(A, L) since I |̸=O Awhich is a contradiction. Thus there is at least one atom in Lwhich is a negative
nonmonotonic dependency of A. If p1 = p2 then we have that nCF(A, L) = DL[S1⊎p1L , S2 ∩- p2L;Q ](t⃗). From I ′ |=O nCF(A, L),
we have I \ L |=O Awhich is a contradiction too. So that p1 ≠ p2 and we have that

O ∪ {S1(e⃗)|p1(e⃗) ∈ I ′} ∪ {¬S2(e⃗)|p2L(e⃗) /∈ I ′} |= Q (t⃗)

which implies that, by p2L(e⃗) ∈ I ′ iff p2(e⃗) ∈ I \ L,

O ∪ {S1(e⃗)|p1(e⃗) ∈ I} ∪ {¬S2(e⃗)|p2(e⃗) /∈ I \ L} |= Q (t⃗). (15)

Recall that I |̸=O A and I \ L |̸=O A. It follows that L must contain two atoms p1(c⃗) and p2(c⃗ ′). For clarity and without
loss of generality, we assume both I and L mention only the atoms of the form p1(c⃗) and p2(c⃗) for some c⃗. Consider the
set I∗ returned by Algorithm 4: NMin(A, I, L). It is evident that derivable(A, I∗, I \ L) is always true in the forall loop since
I ′ |=O nCF(A, L), I \ L ⊂ I∗ since I \ L |̸=O A, I∗ ⊂ I since I |̸=O A, and I∗ contains no atom p2(c⃗) which belongs to I ∩ L. It
follows that, for each atom p2(c⃗) ∈ I∗, p2(c⃗) ∈ I \ L. It follows that derivable(A, I∗, I∗) is true, i.e., I∗ |=O A. �

Theorem 5.9. Let K = (O, P) be a dl-program and I ⊆ HBP . Then we have that I is a canonical answer set of K if I is an answer
set of PK by complement.

Algorithm 4 NMin(A, I, L)
// precondition: derivable(A, I, I \ L), I |̸=O A and I \ L |̸=O A
1: I∗ ← I
2: for all h ∈ I∗ ∩ L s.t derivable(A, I∗ \ {h}, I \ L) do
3: I∗ ← I∗ \ {h}

// assert: derivable(A, I∗, I \ L)
4: end for
5: return I∗
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Proof. Let I ′ = LE(I,K) and I∗ = T∞PK
(∅, I). By Proposition 5.7, I |=O COMP(K) since I |= Comp(PK). It is sufficient to prove

that I ′ |=O cLF(L, I,K) for every canonical loop L ofK . Suppose there is a canonical loop L ofK such that I ′ |̸=O cLF(L, I,K),
i.e., I ′ |=O


L and

I ′ |̸=O


A∈Pos

δ1(A, L) ∧

B∈Neg

¬δ2(B, L) (16)

for every rule (h← Pos, not Neg) in P such that h ∈ L, Pos ∩ L = ∅, I |=O A for every A ∈ Pos and I |̸=O B for each B ∈ Neg.
LetM = L ∩ I . We have I \M = I \ L. Since I = I∗, if follows that, for each h ∈ M , there is the least number k1 such that

h ∈ T k1+1
PK

(∅, I), i.e., P has a rule (h← Pos′, not Neg′) such that

T k1
PK
(∅, I) |=I


A∈Pos′

τ(A) ∧


B∈Neg′
τ(B). (17)

As I is a model of PK , T k1
PK
(∅, I) ⊆ I by Corollary 1 of [28]. By the definition of conditional satisfaction and (17), we have

that, for any set S ⊆ HBP with T k1
PK
(∅, I) ⊆ S ⊆ I , S |= τ(A) for every A ∈ Pos′, and S |= τ(B) for each B ∈ Neg′, it follows

that S |=O


A∈Pos′ A ∧


B∈Neg′ ¬B by Lemma 5.6. By (16) and (17), at least one of the following cases holds:

• Pos′ ∩ L ≠ ∅which implies Pos′ ∩M ≠ ∅. So that there is an atom h1 ∈ Pos′ ∩M such that h1 ∈ T k1
PK
(∅, I) ∩M .

• There is a dl-atom A ∈ Pos′ such that I ′ |̸=O δ1(A, L). If A is monotonic then δ1(A, L) = IF(A, L). It follows I \ L |̸=O A by
Lemma 3.4, i.e. I \ M |̸=O A. Thus T k1

PK
(∅, I) ⊈ I \ M since T k1

PK
(∅, I) |=I τ(A), i.e. T

k1
PK
(∅, I) |=O A by Lemma 5.6. So there

is an atom h1 ∈ T k1
PK
(∅, I) ∩M . It is evident that h1 ≠ h.

If A is nonmonotonic then δ1(A, L) = pCF(A, L). In the case I \ L |̸=O A, we have T k1
PK
(∅, I) ⊈ I \ M since

T k1
PK
(∅, I) |=I τ(A). As the above discussion, there is an atom h1 ∈ T k1

PK
(∅, I) ∩M and h1 ≠ h. In the case I \ L |=O A, due

to I |=O A and I ′ |̸=O pCF(A, L), it follows that there is a set I ′′ with I \ L ⊂ I ′′ ⊂ I such that I ′′ |̸=O A by Lemma 5.8. We
then have T k1

PK
(∅, I) ⊈ I \ L, i.e., T k1

PK
(∅, I) ⊈ I \M . Thus there is an atom h1 ∈ T k1

PK
(∅, I) \ (I \M), i.e., h1 ∈ T k1

PK
(∅, I)∩M .

Obviously, h1 ≠ h.
• There is a nonmonotonic dl-atom B ∈ Neg′ such that I ′ |=O nCF(B, L). Evidently T k1

PK
(∅, I) |=I τ(B). It follows that

T k1
PK
(∅, I) |̸=O B and I |̸=O B by Lemma5.6 and the definition of conditional satisfaction. If I\L |=O A then T k1

PK
(∅, I) ⊈ I\M .

If I \ L |̸=O A then there is a set I ′′ with I \ L ⊂ I ′′ ⊂ I such that I ′′ |=O A. This implies that T k1
PK
(∅, I) ⊈ I \ L. Thus there is

an atom h1 ∈ T k1
PK
(∅, I) \ (I \M), i.e., h1 ∈ T k1

PK
(∅, I) ∩M and h1 ≠ h.

It follows that there is the least number k2 such that h1 ∈ T k2+1
PK

(∅, I) and k2 < k1. Consequently, we can construct a
sequence (h0(= h), h1, . . .) of atoms inM and a sequence (k1, k2, . . .) of integers such that

• ki is the least number such that hi−1 ∈ T ki+1
PK

(∅, I), and
• ki > kj if i < j.

Since M is finite, there exist some i, j (1 ≤ i < j) such that hi = hj. It follows that ki = kj. This is a contradiction. Thus
I ′ |=O cLF(L, I,K) and then I is a canonical answer set of K . �

However, as illustrated by the next example, the converse of Theorem 5.9 does not hold in general.

Example 9 (Continued from Example 6). We have that PK consists of

p(b)← p(a),
p(a)← ({p(a), p(b)}, {∅, {p(a)}, {p(a), p(b)}}).

The only models of PK are {p(b)} and {p(a), p(b)}. However, lfp(TPK (∅, {p(b)})) = lfp(TPK (∅, {p(a), p(b)})) = ∅. Thus
neither {p(b)} nor {p(a), p(b)} is an answer set of PK . Consequently, PK has no answer set, though {p(a), p(b)} is a canonical
answer set of K .

The above example motivates us to consider the difference between canonical loops (resp. canonical loop formulas) of
dl-programs and loops (resp. loop formulas) of constraint logic programs defined in [33]. To relate canonical loops and
canonical loop formulas of dl-programs with those of constraint programs, let us recall some basic notions of constraint
programs from [33]. Let A be a c-atom. A pair of sets ⟨B, T ⟩, where B ⊆ T ⊆ Ad, is called a local power set (LPS) of A, if for
every set M such that B ⊆ M ⊆ T , M ∈ Ac . Local power sets are called prefixed power sets in [26]. A local power set ⟨B, T ⟩
of a c-atom A is maximal if there is no other power set ⟨B′, T ′⟩ such that B′ ⊆ B and T ⊆ T ′. The LPS representation of A,
denoted by A∗, is (Ad, A∗c ), where A∗c = {⟨B, T ⟩|⟨B, T ⟩ is a maximal LPS of A}. In the following, we focus on basic and positive
constraint programs.
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Let P be a basic and positive constraint program. The dependency graph of P , written as Ga
P , is the directed graph (V , E)

where V is the set of atoms occurring in P and (u, v) ∈ E if there is a rule (u← Body) in P such that v ∈ B for some c-atom
A ∈ Body and some ⟨B, T ⟩ ∈ A∗c . A set L of atoms is a loop of P if there is a cycle in Ga

P which goes through only and all the
nodes in L.

Let P be a basic and positive constraint program, A a c-atom, and L ⊆ HBP . The restriction of A∗ to L, written as A∗
|L, is the

c-atom (Ad, A∗c|L), where

A∗c|L = {⟨B, T ⟩ ∈ A∗c |L ∩ B = ∅}. (18)

By π(A, L)we denote the formula

⟨B,T ⟩∈A∗c|L


B ∧


β∈(Ad\T )

¬β

.

The loop formula of a loop L of a basic and positive constraint P , written as LP(L, P), is the formula
L ⊃


1≤i≤n

 
A∈Bodyi

π(A, L)


, (19)

where (hi ← Bodyi)(1 ≤ i ≤ n) are all the rules in P such that hi ∈ L. It has been shown that a set of atoms M is an answer
set by complement of a constraint program P if and only ifM is a model of its completion and loop formulas (cf. Theorem 2
of [33]).

Proposition 5.10. Let K = (O, P) be a dl-program and L ⊆ HBP . L is a canonical loop of K if and only if L is a loop of PK in the
sense of [33].

Proof. (⇒) (u, v) is an edge of Gc
K implies that there is a rule (u← Pos, not Neg) in P such that at least one of the following

conditions hold:

(1) There is an atom v ∈ Pos. This implies (u, v) is also an edge of Ga
PK

.
(2) There is a dl-atom A ∈ Pos such that v is a positive monotonic (or nonmonotonic) dependency of A. It follows that there

is an I∗ ⊆ HBP such that I∗ |=O A and I∗ \ {v} |̸=O A. Thus there is a minimal such I∗, i.e., ⟨I∗, T ⟩ ∈ [τ(A)]∗c for some
T ⊆ HBP . It follows that (u, v) is also an edge of Ga

PK
.

(3) There is a nonmonotonic dl-atom B ∈ Neg such that v is a negative nonmonotonic dependency of B. It follows that there
is an I∗ ⊆ HBP such that I∗ \ {v} |=O B and I∗ |̸=O B. Thus there is a maximal such I∗. It follows that I∗ ∈ [τ(B)]c . By
I∗ \ {v} /∈ [τ(B)]c , there is a minimal subset I ′′ of I∗ such that, for every I ′ with I ′′ ⊆ I ′ ⊆ I∗, I ′ |̸=O B. It is evident that
v ∈ I ′′ (otherwise we have I ′ = I∗ \ {v} with I ′′ ⊆ I ′ ⊆ I∗ such that I ′ |=O B). It shows that there is ⟨I ′′, T ⟩ ∈ [τ(B)]

∗

c
such that v ∈ I ′′. Thus (u, v) is also an edge of Ga

PK
.

(⇐) (u, v) is an edge of Ga
PK

implies that there is a rule (u ← Pos, not Neg) in P such that at least one of the following
conditions hold:

(1) There is some A ∈ Pos such that v ∈ I∗ for some ⟨I∗, T ⟩ ∈ [τ(A)]∗c . If A is an atom then (u, v) is also an edge of Gc
K .

Suppose A is a dl-atom. From I∗ \ {v} ∉ Ac we have that I∗ \ {v} |̸=O A by Lemma 5.6. Thus v is a positive monotonic (or
nonmonotonic) dependency of A and then (u, v) is an edge of Gc

K .
(2) There is some B ∈ Neg such that v ∈ I∗ for some ⟨I∗, T ⟩ ∈ [τ(B)]

∗

c . It follows that I∗ |̸=O B and I∗\{v} |=O B by Lemma5.6.
If B is an atom then, for every set I of atoms such that B ⊆ I ⊆ HBP , I ∈ [τ(B)]c . It shows that the only ⟨I∗, T ⟩ ∈ [τ(B)]∗c
is I∗ = ∅ and T = HBP \ {B}. Thus B cannot be an atom. If B is a monotonic dl-atom then, for every I |=O B, I ∪M |=O B
for every M ⊆ HBP . It shows that, for every ⟨I∗, T ⟩ ∈ [τ(B)]∗c , T = HBP . Thus, for any ⟨I∗, T ⟩ ∈ [τ(B)]

∗

c , I
∗
= ∅. Thus B

cannot be nonmonotonic. Consequently, v is a negative monotonic dependency of B and then (u, v) is an edge of Gc
K .

It follows that the canonical dependency graph Gc
K is identical to the dependency graph Ga

P . Thus L is a canonical loop of
K if and only L is a loop of PK . This completes the proof. �

The above proposition, together with Theorem 5.9 Theorem 2 of [33], implies that loop formulas cause the difference
between canonical answer set semantics of dl-programs and the answer set semantics of the corresponding constraint
programs. For instance, for the dl-programK in Example 6 (whose translation to a constraint program is given in Example 9),
we have that I = L = {p(a), p(b)} is a canonical loop of K and a loop of PK . The loop formula LP(L, PK) is

p(a) ∨ p(b) ⊃ ¬p(b)

since

τ(A)∗c = {⟨∅, {p(a)}⟩, ⟨{p(a)}, {p(a), p(b)}⟩}

where A = DL[S1 ⊎ p, S2 ∩- p; S2](a). It is evident that I |̸= LP(L, PK).

Lemma 5.11. Let K = (O, P) be a dl-program, A an atom or monotonic dl-atom, L ⊆ HBP and I ⊆ HBP . Then we have that

(i) If I \ L |=O A then I |= π(τ(A), L).
(ii) If I |̸=O A then I |= π(τ(A), L).
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Proof. (i) I \ L |=O A
⇒ (I \ L) ∩ τ(A)d ∈ τ(A)c
⇒ (I \ L) ∈ τ(A)c
⇒ there exists ⟨B,HBP⟩ ∈ τ(A)∗c such that B ⊆ I \ L since A is monotonic
⇒ B ∩ L = ∅ and I |=


B

⇒ I |= π(τ(A), L).
(ii) I |̸=O A

⇒ I |= τ(A)
⇒ there exists ⟨∅, I ′⟩ ∈ τ(A)

∗

c such that I ⊆ I ′ since A is monotonic
⇒ I |=


β∈τ(A)d\I ′

¬β

⇒ I |= π(τ(A), L) since ∅ ∩ L = ∅. �

The next proposition shows that if a dl-program K has no nonmonotonic dl-atoms then the canonical answer sets of K
coincide with the answer sets of PK .

Proposition 5.12. Let K = (O, P) be a dl-program such that DLP = DL+P and I ⊆ HBP . Then we have that I is a canonical
answer set K if and only if I is an answer set of PK .

Proof. (⇐) It follows from Theorem 5.9.
(⇒) Suppose I is not an answer set of PK but I is a canonical answer set of K . It follows that there is a loop L of PK such

that I |̸= LP(L, PK) by Theorem 2 of [33]. It follows that I |=


L and, for each rule (h← Pos, not Neg) of P with h ∈ L,

I |̸=

A∈Pos

π(τ(A), L) ∧

B∈Neg

π(τ(B), L). (20)

By Proposition 5.10, we have L is also a canonical loop of K and then LE(I,K) |=O cLF(L, I,K) since I is a canonical answer
set of K . It follows that there exists at least one rule (r : h′ ← Pos′, not Neg′) in P such that Pos′ ∩ L = ∅, I |=O A′ for each
A′ ∈ Pos′, I |̸=O B′ for each B′ ∈ Neg′ and

LE(I,K) |=O


A′∈Pos′

δ1(A′, L) ∧


B′∈Neg′
δ2(B′, L). (21)

Recall that there is no nonmonotonic dl-atoms in Pos′ ∪ Neg′. By Eq. (20) we have that

LE(I,K) |=O


A′∈Pos′

IF(A′, L) ∧


B′∈Neg′
¬B′

which implies that, by Lemma 3.4,

I \ L |=O


A′∈Pos′

A′ and I |=O


B′∈Neg′

¬B′.

which further implies that, by Lemma 5.11,

I |=


A′∈Pos′
π(τ(A′), L) ∧


B′∈Neg′

π(τ(B′), L).

This contradicts Eq. (20). Consequently, I is an answer set of PK . �

It is straightforward to see that the FLP semantics is applicable to constraint programs. Additionally, Ferraris proposes an
answer set semantics for arbitrary proposition theories, which is also applicable to constraint programs by taking c-atoms as
formulas [11,12]. Of course, different treatment of c-atoms as formulas may lead to different semantics. The two semantics
coincide for positive basic constraint programs [27], thus they coincide for dl-programs mentioning no not dl-atoms, i.e.,
no dl-atom α occurs in the form not α.

As we know, given a dl-program K , every strong answer set of K is a weak answer set of K (Theorem 4.23 of [8]).
Together with Propositions 5.3 and 5.4, as well as Theorem 5.9, the relationship among these semantics of dl-programs is
summarized in Fig. 2.

Please note that Propositions 4.8 and 5.4 imply that for dl-programs containing no nonmonotonic dl-atoms, the canonical
answer set semantics coincides with the FLP-answer set semantics. From Theorem 5 of [9] and Proposition 5.12, it follows
that if a dl-program K contains no nonmonotonic dl-atoms then SAS(K)=FLP-AS(K)=CAS(K)=AS(PK) where SAS(K),
FLP-AS(K), CAS(K) and AS(PK) denotes the set of answer sets of K as illustrated in Fig. 2.
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Fig. 2. The relationship among the answer sets of a dl-program K .

6. Concluding remarks and future work

Integrating ASP with description logics has attracted a great deal of attention recently. The existing approaches can be
roughly classified into three categories. The first is to adopt a nonmonotonic formalism that covers both ASP and first-order
logic (if not for the latter, then extend it to the first-order case) [5,19,22], where ontologies and rules are written in the same
language, resulting in a tight coupling. The second is a loose approach: an ontology knowledge base and the rules share the
same constants but not the same predicates, and the communication is via awell-defined interface, such as dl-atoms [8]. The
third is to combine ontologies with hybrid rules [6,24,25], where predicates in the language of ontologies are interpreted
classically, whereas those in the language of rules are interpreted nonmonotonically.

Although each approach above has its own merits, the loose approach possesses some unique advantages. In many
situations, we would like to combine existing knowledge bases, possibly under different logics. In this case, a notion of
interface is natural and necessary. The loose approach seems particularly intuitive, as it does not rely on the use of modal
operators nor on a multi-valued logic. One notices that dl-programs share similar characteristics with another recent
interest,multi-context systems, in which knowledge bases of arbitrary logics communicate through bridge rules [4].

However, the relationships among these different approaches are currently not well understood. For example, although
we know how to translate a dl-program without the nonmonotonic operator ∩- to an MKNF theory while preserving the
strong answer set semantics [22], when ∩- is involved, no such a translation is known. Similarly, although a variant of
Quantified Equilibrium Logic (QEL) captures the existing hybrid approaches, as shown by [6], it is not clear how one would
apply the loop formulas for logic programswith arbitrary sentences [15] to dl-programs, since, to the best of our knowledge,
there is no syntactic, semantics-preserving translation from dl-programs to logic programs with arbitrary sentences or to
QEL.

In fact, the loop formulas for dl-programs are more involved than any previously known loop formulas, due to mixing
ASP with classical first-order logic. This is evidenced by the fact that weak loop formulas permit self-supports, strong loop
formulas eliminate certain kind of self-supports, and canonical loop formulas remove more self-supports.

In this paper, we have characterized the weak and strong answer sets of dl-programs by program completion and loop
formulas. Although these loop formulas also provide an alternative mechanism for computing answer sets, building such a
systempresents itself as an interesting futurework.Wehave also proposed the canonical answer sets for dl-programs,which
are minimal and noncircular in a formal sense. From the perspective of loop formulas, we see a notable distinction among
the weak, strong and canonical answer sets: the canonical answer sets permit no circular justifications in the sense that
canonical answer sets are always noncircular, the strong answer sets permit circular justifications involving nonmonotonic
dl-atoms but notmonotonic ones,whereas theweak answer sets permit circular justifications thatmay involve any dl-atoms
but not atoms.

Unfortunately, as illustrated by Example 6, the canonical answer set semantics does not exclude all self-supports which
also means that the notion of circular justification proposed in the paper is not sufficient to capture the phenomena of self-
supports. Whether there exists a syntactic style definition of loop formulas for dl-programs that excludes all self-supports
is worthy of further study, in addition to looking for a more restricted notion of circular justification that can capture the
phenomena of self-supports.

Themore recently adopted semantics for dl-programs is the FLP-answer set semantics.We proved that canonical answer
sets are FLP-answer sets and the FLP-answer set semantics permits some self-supports that are excluded in the canonical
answer set semantics. Since logic programs with abstract constraints is a general formalism for answer set programming,
we have shown that dl-programs can be intuitively mapped to positive and basic logic programs with abstract constraints
and proved that, for a dl-program K , the answer sets of the corresponding logic programs with abstract constraints are
canonical answer sets of K , but not vice versa. This reveals some interesting relationships among the semantics for dl-
programs considered in this paper. We have also revealed that for the dl-programs containing no nonmonotonic dl-atoms,
all the semantics coincide with each other except for the weak answer set one.

We remark that, for a given dl-programK = (O, P), to decidewhether a setM ⊆ HBP is a strong or canonical loop and to
construct the strong or canonical loop formula ofM are generally quite difficult, since we have to decide themonotonicity of
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the dl-atoms occurring in P . The exact complexity of deciding whether a set of atoms is a strong or canonical loop requires
further research, in addition to the complexity of deciding whether a given dl-program has a canonical answer set.
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