## Lecture 2

Week 2 (March 17) and Week 3 (March 24)
33459-01 Principles of Knowledge Discovery in Data

Association Rule Mining

Lecture by: Dr. Osmar R. Zaïane

## Course Content

- Introduction to Data Mining
- Association Analysis
- Sequential Pattern Analysis
- Classification and Prediction
- Contrast Sets
- Data Clustering
- Outlier Detection
- Web Mining


Transactional Databases

Transaction
Frequent itemset
Rule
\{bread, milk, beer,..$\} \Rightarrow$ (Bread, milk) $\Rightarrow$ Bread $\rightarrow$ milk
$\left\{\right.$ term $_{1}$, term $_{2}, \ldots$, term $\left._{n}\right\} \mapsto\left(\right.$ term $_{2}$, term $_{25} \Rightarrow$ term2 $\rightarrow$ term25
$\{f 1, f 2, \ldots, C a\}$
$\Rightarrow(f 3, f 5, f \alpha) \quad \Rightarrow f 3^{\wedge} f 5 \rightarrow f \alpha$

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

## Lecture Outline

Part I: Concepts (30 minutes)

- Basic concepts
- Support and Confidence
- Naïve approach

Part II: The Apriori Algorithm (30 minutes)

- Principles
- Algorithm
- Running Example

Part III: The FP-Growth Algorithm (30 minutes)

- FP-tree structure
- Running Example

Part IV: More Advanced Concepts (30 minutes)

- Database layout and space search approach
- Other types of patterns and constraints


## Finding Rules in Transaction Data Set

- 6 transactions
- 5 items: \{Beer, Bread, Jelly, Milk, PeanutButter\}

| Transactions | Items |
| :--- | :--- |
| T1 | Bread, Jelly, PeanutButter |
| T2 | Bread, PeanutButter |
| T3 | Bread, Milk, PeanutButter |
| T4 | Beer, Bread |
| T5 | Beer, Milk |
| T6 | Bread, Milk |

- Searching for rules of the form $X \rightarrow Y$, where $X$ and $Y$ are sets of items
- e.g. Bread $\rightarrow$ Jelly; Bread, Jelly $\rightarrow$ PeanutButter
- Design an efficient algorithm for mining association rules in large data sets
- Develop an effective approach for distinguishing interesting rules from irrelevant ones
33459-01: Principles of Knowledge Discovery in Data - March-June, 2006


## Basic Concepts

A transaction is a set of items: $\quad \mathrm{T}=\left\{\mathrm{i}_{\mathrm{a}}, \mathrm{i}_{\mathrm{b}}, \ldots \mathrm{i}_{\mathrm{t}}\right\}$
$\mathrm{T} \subset I$, where $I$ is the set of all possible items $\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots \mathrm{i}_{\mathrm{d}}\right\}$
$D$, the task relevant data, is a set of transactions $\mathrm{D}=\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots \mathrm{~T}_{\mathrm{n}}\right\}$.
An association rule is of the form:
$\mathrm{P} \rightarrow \mathrm{Q}$, where $\mathrm{P} \subset I, \mathrm{Q} \subset I$, and $\mathrm{P} \cap \mathrm{Q}=\varnothing$


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006
(Dr. o. Zaiane) 8

## Basic Concepts (con't)

A set of items is referred to as itemset.
An itemset containing k items is called $\mathbf{k}$-itemset. \{Jelly, Milk, Bread\} is a 3-itemset example

An items set can also be seen as a conjunction of items (or a predicate)
$\mathrm{P} \rightarrow \mathrm{Q}$ holds in $D$ with support $\boldsymbol{s}$
and
$\mathrm{P} \rightarrow \mathrm{Q}$ has a confidence $\boldsymbol{c}$ in the transaction set $D$.


Support $(\mathrm{P} \rightarrow \mathrm{Q})=\operatorname{Probability}(\mathrm{P} \cup \mathrm{Q})$
Confidence $(\mathrm{P} \rightarrow \mathrm{Q})=\operatorname{Probability}(\mathrm{Q} / \mathrm{P})$
33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

## Support and Confidence of an Association Rule

- The support of an association rule $X \rightarrow Y$ is the percentage of transactions that contain $X \cup Y$
$\operatorname{support}(X->Y)=\frac{\#(X \cup Y)}{n}$
- The confidence of an association rule $X \rightarrow Y$ is the ratio of the number of transactions that contain $X \cup Y$ to the number of transactions that contain $X$
confidence $(X->Y)=\frac{\#(X \cup Y)}{\# X}$
- Confidence of a rule $P \rightarrow Q$ in database $D \varphi(P \rightarrow Q / D)$ is the ratio $\sigma((\mathrm{P} \wedge \mathrm{Q}) / D)$ by $\sigma(\mathrm{P} / D)$ confidence $(X->Y)=\frac{\operatorname{support}(X->Y)}{\operatorname{support}(X)}$


## Support of an Itemset

- Support of $P=P_{1} \wedge P_{2} \wedge \ldots \wedge P_{k}$ in $D \sigma(P / D)$ is the probability that $P$ occurs in $D$ : it is the percentage of transactions $T$ in $D$ satisfying $P$.
- I.e. the support of an item (or itemset) $X$ is the percentage of transactions in which that item (or items) occurs: (number of T by cardinality of $D$ ).

$$
\operatorname{support}(X)=\frac{\# X}{n}
$$

- Support for all subsets of items
- Note the exponential
growth in the set of items
-5 items: 31 sets


| Hemset | Support | Hemset Support |
| :---: | :---: | :---: |
| Beer | 33\% | Beer, Bread, Milk |
| ${ }^{\text {Bread }}$ | ${ }^{66 \%}$ | Beer, Bread, Peanusuuter |
| Jelly Milk |  | Beer, Jely, Milk |
| Milk | 50\% | Beer, Jelly, Peanubutuer Beere Milk Peawubuter |
| PeanuButuer | ${ }_{\text {50\% }}^{\text {50\% }}$ | Beer, Milk, Peanu13utter |
| ${ }^{\text {Beer, Brad }}$ | 16\% | Bread, Jelly, Milk |
| Beer, Jelly Beer Milu | ${ }_{10 \%}^{0 \%}$ | Bread, Jelly Peanubutuer Read, wilk Peoulbuter |
| Seer, Milk | 16\% |  |
| Beer, PeanuButuer | ${ }_{\text {O\% }}^{0 \%}$ | Jelly, Milk, Peanuibuter Beerer Mrad Jull Milk |
| Bread Jelly | -16\% | Beer, Bread, Jelly, Milk Beerer Brad delly |
|  | 33\% |  |
| Sread, PeanuButer | 50\% |  |
| Jelly, Peanukutuer | 16\% | Bread, Jelly, Milk, Peanubuter |
| Milk, PeanutButter | 16\% | Beer, Bread, elly, Milk, Peanu\|Bu |

## Support and Confidence - cont.

- What is the support and confidence of the following rules?
- Beer $\rightarrow$ Bread
- \{Bread, PeanutButter\} $\rightarrow$ Jelly

- Support and confidence for some association rules

| Rule | Support | Confidence |
| :--- | ---: | ---: |
| Bread $\rightarrow$ PeanutButter | $50 \%$ | $75 \%$ |
| PeanutButter $\rightarrow$ Bread | $50 \%$ | $100 \%$ |
| Beer $\rightarrow$ Bread | $16 \%$ | $50 \%$ |
| PeanutButter $\rightarrow$ Jelly | $16 \%$ | $33 \%$ |
| Jell $\rightarrow$ PeanutButter | $16 \%$ | $100 \%$ |
| Jelly $\rightarrow$ Milk | $0 \%$ | $0 \%$ |
| \{Bread, PeanutButter $\} \rightarrow$ Jelly | $16 \%$ | $33 \%$ |

- Support measures how often the rule occurs in the database.
- Confidence measures the strength of the rule.


## Frequent Itemsets and Strong Rules

Support and Confidence are bound by Thresholds:
$>$ minimum support $\sigma^{\prime}$
$>$ minimum confidence $\varphi^{\prime}$
A Frequent (or large) itemset $I$ in $D$ is an itemset with a support larger than the minimum support; A strong rule $X \rightarrow Y$ is a rule that is frequent (i.e. support higher than minimum support) and its confidence is higher than the minimum confidence threshold.

## Association Rule Problem Definition

- Given $\mathrm{I}=\left\{\mathrm{i}_{1}, \mathrm{i}_{2}, \ldots, \mathrm{i}_{\mathrm{m}}\right\}, \mathrm{D}=\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}}\right\}$ and the support and confidence thresholds, the association rule mining problem is to identify all strong association rules $X \rightarrow Y$.


## Better Approach

Find the frequent itemsets: the sets of items that have minimum support
(1)Use the frequent itemsets to generate association rules. Keep only strong rules.


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006 (Dr. o. Zaiane) 15

## Naïve Frequent Itemset Generation

- Brute-force approach (Basic approach):
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the

- Match each transaction against every candidate
- Complexity $\sim \mathrm{O}(\mathrm{NMw})=>$ Expensive since $\mathrm{M}=2^{\mathrm{d}}$ !!!


## Naïve Approach to Generate Association Rules

- Enumerate all possible rules and select those of them that satisfy the minimum support and confidence thresholds
- Not practical for large databases
- For a given dataset with $m$ items, the total number of possible rules is $3^{\mathrm{m}}-2^{\mathrm{m}+1}+1$
- For our example: $\mathbf{3}^{5}-\mathbf{2}^{6}+1=180$
- More than $\mathbf{8 0 \%}$ of these rules are discarded if $\sigma^{\prime}=0.2$ and $\varphi^{\prime}=0.5$
- We need a strategy for rule generation - generate only the promising rules


## Generating Association Rules from Frequent Itemsets

- Only strong association rules are generated.
-Frequent itemsets satisfy minimum support threshold.
-Strong AR satisfy minimum confidence threshold.
-Confidence $(A \rightarrow B)=\operatorname{Prob}(B / A)=\frac{\text { Support }(A \cup B)}{\operatorname{Support}(A)}$

For each frequent itemset, $\mathbf{f}$, generate all non-empty subsets of $\mathbf{f}$. For every non-empty subset $\mathbf{s}$ of $\mathbf{f}$ do
output rule $\mathbf{s} \rightarrow$ (f-s) if support(f)/support(s) $\geq$ min_confidence end

## Lecture Outline

Part I: Concepts (30 minutes)

- Basic concepts
- Support and Confidence
- Naïve approach

Part II: The Apriori Algorithm (30 minutes)

- Principles
- Algorithm
- Running Example

Part III: The FP-Growth Algorithm (30 minutes)

- FP-tree structure
- Running Example

Part IV: More Advanced Concepts (30 minutes)

- Database layout and space search approach
- Other types of patterns and constraints


## An Influential Mining Methodology - The Apriori Algorithm

- The Apriori method:
- Proposed by Agrawal \& Srikant 1994
- A similar level-wise algorithm by Mannila et al. 1994
- Major idea (Apriori Principle):
- A subset of a frequent itemset must be frequent
- E.g., if \{beer, diaper, nuts\} is frequent, \{beer, diaper\} must be. Any itemset that is infrequent, its superset cannot be frequent!
- A powerful, scalable candidate set pruning technique:
- It reduces candidate $\mathbf{k}$-itemsets dramatically (for $\mathbf{k} \boldsymbol{>} \mathbf{2}$ )


## Apriori Algorithm

- Apriori principle:
- A subset of any frequent (large) itemset is also frequent
- This also implies that if an itemset is not frequent (small), a superset of it is also not frequent
- If we know that an itemset is infrequent, we need not generate any subsets of it as they will be infrequent

- Lines represent "subset" relationship - If ACD is frequent, than AC,AD,CD,A,C,D are also frequent, i.e. if an itemset is frequent than any set in a path above it is also frequent
- If AB is infrequent, than ABC, ABD, ABCD will also be infrequent, i.e. if an itemset is infrequent than any set in the path below is also infrequent
- If any of A, C, D, AC, AD, CD, is infrequent than ACD is infrequent (no need to check).
33459-01: Principles of Knowledge Discovery in Data - March-June, 2006


## Mining Association rules: the Key Steps

(1) Find the frequent itemsets: the sets of items that have minimum support

A subset of a frequent itemset must also be a frequent itemset, i.e., if $\{A B\}$ is a frequent itemset, both $\{A\}$ and $\{B\}$ should be frequent itemsets

- Iteratively find frequent itemsets with cardinality from 1 to $k$ ( $k$-itemsets)
(1) Use the frequent itemsets to generate strong association rules.


## Apriori Algorithm - Idea

- 1. Generate candidate itemsets of a particular size
- 2. Scan the database to see which of them are frequent
- An itemset is frequent if all its subsets are frequent
- 3. Use only these frequent itemsets to generate the set of candidates



## The Apriori Algorithm

$C_{k}$ : Candidate itemset of size k
$L_{k}$ : frequent itemset of size $k$

```
L
for (k=1; L
    C
    for each transaction t in database do
        increment the count of all candidates
        in C}\mp@subsup{C}{k+1}{}\mathrm{ that are contained in t
        L}\mp@subsup{L}{k+1}{}=\mathrm{ candidates in C}\mp@subsup{C}{k+1}{}\mathrm{ with min_support
        end
return }\mp@subsup{\cup}{k}{}\mp@subsup{L}{k}{}
```

The Apriori Algorithm -- Example

| Database D |  | $\begin{array}{r} \quad C_{1} \\ \text { Scan D } \end{array}$ | itemset sup. |  | $L_{1}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | itemset |  |  | sup. |
| 100 |  |  | \{1\} |  |  | \{1\} | 2 |
| 200 | 134 |  | \{2\} | 3 |  | $\rightarrow$ | \{2\} | 3 |
| 300 | 1235 |  | \{4\} | 1 |  | \{3\} \{5\} | 3 3 |
| 400 | 25 |  | \{5\} | 3 |  |  |  |
| $L_{2}$ itemset sup |  |  | $\mathrm{C}_{2}$ | itemset | sup |  | Scan | temset |
|  |  | \{1 2\} |  | 1 |  |  |  |  |
|  | \{1 3\} | \{1 3\} |  | 2 | $13\}$ |  |  |  |
|  | \{2 3\} | \{1 5\} |  | 1 | $15\}$ |  |  |  |
|  | \{2 5\} | \{2 3\} |  | 2 | $23\}$ |  |  |  |
|  | \{35\} | $\{25\}$ |  | 3 | 2 5\} |  |  |  |
|  |  | \{35\} |  | 2 | $35\}$ |  |  |  |

Note: $\{1,2,3\}\{1,2,5\}$ and $\{1,3,5\}$ not in $\mathrm{C}_{3}$

Apriori-Gen Algorithm - Clothing Example

- Given: 20 clothing transactions; $s=20 \%, c=50 \%$
- Generate association rules using the Apriori algorithm

| Transaction | Hems | Transaction | Hems |
| :---: | :---: | :---: | :---: |
| $t_{1}$ | Blouse | ${ }^{11}$ | TShirt |
| $t_{2}$ | Shoes, Skin, TStirn | $t_{12}$ | Blouse, Jeans, Shoes, Skirt, TShirt |
| ${ }_{3}$ | Jeass, TShirt | ${ }_{13}$ | Jeans, Stoes, Storrs, TShirt |
| 4 | Jeans, Shoes, TShirt | ${ }_{14}$ | Sboes, Skirt, TShirt |
| ts | Jeans, Sborts | ${ }^{\text {t }} 15$ | Jeans, TShirt |
| 46 | Shoes, TSthirt | ${ }^{16}$ | Skirt, TShirt |
| 7 | Jeans, Skirt | ${ }_{17}$ | Blouse, Jeans, Skirr |
| ${ }_{8} 8$ | Jeans, Stoes, Sborts, TShirt | ${ }_{18} 8$ | Jeans, Stoes, Sborts, TShirt |
| 49 | Jeans | ${ }_{19}$ |  |
| $t_{10}$ | Jeans, Stoes, TShirt | t20 | Jeans, Stoes, Storts, TShirt |

- Scan1: Find all 1-itemsets. Identify the frequent ones.

Candidates:Blow/se, Jeans, Shoes, Shorts, Skirt, Tshirt $\begin{array}{llllll}\text { Support: } & 3 / 2 p & 14 / 20 & 10 / 20 & 5 / 20 & 6 / 20 \\ 14 / 20\end{array}$ Frequent (Large): Jeans, Shoes, Shorts, Skirt, Tshirt Join the frequent items - combine items with each other to generate candidate pairs
33459-01: Principles of Knowledge Discovery in Data - March-June, 2006 (O. .0. Zaiane) 25

## Clothing Example - cont. 1

- Scan2: $\mathbf{1 0}$ candidate 2-itemsets were generated. Find the frequent ones.
\{Jeans, Shoes\}: $7 / 20$ \{Shoes, Short\}: $4 / 20$ \{shorsfirt\}: $0 / 20$ \{skirt, TShirt\}: $4 / 20$
\{Jeans, Short\}: :5/20 \{shoen, Skirit\}: 3/20 \{Short, TShirt\}: 4/20
\{Jeane, Skirit\} : $3 / 20$ \{Shoes, TShirt\}: 10/20
\{Jeans, TShirt\}:9/20 4/20 $\quad 7$ frequent itemsets are found out of 10.



## Lecture Outline

Part I: Concepts (30 minutes)

- The next step is to use the large itemsets and generate association rules
- Basic concepts
- Support and Confidence
- Naïve approach

Part II: The Apriori Algorithm (30 minutes)

- Principles
- Algorithm
- Running Example

Part III: The FP-Growth Algorithm (30 minutes)

- FP-tree structure
- Running Example

Part IV: More Advanced Concepts (30 minutes)

- Database layout and space search approach
- Other types of patterns and constraints


## Problems with Apriori

- Generation of candidate itemsets are expensive (Huge candidate sets)
- $10^{4}$ frequent 1 -temset will generate $10^{7}$ candidate 2 -itemsets
- To discover a frequent pattern of size 100 , e.g., $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
- High number of data scans


## Frequent Pattern Growth

- First algorithm that allows frequent pattern mining without generating candidate sets
- Requires Frequent Pattern Tree


## FP-Growth

- Grow long patterns from short ones using local frequent items
- "abc" is a frequent pattern
- Get all transactions having "abc": DB|abc
- "d" is a local frequent item in DB|abc $\rightarrow$ abcd is a frequent pattern



## Frequent Pattern Tree

- Prefix tree.
- Each node contains the item name, frequency and pointer to another node of the same kind.
- Frequent item header that contains item names and pointer to the first node in FP tree.


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Frequent Pattern Tree

| $F, A, C, D, G, I, M, P$ |
| :--- |
| $A, B, C, F, L, M, O$ |
| $B, F, H, J, O$ |
| $A, F, C, E, L, P, M, N$ |
| $B, C, K, S, P$ |
| $F, M, C, B, A$ |

F:5, C:5, A:4, B:4, M:4, P:3 D:1 ㄷ:1 C:1 H:1 1:1 J:1K:1 L:1 O:1

## Database Compression Using <br> FP-tree (on T10I4D100k)



Frequent Pattern Tree

| Original Transaction | Ordered frequent items |
| :--- | :--- |
| F, A, C, D, G, I, M, P | F, C, A, M, P |
| A, B, C, F, L, M, O | F, C, A, B, M |
| B, F, H, J, O | F, B |
| A, F, C, E, L, P, M, N | C, B, P |
| B, C, K, S, P | F, C, A, M, P |
| F, M, C, B, A | F, C, A, M |
| F, B, D | F, B |

$F: 5, C: 5, A: 4, B: 4, M: 4, P: 3 \quad$ Required Support: 3

Frequent Pattern Tree



33459-01: Principles of Knowledge Discovery in Data - March-June, 2006


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006



Frequent Pattern Tree


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006


Frequent Pattern Tree


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Frequent Pattern Tree


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006


Frequent Pattern Tree


Mining Frequent Patterns with FP-Tree 3 Major Steps
Starting the processing from the end of list L :
Step 1:
Construct conditional pattern base for each item in the header table
Step 2
Construct conditional FP-tree from each conditional pattern base
Step 3
Recursively mine conditional FP-trees and grow frequent patterns obtained so far. If the conditional FPtree contains a single path, simply enumerate all the patterns

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006
(Dr. o. Zaiane) 45

Recursively build the A, C and F Frequent Pattern Growth conditional trees.


Frequent Pattern Growth


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

## Another Example: Construct FP-tree from a Transaction Database



## Step 1: Construct Conditional Pattern Base

- Starting at the frequent-item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base


Conditional pattern bases
item cond. pattern base
p fcam:2, cb:1
m fca:2, fcab:1
b fca:1, f:1, c:1
a $\quad \mathrm{fc}: 3$
c $\quad f: 3$

## Properties of Step 1

- Node-link property
- For any frequent item $a_{i}$, all the possible frequent patterns that contain $a_{i}$ can be obtained by following $a_{i}$ 's node-links, starting from $a_{i}$ 's head in the FP-tree header.
- Prefix path property
- To calculate the frequent patterns for a node $a_{i}$ in a path $P$, only the prefix sub-path of $a_{i}$ in $P$ need to be accumulated, and its frequency count should carry the same count as node $a_{i}$.

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Conditional Pattern Bases and Conditional FP-Tree

$\uparrow$| Item | Conditional pattern base | Conditional FP-tree |
| :---: | :---: | :---: |
| p | $\{(\mathrm{fcam}: 2),(\mathrm{cb}: 1)\}$ | $\{(\mathrm{c}: 3)\} \mid \mathrm{p}$ |
| m | $\{(\mathrm{fca}: 2),(\mathrm{fcab}: 1)\}$ | $\{(\mathrm{f}: 3, \mathrm{c}: 3, \mathrm{a}: 3)\} \mid \mathrm{m}$ |
| b | $\{(\mathrm{fca}: 1),(\mathrm{f}: 1),(\mathrm{c}: 1)\}$ | Empty |
| a | $\{(\mathrm{fc}: 3)\}$ | $\{(\mathrm{f}: 3, \mathrm{c}: 3)\} \mid \mathrm{a}$ |
| c | $\{(\mathrm{f}: 3)\}$ | $\{(\mathrm{f}: 3)\} \mid \mathrm{c}$ |
| f | Empty | Empty |

order of $L$
33459-01: Principles of Knowledge Discovery in Data - March-June, 2006 (Dr. o. Zaiane) 52

## Step 3: Recursively mine the conditional FP-tree



## Principles of FP-Growth

## - Pattern growth property

- Let $\alpha$ be a frequent itemset in DB, B be $\alpha$ 's conditional pattern base, and $\beta$ be an itemset in $B$. Then $\alpha \cup \beta$ is a frequent itemset in DB iff $\beta$ is frequent in $B$.
- Is "fcabm" a frequent pattern?
- "fcab" is a branch of m's conditional pattern base
- "b" is NOT frequent in transactions containing "fcab"
- "bm" is NOT a frequent itemset.


## Single FP-tree Path Generation

- Suppose an FP-tree T has a single path P. The complete set of frequent pattern of $T$ can be generated by enumeration of all the combinations of the sub-paths of $P$

| \{\} | $\rightarrow$ | All frequent patterns |
| :---: | :---: | :---: |
| $f: 3$ |  | concerning $m$ <br> $m$, |
| $c: 3$ |  | fm, cm, am, |
| । |  | fcm, fam, cam, |
| $a: 3$ |  | fcam |

- Choice of minimum support threshold
- lowering support threshold results in more frequent itemsets
- this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
- since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
- transaction width increases with denser data sets
- This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)


## Discussion (1/2)

- Association rules are typically sought for very large databases $\rightarrow$ efficient algorithms are needed
- The Apriori algorithm makes 1 pass through the dataset for each different itemset size
- The maximum number of database scans is $k+1$, where $k$ is the cardinality of the largest large itemset (4 in the clothing ex.)
- potentially large number of scans - weakness of Apriori
- Sometimes the database is too big to be kept in memory and must be kept on disk
- The amount of computation also depends on the min.support; the confidence has less impact as it does not affect the number of passes
- Variations
- Using sampling of the database
- Using partitioning of the database
- Generation of incremental rules

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006 (Dr. o. zaiane) 56

## Lecture Outline

Part I: Concepts (30 minutes)

- Basic concepts
- Support and Confidence
- Naïve approach

Part II: The Apriori Algorithm (30 minutes)

- Principles
- Algorithm
- Running Example

Part III: The FP-Growth Algorithm (30 minutes)

- FP-tree structure
- Running Example

Part IV: More Advanced Concepts (30 minutes)

- Database layout and space search approach
- Other types of patterns and constraints


## Other Frequent Patterns

- Frequent pattern $\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{100}\right\} \rightarrow\left({ }_{100}{ }^{1}\right)+\left({ }_{100}{ }^{2}\right)$
$+\ldots+\left({ }_{100}{ }^{100}\right)=2^{100}-1=1.27 * 10^{30}$ frequent sub-patterns!
- Frequent Closed Patterns
- Frequent Maximal Patterns
- All Frequent Patterns


Maximal frequent itemsets $\subseteq$ Closed frequent itemsets $\subseteq$ All frequent itemset

## Frequent Closed Patterns

- For frequent itemset $X$, if there exists no item $y$ such that every transaction containing $X$ also contains $y$, then $X$ is a frequent closed pattern
- In other words, frequent itemset X is closed if there is no item $y$, not already in X , that always accompanies X in all transactions where $X$ occurs.
- Concise representation of frequent patterns. Can generate all frequent patterns with their support from frequent closed ones.
- Reduce number of patterns and rules
- N. Pasquier et al. In ICDT'99


## Frequent Maximal Patterns

- Frequent itemset X is maximal if there is no other frequent itemset $Y$ that is superset of $X$.
- In other words, there is no other frequent pattern that would include a maximal pattern.
- More concise representation of frequent patterns but the information about supports is lost.
- Can generate all frequent patterns from frequent maximal ones but without their respective support.
- R. Bayardo. In SIGMOD'98


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

## Mining the Pattern Lattice

- Breadth-First
- It uses current items at level $k$ to generate items of level $k+1$ (many database scans)
- Depth-First
- It uses a current item at level $k$ to generate all its supersets (favored when mining long frequent patterns)
- Hybrid approach


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Breadth- First (Bottom-Up Example)


33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

| TID | Items |
| :---: | :---: |
| 1 | ABC |
| 2 | ABCD |
| 3 | ABC |
| 4 | ACDE |
| 5 | DE |


(Dr. o. Zaiane) 65

Depth First (Top-Down Example)


| TID | Items |
| :---: | :---: |
| 1 | ABC |
| 2 | ABCD |
| 3 | ABC |
| 4 | ACDE |
| 5 | DE |

Subset is candidate if it is marked or if one of its
supersets is supersets is
candidate


- Finding all the patterns in a database autonomously? - unrealistic!
- The patterns could be too many but not focused!
- Data mining should be an interactive process
- User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
- User flexibility: provides constraints on what to be mined
- System optimization: explores such constraints for efficient mining-constraint-based mining



## Restricting Association Rules

- Useful for interactive and ad-hoc mining

- Reduces the set of association rules discovered and confines them to more relevant rules.
- Before mining
$\checkmark$ Knowledge type constraints: classification, etc.
$\checkmark$ Data constraints: SQL-like queries (DMQL)
$\checkmark$ Dimension/level constraints: relevance to some dimensions and some concept levels.
- While mining
$\checkmark$ Rule constraints: form, size, and content.
$\checkmark$ Interestingness constraints: support, confidence, correlation.
- After mining
$\checkmark$ Querying association rules


## Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints $C$, the algorithm should be
- sound: it only finds frequent sets that satisfy the given constraints $C$
- complete: all frequent sets satisfying the given constraints $C$ are found
- A naïve solution
- First find all frequent sets, and then test them for constraint satisfaction
- More efficient approaches:
- Analyze the properties of constraints comprehensively
- Push them as deeply as possible inside the frequent pattern computation.


## Rule Constraints in Association Mining

- Two kind of rule constraints:
- Rule form constraints: meta-rule guided mining.
- $P(x, y)^{\wedge} Q(x, w) \rightarrow$ takes( $x$, "database systems").
- Rule content constraint: constraint-based query optimization (where and having clauses) ( Ng, et al.,
SIGMOD'98).
- $\operatorname{sum}($ LHS $)<100^{\wedge} \min (\mathrm{LHS})>20^{\wedge} \operatorname{count}($ LHS $)>3^{\wedge} \operatorname{sum}(\mathrm{RHS})>$ 1000


## - 1-variable vs. 2-variable constraints

(Lakshmanan, et al. SIGMOD'99):

- 1-var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.
- 2-var: A constraint confining both sides ( $L$ and $R$ ).
- $\operatorname{sum}($ LHS $)<\min (\mathrm{RHS})^{\wedge} \max (\mathrm{RHS})<5^{*} \operatorname{sum}(\mathrm{LHS})$


## Anti-Monotonicity in Constraint-Based Mining

- Anti-monotonicity
- When an intemset $S$ violates the constraint, so does any of its supersets
- sum(S.Price) $\leq v$ is anti-monotone
- sum(S.Price) $\geq v$ is not anti-monotone
- Example. C: range(S.profit) $\leq 15$ is anti-monotone
- Itemset ab violates C
- So does every superset of $a b$
TDB (min_sup=2)

| TID | Transaction |  |
| :---: | :---: | :---: |
| 10 | $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{f}$ |  |
| 20 | $\mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{h}$ |  |
| 30 | $\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ |  |
| 40 | $\mathrm{c}, \mathrm{e}, \mathrm{f}, \mathrm{g}$ |  |
|  | Item |  |
|  |  |  |
|  | 40 |  |
|  | 0 |  |
| c | -20 |  |
| d | 10 |  |
| e | -30 |  |
| f | 30 |  |
| g | 20 |  |
| h | -10 |  |

(Dr. o. Zaiane) $\quad 73$

## Monotonicity in Constraint-Based Mining

TDB (min_sup=2)

- Monotonicity
- When an intemset S satisfies the constraint, so does any of its supersets
- sum(S.Price) $\geq v$ is monotone
$-\min ($ S.Price $) \leq v$ is monotone
- Example. C: range(S.profit) $\geq 15$
- Itemset $a b$ satisfies C
- So does every superset of $a b$

| TID | Transaction |  |
| :---: | :---: | :---: |
| 10 | a, b, c, d, f |  |
| 20 | b, c, d, f, g, h |  |
| 30 | a, c, d, e, f |  |
| 40 | c, e, f, g |  |
|  | Item | Profit |
|  | a | 40 |
|  | b | 0 |
|  | c | -20 |
|  | d | 10 |
|  | e | -30 |
|  | $f$ | 30 |
|  | g | 20 |
|  | h | -10 |

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Which Constraints Are Monotone or Anti-Monotone?
SQL-based Constraints

| Constraint | Monotone | Anti-Monotone |
| :---: | :---: | :---: |
| $\mathrm{v} \in \mathrm{S}$ | yes | no |
| $\mathrm{s}_{2} \mathrm{~V}$ | yes | no |
| $\mathbf{S \subseteq V}$ | no | yes |
| $\min (S) \leq v$ | yes | no |
| $\min (S) \geq v$ | no | yes |
| $\max (\mathrm{S}) \leq \mathrm{v}$ | no | yes |
| $\max (\mathrm{S}) \geq \mathrm{V}$ | yes | no |
| count(S) $\leq v$ | no | yes |
| count(S) $\geq \mathrm{V}$ | yes | no |
| sum(S) $\leq \mathrm{v}(\mathrm{a} \in \mathbf{S}, \mathrm{a} \leq 0)$ | no | yes |
| sum(S) $\geq \mathbf{V}(\mathrm{a} \in \mathbf{S}, \mathrm{a} \leq 0)$ | yes | no |
| range( $\mathbf{S}$ ) $\leq \mathrm{v}$ | no | yes |
| range(S) $\geq \mathrm{V}$ | yes | no |
| support(S) $\geq \boldsymbol{\xi}$ | no | yes |
| support(S) $\leq \xi$ | yes | no |

## State Of The Art

- Constraint pushing techniques have been proven to be effective in reducing the explored portion of the search space in constrained frequent pattern mining tasks.
- Anti-monotone constraints:
- Easy to push ... FP-Growth with Constraints.
- Always profitable to do .. J. Pei, J. Han, L. Lakshmanan, ICDE 01
- Monotone constraints:
- Hard to push ...
- Should we push them, or not?
- Dual Miner: C. Bucil, J. Gherke, D. Kiefer and W. White, sigkdD'02
- FP-Bonsai: F. Bonchi anf B. Goethals, PAKDD’04
- COFI with constraints: M. El-Hajj and O. Zaiane, AI’05
- BifoldLeap: M. El-Hajj and O. Zaiane, ICDM'05

