

What Should We Do?

We are merely trying to understand the consequences of the presence of the needle, if it exists.

© Copyright Dr.Osmar Zaïane

Evolution of Database Technology

- 1950s: First computers, use of computers for census
- 1960s: Data collection, database creation (hierarchical and network models)
- 1970s: Relational data model, relational DBMS implementation.
- **1980s**: Ubiquitous RDBMS, advanced data models (extended-relational, OO, deductive, etc.) and applicationoriented DBMS (spatial, scientific, engineering, etc.).
- 1990s: Data mining and data warehousing, massive media digitization, multimedia databases, and Web technology.

Notice that storage prices have consistently decreased in the last decades

© Copyright Dr.Osmar Zaïan

A Brief History of Data Mining Research

 <u>1989 IJCAI Workshop on Knowledge Discovery in Databases</u> (Piatetsky-Shapiro)

Knowledge Discovery in Databases

- G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
- (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
- Journal of Data Mining and Knowledge Discovery (1997)
- 998-2005 ACM SIGKDD conferences

© Copyright Dr.Osmar Zaïane

What Led Us To This?

Necessity is the Mother of Invention

- Technology is available to help us collect data
 Bar code, scanners, satellites, cameras, etc.
- Technology is available to help us store data
- Databases, data warehouses, variety of repositories...
- We are starving for knowledge (competitive edge, research, etc.)

We are swamped by data that continuously pours on us.

- 1. We do not know what to do with this data
- 2. We need to interpret this data in search for new knowledge

© Copyright Dr.Osmar Zaïane

What Is Our Need?

Extract <u>interesting knowledge</u> (rules, regularities, patterns, constraints) from data in <u>large collections</u>.

© Copyright Dr.Osmar Zaïane

Introduction - Outline

- What kind of information are we collecting?
- What are Data Mining and Knowledge Discovery?
- What kind of data can be mined?
- What can be discovered?
- Is all that is discovered interesting and useful?
- · How do we categorize data mining systems?
- What are the issues in Data Mining?
- Are there application examples?

KDD Steps can be Merged

Data cleaning + data integration = data pre-processing Data selection + data transformation = data consolidation

KDD Is an Iterative Process

© Copyright Dr.Osmar Zaïane

Introduction - Outline

- What kind of information are we collecting?
- What are Data Mining and Knowledge Discovery?
- What kind of data can be mined?
- What can be discovered?
- · Is all that is discovered interesting and useful?
- How do we categorize data mining systems?
- What are the issues in Data Mining?
- Are there application examples?

© Copyright Dr.Osmar Zaïane

Steps of a KDD Process Learning the application domain (relevant prior knowledge and goals of application) Gathering and integrating of data Cleaning and preprocessing data (may take 60% of effort!) Reducing and projecting data

- (Find useful features, dimensionality/variable reduction,...)
 Choosing functions of data mining
- (summarization, classification, regression, association, clustering,...)
- Choosing the mining algorithm(s)
- Data mining: search for patterns of interest
- Evaluating results
- Interpretation: analysis of results.
- (visualization, alteration, removing redundant patterns, ...)
 - © Copyright Dr.Osmar Zaïane

KDD at the Confluence of Many

© Copyright Dr.Osmar Zaïane

Data Mining: On What Kind of Data?

- Flat Files
- Heterogeneous and legacy databases
- Relational databases and other DB: Object-oriented and object-relational databases
- Transactional databases Transaction(<u>TID</u>, Timestamp, UID, {item1, item2,...})

Introduction - Outline

- What kind of information are we collecting?
- What are Data Mining and Knowledge Discovery?
- What kind of data can be mined?
- What can be discovered?
- Is all that is discovered interesting and useful?
- How do we categorize data mining systems?
- What are the issues in Data Mining?
- Are there application examples?

© Copyright Dr.Osmar Zaïan

Data Mining Functionality

· Characterization:

Summarization of general features of objects in a target class. (Concept description)

Ex: Characterize grad students in Science

• Discrimination:

Comparison of general features of objects between a target class and a contrasting class. (Concept comparison)

Ex: Compare students in Science and students in Arts

© Copyright Dr.Osmar Zaïane

Data Mining Functionality (Con't)

· Classification:

Organizes data in given classes based on attribute values. (supervised classification)

Ex: classify students based on final result.

Clustering:

Organizes data in classes based on attribute values. (unsupervised classification)

Ex: group crime locations to find distribution patterns. Minimize inter-class similarity and maximize intra-class similarity

© Copyright Dr.Osmar Zaïane

What Can Be Discovered?

What can be discovered depends upon the data mining task employed.

•Descriptive DM tasks Describe general properties

•Predictive DM tasks Infer on available data

© Copyright Dr.Osmar Zaïane

Data Mining Functionality (Con't)

Association:

Studies the frequency of items occurring together in transactional databases. *Ex:* buys(x, bread) \rightarrow buys(x, milk).

Prediction:

Predicts some unknown or missing attribute values based on other information.

Ex: Forecast the sale value for next week based on available data.

© Copyright Dr.Osmar Zaïane

Data Mining Functionality (Con't)

- Outlier analysis: Identifies and explains exceptions (surprises)
- Time-series analysis:

Analyzes trends and deviations; regression, sequential pattern, similar sequences...

Introduction - Outline

- What kind of information are we collecting?
- What are Data Mining and Knowledge Discovery?
- What kind of data can be mined?
- What can be discovered?
- Is all that is discovered interesting and useful?
- How do we categorize data mining systems?
- What are the issues in Data Mining?
- Are there application examples?

© Copyright Dr.Osmar Zaïan

Interestingness

Objective vs. subjective interestingness measures:
 Objective: based on statistics and structures of patterns.

- e.g., support, confidence, lift, correlation coefficient etc. - <u>Subjective:</u> based on user's beliefs in the data, e.g.,
- unexpectedness, novelty, etc.

Interestingness measures: A pattern is interesting if it is

- >easily understood by humans
- valid on new or test data with some degree of certainty.
- potentially useful
- novel, or validates some hypothesis that a user seeks to confirm

© Copyright Dr.Osmar Zaïane

Introduction - Outline

- What kind of information are we collecting?
- What are Data Mining and Knowledge Discovery?
- What kind of data can be mined?
- What can be discovered?
- Is all that is discovered interesting and useful?
- How do we categorize data mining systems?
- What are the issues in Data Mining?
- Are there application examples?

© Copyright Dr.Osmar Zaïane

Is all that is Discovered Interesting?

A data mining operation may generate thousands of patterns, not all of them are interesting.

 Suggested approach: Human-centered, query-based, focused mining

Data Mining results are sometimes so large that we may need to mine it too (Meta-Mining?)

How to measure?

© Copyright Dr.Osmar Zaïane

Can we Find All and Only the Interesting Patterns?

- Find all the interesting patterns: Completeness.
 - Can a data mining system find <u>all</u> the interesting patterns?
- <u>Search for only interesting patterns: Optimization.</u> – Can a data mining system find <u>only</u> the interesting
 - patterns? – Approaches
 - First find all the patterns and then filter out the uninteresting ones.
 - Generate only the interesting patterns --- mining query optimization

Like the concept of *precision* and *recall* in information retrieval

© Copyright Dr.Osmar Zaïane

Data Mining: Classification Schemes

- There are many data mining systems. Some are specialized and some are comprehensive
- · Different views, different classifications:
 - Kinds of knowledge to be discovered,
 - Kinds of databases to be mined, and
 - Kinds of techniques adopted.

Four Schemes in Classification

Knowledge to be mined:

- Summarization (characterization), comparison, association, classification, clustering, trend, deviation and pattern analysis, etc.
- Mining knowledge at different abstraction levels: primitive level, high level, multiple-level, etc.

Techniques adopted:

 Database-oriented, data warehouse (OLAP), machine learning, statistics, visualization, neural network, etc.

© Copyright Dr.Osmar Zaïane

Designations for Mining Complex Types of Data

- Text Mining:
 - Library database, e-mails, book stores, Web pages.
- Spatial Mining:
 - Geographic information systems, medical image database.
- Multimedia Mining:
 - Image and video/audio databases.
- Web Mining:
 - Unstructured and semi-structured data
 - Web access pattern analysis

© Copyright Dr.Osmar Zaïane

Requirements and Challenges in Data Mining

- · Security and social issues
- User interface issues
- Mining methodology issues
- Performance issues
- Data source issues

© Copyright Dr.Osmar Zaïane

Four Schemes in Classification (con't)

- Data source to be mined: (application data)
 - Transaction data, time-series data, spatial data, multimedia data, text data, legacy data, heterogeneous/distributed data, World Wide Web, etc.
- Data model on which the data to be mined is drawn:
 - Relational database, extended/object-relational database, object-oriented database, deductive database, data warehouse, flat files, etc.

© Copyright Dr.Osmar Zaïane

Introduction - Outline

- What kind of information are we collecting?
- What are Data Mining and Knowledge Discovery?
- What kind of data can be mined?
- What can be discovered?
- Is all that is discovered interesting and useful?
- How do we categorize data mining systems?
- What are the issues in Data Mining?
- Are there application examples?

© Copyright Dr.Osmar Zaïane

Requirements/Challenges in Data Mining (Con't)

- · Security and social issues:
 - Social impact
 - Private and sensitive data is gathered and mined without individual's knowledge and/or consent.
 - New implicit knowledge is disclosed (confidentiality, integrity)
 - Appropriate use and distribution of discovered knowledge (sharing)
 - Regulations
 - Need for privacy and DM policies

Requirements/Challenges in Data Mining (Con't)

- User Interface Issues:
 - Data visualization.
 - · Understandability and interpretation of results
 - Information representation and rendering
 - Screen real-estate
 - Interactivity
 - Manipulation of mined knowledge
 - Focus and refine mining tasks
 - Focus and refine mining results

© Copyright Dr.Osmar Zaïane

Requirements/Challenges in Data Mining (Con't)

- Performance issues:
 - Efficiency and scalability of data mining algorithms.
 Linear algorithms are needed: no medium-order polynomial complexity, and certainly no exponential algorithms.
 - Sampling
 - Parallel and distributed methods
 - Incremental mining
 - Can we divide and conquer?

© Copyright Dr.Osmar Zaïane

Requirements/Challenges in Data Mining (Con't)

- Other issues
 - Integration of the discovered knowledge with existing knowledge: A knowledge fusion problem.

Requirements/Challenges in Data Mining (Con't)

- Mining methodology issues
 - Mining different kinds of knowledge in databases.
 - Interactive mining of knowledge at multiple levels of abstraction.
 - Incorporation of background knowledge
 - Data mining query languages and ad-hoc data mining.
 - Expression and visualization of data mining results.
 - Handling noise and incomplete data
 - Pattern evaluation: the interestingness problem.

(Source JH)

© Copyright Dr.Osmar Zaïane

Requirements/Challenges in Data Mining (Con't)

- Data source issues:
 - Diversity of data types
 - · Handling complex types of data
 - Mining information from heterogeneous databases and global information systems.
 - Is it possible to expect a DM system to perform well on all kinds of data? (distinct algorithms for distinct data sources)
 - Data glut
 - Are we collecting the right data with the right amount?
 - Distinguish between the data that is important and the data that is not.

© Copyright Dr.Osmar Zaïane

Introduction - Outline

- What kind of information are we collecting?
- What are Data Mining and Knowledge Discovery?
- What kind of data can be mined?
- What can be discovered?
- Is all that is discovered interesting and useful?
- · How do we categorize data mining systems?
- What are the issues in Data Mining?
- Are there application examples?

© Copyright Dr.Osmar Zaïane

Potential and/or Successful Applications

- · Business data analysis and decision support
 - Marketing focalization
 - Recognizing specific market segments that respond to particular characteristics
 - Return on mailing campaign (target marketing)
 - Customer Profiling
 - Segmentation of customer for marketing strategies and/or product offerings
 - · Customer behaviour understanding
 - · Customer retention and loyalty

© Copyright Dr.Osmar Zaïan

Potential and/or Successful Applications (con't)

• Fraud detection

- Detecting telephone fraud:
 - Telephone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm.
 British Telecom identified discrete groups of callers with frequent intra-group calls, especially mobile phones, and broke a multimillion dollar fraud.
- Detecting automotive and health insurance fraud.
- Detection of credit-card fraud
- Detecting suspicious money transactions (money laundering)

© Copyright Dr.Osmar Zaïane

Potential and/or Successful Applications (con't)

- Sports
 - IBM Advanced Scout analyzed NBA game statistics (shots blocked, assists, and fouls) to gain competitive advantage.
 Spin-off → VirtualGold Inc. for NBA, NHL, etc.
- Astronomy
 - JPL and the Palomar Observatory discovered 22 quasars with the help of data mining.
 - Identifying volcanoes on Jupiter.

© Copyright Dr.Osmar Zaïane

Potential and/or Successful Applications (con't)

- Business data analysis and decision support (con't)
 - Market analysis and management
 - Provide summary information for decision-making
 - Market basket analysis, cross selling, market segmentation.
 - Resource planning
 - Risk analysis and management
 - "What if" analysis
 - Forecasting
 - Pricing analysis, competitive analysis.
 - Time-series analysis (Ex. stock market)

© Copyright Dr.Osmar Zaïane

Potential and/or Successful Applications (con't)

- Text mining:
 - Message filtering (e-mail, newsgroups, etc.)
 - Newspaper articles analysis
- Medicine
 - Association pathology symptoms
 - DNA
 - Medical imaging

© Copyright Dr.Osmar Zaïane

Potential and/or Successful Applications (con't)

- Surveillance cameras
 - Use of stereo cameras and outlier analysis to detect suspicious activities or individuals.
- Web surfing and mining
 - IBM Surf-Aid applies data mining algorithms to Web access logs for market-related pages to discover customer preference and behavior pages (ecommerce)
 - Adaptive web sites / improving Web site organization, etc.
 - Pre-fetching and caching web pages
 - Jungo: discovering best sales

Warning: Data Mining Should Not be Used Blindly!

- Data mining approaches find regularities from history, but history is not the same as the future.
- Association does not dictate trend nor causality!? - Drinking diet drinks leads to obesity!
 - David Heckerman's counter-example (1997):
 - buy hamburgers 33% of the time, buy hot dogs 33% of the time, and buy both hamburgers and hot dogs 33% of the time; moreover, they buy barbecue sauce if and only if they buy hamburgers.
 hot dogs > barbecue-sauce has both high support and confidence. (Of course, the rule hamburgers> barbecue-sauce even higher confidence, but that is an obvious association.)
 - A manager who has a deal on **hot dogs** may choose to sell them at a large discount, hoping to increase profit by simultaneously raising the price of **barbecue**
 - HOT-DOGS causes BARBECUE-SAUCE is not part of any possible causal model, could avoid a pricing fiasco.

© Copyright Dr.Osmar Zaïan

What Is Association Mining?

- · Association rule mining searches for relationships between items in a dataset:
 - Finding association, correlation, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.

- Rule form: "Body → Head [support, confidence]

• Examples:

major(x, "CS") \wedge takes(x, "DB") \rightarrow grade(x, "A") [1%, 75%]

© Copyright Dr.Osmar Zaïane

Quick Overview of some Data Mining **Operations**

Association Rules Clustering Classification

© Copyright Dr.Osmar Zaïane

Basic Concepts

 $T = \{i_a, i_b, ..., i_t\}$ A transaction is a set of items:

 $T \subset I$, where I is the set of all possible items $\{i_1, i_2, \dots, i_n\}$

D, the task relevant data, is a set of transactions.

An association rule is of the form: $P \rightarrow Q$, where $P \subset I$, $Q \subset I$, and $P \cap Q = \emptyset$

 $P \rightarrow Q$ holds in *D* with <u>support</u> s and

 $P \rightarrow Q$ has a <u>confidence</u> c in the transaction set D

Support($P \rightarrow Q$) = Probability($P \cup Q$) Confidence($P \rightarrow Q$)=Probability(Q/P)

© Copyright Dr.Osmar Zaïane

Association Rule Mining

© Copyright Dr.Osmar Zaïane

Frequent Itemset Generation

The goal of data classification is to organize and categorize data in distinct classes.

What is Classification?

- A model is first created based on the data distribution.
- ▶ The model is then used to classify new data.
- ▶ Given the model, a class can be predicted for new data.

