

What Is Association Rule Mining?

- · Association rule mining searches for relationships between items in a dataset:
 - aims at discovering associations between items in a transactional database.

Rule form: "Body → Head [support, confidence]"

(Dr. O. Zaiane)

3

buys(x, "bread") \rightarrow buys(x, "milk") [0.6%, 65%] major(x, "CS") \wedge takes(x, "DB") \rightarrow grade(x, "A") [1%, 75%]

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Transactional Databases

Finding Rules in Transaction Data Set

- 6 transactions
- 5 items: {Beer, Bread, Jelly, Milk, PeanutButter}

Transactions	Items
T1	Bread, Jelly, PeanutButter
T2	Bread, PeanutButter
Т3	Bread, Milk, PeanutButter
T4	Beer, Bread
T5	Beer, Milk
Т6	Bread, Milk

- Searching for rules of the form $X \rightarrow Y$, where X and Y are sets of items
- e.g. Bread → Jelly; Bread, Jelly → PeanutButter Design an efficient algorithm for mining association
- rules in large data sets Develop an effective approach for distinguishing
- interesting rules from irrelevant ones (Dr. O. Zaiane) 33459-01: Principles of K erv in Data – March-June, 2006 vledge Discove

Basic Concepts

A transaction is a set of items: $T = \{i_a, i_b, ..., i_t\}$

 $T \subset I$, where I is the set of all possible items $\{i_1, i_2, \dots, i_d\}$

D, the task relevant data, is a set of transactions $D = \{T_1, T_2, ..., T_n\}$.

An association rule is of the form: $P \rightarrow Q$, where $P \subset I$, $Q \subset I$, and $P \cap Q = \emptyset$

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Basic Concepts (con't)

A set of items is referred to as itemset.

An itemset containing k items is called k-itemset. {Jelly, Milk, Bread} is a 3-itemset example

An items set can also be seen as a conjunction of items (or a predicate)

Support($P \rightarrow Q$) = Probability($P \cup Q$) Confidence($P \rightarrow Q$) = Probability(Q/P)

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

and

Support and Confidence of an Association Rule

• The support of an association rule $X \rightarrow Y$ is the percentage of transactions that contain $X \cup Y$

support(X->Y) =
$$\frac{\#(X \cup Y)}{}$$

• The confidence of an association rule $X \rightarrow Y$ is the ratio of the number of transactions that contain $X \cup Y$ to the number of transactions that contain X

confidence(X->Y) =
$$\frac{\#(X \cup Y)}{\#X}$$

• **Confidence** of a rule $P \rightarrow Q$ in database $D \phi(P \rightarrow Q/D)$ is the ratio $\sigma((P \land Q)/D)$ by $\sigma(P/D)$

 $confidence(X -> Y) = \frac{support(X -> Y)}{support(X -> Y)}$ support(X)

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

11 (Dr. O. Zaiane)

(Dr. O. Z

Support of an Itemset

- **Support** of $P = P_1 \land P_2 \land \dots \land P_k$ in **D** $\sigma(P/D)$ is the probability that P occurs in D: it is the percentage of transactions T in D satisfying P.
- I.e. the support of an item (or itemset) X is the percentage of transactions in which that item (or items) occurs: (number of T by cardinality of D). #X support(X) =

Beer Bread Ielly Milk Pean Beer, Beer, Beer, Beer,

Support for all subsets of items Note the exponential growth in the set of items - 5 items: 31 sets

33459-01: Principles of Knowledge Discovery in Data - Marc

	33%	Beer, Bread, Milk	0%
	66%	Beer, Bread, PeanutButter	0%
	16%	Beer, Jelly, Milk	0%
	50%	Beer, Jelly, PeanutButter	0%
Butter	50%	Beer, Milk, PeanutButter	0%
read	16%	Bread, Jelly, Milk	0%
elly	0%	Bread, Jelly, PeanutButter	16%
lilk	16%	Bread, Milk, PeanutButter	16%
eanutButter	0%	Jelly, Milk, PeanutButter	0%
Jelly	16%	Beer, Bread, Jelly, Milk	0%
Milk	33%	Beer, Bread, Jelly, PeanutButter	0%
PeanutButter	50%	Beer, Bread, Milk, PeanutButter	0%
lilk	0%	Beer, Jelly, Milk, PeanutButter	0%
eanutButter	16%	Bread, Jelly, Milk, PeanutButter	0%
eanutButter	16%	Beer, Bread, Jelly, Milk, PeanutButter	0%
read, Jelly	0%		
h-June 2006		(Dr. O. Zajane)	10

(Dr. O. Zaiane)

12

Support and Confidence - cont.

- What is the support and confidence of the following rules?
 - Beer→Bread
 - {Bread, PeanutButter}→Jelly
 - Support and confidence for some association rules

rtuio	ouppoin	••••••••	
Bread → PeanutButter	50%	75%	✓ Why the
PeanutButter -> Bread	50%	100%	difference?
Beer → Bread	16%	50%	
PeanutButter → Jelly	16%	33%	
Jelly → PeanutButter	16%	100%	↓
Jelly → Milk	0%	0%	
{Bread, PeanutButter} → Jelly	16%	33%	
Support measures ho database.	w ofter	the rul	e occurs in the

· Confidence measures the strength of the rule.

The Apriori Algorithm -- Example

(Dr. O. Zaiane)

27

(Dr. O. Zaiane)

(Dr. O. Zaiane)

29

The next step is to use the large itemsets and generate association rules

- c=50%
- The set of large itemsets is
- L={{Jeans},{Shoes}, {Shorts}, {Skirt}, {TShirt}, {Jeans, Shoes}, [Jeans, Shorts], {Jeans, TShirt}, {Shoes, Shorts], {Shoes, TShirt}, {Shorts, TShirt}, {Shorts, TShirt}, {Shorts, TShirt}, {Shorts, TShirt}, {Shorts, Shoes, Shorts}, {Jeans, Shoes}, {Jeans}, {J Shoes, TShirt}, {Jeans, Shorts, TShirt}, {Shoes, Shorts, TShirt}, {Jeans, Shoes, Shorts, TShirt} }
- We ignore the first 5 as they do not consists of 2 nonempty subsets of large itemsets. We test all the others, e.g.:
 - $confidence(Jeans -> Shoes) = \frac{support({Jeans, Shoes})}{2} = \frac{7/20}{2}$ $= 50\% \ge c$ 14/20support({Jeans})

etc.

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Problems with Apriori

- · Generation of candidate itemsets are expensive (Huge candidate sets)
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
- · High number of data scans

Frequent Pattern Growth

- First algorithm that allows frequent pattern mining without generating candidate sets
- **Requires Frequent Pattern Tree**

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

es, Shorts, TShirt) (i,.e. 1 item different) as, Shoes, Shorts, TShirt)

Everyone is combined

2 sets are joined if they

have 1 item in common

(i..e. 1 item different)

(Dr O Zaiane)

26

28

(Dr. O. Zaiane)

2 sets are joined if they item in common

with each othe

ts), pit).

have 2

Lecture Outline

Part I: Concepts (30 m	inutes)
Basic concepts	,
 Support and Confiden 	ce
 Naïve approach 	
Part II: The Apriori Algor • Principles	ithm (30 minutes)
Algorithm	
Running Example	
Part III: The FP-Growth	Algorithm (30 minutes)
FP-tree structure	
Running Example	
Part IV: More Advanced	Concepts (30 minutes)

· Database layout and space search approach

• Other types of patterns and constraints

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

FP-Growth

- · Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc": DB|abc
 - "d" is a local frequent item in DB|abc \rightarrow abcd is a frequent pattern

Frequent Pattern Tree

35

Frequent Pattern Tree

34

(Dr. O. Zaiane)

36

45

(Dr. O. Zaiane)

Mining Frequent Patterns with FP-Tree 3 Major Steps

Step 2

Construct conditional FP-tree from each conditional pattern base

Step 3

Recursively mine conditional FP-trees and grow frequent patterns obtained so far. If the conditional FPtree contains a single path, simply enumerate all the patterns

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Recursively build the A, C and F Frequent Pattern Growth conditional trees M:4 root F₃ F:5 C4C:5 A 4 B A:4 B 1 B:4 P M:1 <F:3, C:3, A:3, M:3> M:4 <C:1, A:1, M:1> F, C, A, M, P F, C, A, B, M P·3 F:2, C:2, A:2 F, B F:1, C:1, A:1, B:1 C, B, P F, C, A, M, P C:1, A:1 C, A, M F, B 33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Frequent Pattern Growth

Another Example: Construct FP-tree from a Transaction Database

- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Step 2: Construct Conditional FP-tree

- · For each pattern base
 - Accumulate the count for each item in the base
 - Construct the conditional FP-tree for the frequent

Step 3: Recursively mine the conditional FP-tree

Properties of Step 1

- Node-link property
 - For any frequent item a_i, all the possible frequent patterns that contain a_i can be obtained by following a_i's node-links, starting from a_i's head in the FP-tree header.
- · Prefix path property
 - To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P need to be accumulated, and its frequency count should carry the same count as node a_i .

(Dr O Zaiane)

50

33459-01: Principles of Knowledge Discovery in Data – March-June, 2006

Conditional Pattern Bases and Conditional FP-Tree

Item	Conditional pattern base	Conditional FP-tree
р	{(fcam:2), (cb:1)}	{(c:3)} p
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
а	{(fc:3)}	{(f:3, c:3)} a
С	{(f:3)}	{(f:3)} c
f	Empty	Empty
-		

order of L

33459-01: Principles of Knowledge Discovery in Data – March-June, 2006 (Dr. O. Zaiane)

Principles of FP-Growth

- Pattern growth property

 Let α be a frequent itemset in DB, B be α's conditional pattern base, and β be an itemset in B. Then α ∪ β is a frequent itemset in DB iff β is frequent in B.
- Is "fcabm" a frequent pattern?
 "fcab" is a branch of m's conditional pattern base
 - "b" is **NOT** frequent in transactions containing "fcab"
 - "bm" is **NOT** a frequent itemset.

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

52

54

(Dr. O. Zaiane)

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 this may increase number of candidates and max length of frequent itemsets
- itemsets Dimensionality (number of items) of the data set
- more space is needed to store support count of each item
- if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

(Dr. O. Zaiane)

57

Other Frequent Patterns

- Frequent pattern $\{a_1, ..., a_{100}\} \rightarrow ({}_{100}{}^1) + ({}_{100}{}^2) + ... + ({}_{100}{}^{100}) = 2^{100} \cdot 1 = 1.27 \cdot 10^{30}$ frequent sub-patterns!
- Frequent Closed Patterns
- Frequent Maximal Patterns
- All Frequent Patterns

(Dr. O. Zaiane)

59

 $\label{eq:maximal frequent itemsets} \sqsubseteq \mathsf{Closed frequent itemsets} \sqsubseteq \mathsf{All frequent itemset}$

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Frequent Closed Patterns

Database layout and space search approach

· Other types of patterns and constraints

• For frequent itemset X, if there exists no item y such that every transaction containing X also contains y, then X is a frequent closed pattern

Support and Confidence

Part III: The FP-Growth Algorithm

Part IV: More Advanced Concepts

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Part II: The Apriori Algorithm (30 minutes)

Naïve approach

Running Example

• FP-tree structure

Running Example

Principles

Algorithm

- In other words, frequent itemset X is closed if there is no item y, not already in X, that always accompanies X in all transactions where X occurs.
- Concise representation of frequent patterns. Can generate all frequent patterns with their support from frequent closed ones.
- Reduce number of patterns and rules
- N. Pasquier et al. In ICDT'99

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

 $\left\{\begin{array}{c} \{abcd\}\\ \{abc\}\\ \{bd\}\\ Transactions\\ Support = 2\end{array}\right.\\ \left[\begin{array}{c} a & 2\\ b & 3\\ c & 2\\ d & 2\\ ab & 2\\ ab & 2\\ ab & 2\\ abc & 2\\ bd & 2\\ abc & 2\end{array}\right]\\ Frequent itemsets\\ \left[\begin{array}{c} b & 3\\ bd & 2\\ abc & 2\\ \end{array}\right]\\ \left[\begin{array}{c} b & 3\\ bd & 2\\ abc & 2\\ \end{array}\right]\\ \left[\begin{array}{c} b & 3\\ bd & 2\\ abc & 2\\ \end{array}\right]\\ \left[\begin{array}{c} b & 3\\ bd & 2\\ abc & 2\\ \end{array}\right]\\ \left[\begin{array}{c} b & 3\\ bd & 2\\ abc & 2\\ \end{array}\right]\\ \left[\begin{array}{c} b & 3\\ bd & 2\\ abc & 2\\ \end{array}\right]\\ \left[\begin{array}{c} c & c \\ c & c \\ c & c \\ \end{array}\right]\\ \left[\begin{array}{c} c & c \\ \end{array}\right]\\ \left[\begin{array}{c} c & c \\ c & c \\$

(Dr. O. Zaiane)

60

(Dr. O. Zaiane)

58

(30 minutes)

(30 minutes)

Frequent Maximal Patterns

- · Frequent itemset X is maximal if there is no other frequent itemset Y that is superset of X.
- In other words, there is no other frequent pattern that would include a maximal pattern.
- More concise representation of frequent patterns but the information about supports is lost.
- Can generate all frequent patterns from frequent maximal ones but without their respective support.
- R. Bayardo. In SIGMOD'98 ٠

TID Items

1 ABC

2 ABCD

ACDE 4

DE

Minimum support = 2

3 ABC

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

в

AE

ABCE

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

(AD

Maximal vs. Closed Itemsets

(BD

ABCDE

null

(Dr O Zaiane) 61

Closed and

Freque Pattern

CDE

Closed

Infreq

(Dr. O. Zaiane)

63

Closed but not maximal

СD

BCDE

BCD BCE

ACDE

Mining the Pattern Lattice

· Breadth-First

- It uses current items at level k to generate items of level k+1 (many database scans)

Depth-First

· Hybrid approach - It mines using both direction at the same tim

· Leap traversal approach

 Jumps to selected nodes There is also the notion of : Top-down (level k then level k+1) **Bottom-up** (level k+1 then level k)

Constraint-based Data Mining

· Finding all the patterns in a database autonomously? --- unrealistic! them to more relevant rules. - The patterns could be too many but not focused! Before mining · Data mining should be an interactive process - User directs what to be mined using a data mining query language (or a graphical user interface) and some concept levels. · Constraint-based mining • While mining - User flexibility: provides constraints on what to be mined System optimization: explores such constraints for After mining efficient mining-constraint-based mining 33459-01: Principles of Knowledge Discovery in Data - March-June, 2006 (Dr. O. Zaiane)

Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints Ć
 - complete: all frequent sets satisfying the given constraints C are found
- A naïve solution
 - First find all frequent sets, and then test them for constraint satisfaction
- · More efficient approaches:
 - Analyze the properties of constraints comprehensively
 - Push them as deeply as possible inside the frequent
 - pattern computation.

```
33459-01: Principles of Knowledge Discovery in Data - March-June, 2006
```

71

(Dr. O. Zaiane)

· Useful for interactive and ad-hoc mining

Restricting Association Rules

- · Reduces the set of association rules discovered and confines
 - ✓ Knowledge type constraints: classification, etc.
 - ✓ Data constraints: SQL-like queries (DMQL)
 - ✓ Dimension/level constraints: relevance to some dimensions

 - ✓ Rule constraints: form, size, and content.
 - ✓ Interestingness constraints: support, confidence, correlation.
 - ✓ Querying association rules

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

(Dr. O. Zaiane) 70

72

(Dr. O. Zaiane)

Rule Constraints in Association Mining

- Two kind of rule constraints:
 - Rule form constraints: meta-rule guided mining. P(x, y) ^ Q(x, w) -> takes(x, "database systems").
 - Rule content constraint: constraint-based query optimization (where and having clauses) (Ng, et al., SIGMOD'98).
 - sum(LHS) < 100 ^ min(LHS) > 20 ^ count(LHS) > 3 ^ sum(RHS) > 1000
- 1-variable vs. 2-variable constraints

(Lakshmanan, et al. SIGMOD'99):

- 1-var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.
- 2-var: A constraint confining both sides (L and R).
- sum(LHS) < min(RHS) ^ max(RHS) < 5* sum(LHS)

Anti-Monotonicity in Constraint-Based Mining

		1	TDB (mi	n_sup=2)
•	Anti-monotonicity	TID	Tran	saction	
		10	a, b	, c, d, f	Ī
	 When an intemset S violates the 	20	b, c,	d, f, g, h	Ī
	constraint, so does any of its	30	a, c	, d, e, f	
	supersets	40	С,	e, f, g	
	$- sum/S Price) \le v$ is anti-monotone		Item	Profit	
			а	40	
	$- sum(S.Price) \ge v$ is not anti-monotone		b	0	
•	Example, C: range(S.profit) \leq 15 is		С	-20	
	anti-monotono		d	10	
			е	-30	
	 Itemset ab violates C 		f	30	
	So doos overy superset of ab		a	20	

- So does every superset of ab

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

Which Constraints Are Monotone or SQL-based Constraints Anti-Monotone?

Constraint	Monotone	Anti-Monotone
v e S	yes	no
s⊇v	yes	no
s⊆v	no	yes
min(S) ≤ v	yes	no
min(S) ≥ v	no	yes
max(S) ≤ v	no	yes
max(S)≥v	yes	no
count(S) ≤ v	no	yes
count(S) ≥ v	yes	no
sum(S) ≤ v (a ∈ S, a ≤ 0)	no	yes
sum(S)≥v (a∈ S,a≤0)	yes	no
range(S) ≤ v	no	yes
range(S) ≥ v	yes	no
support(S)≥ξ	no	yes
support(S) ≤ξ	yes	no

33459-01: Principles of Knowledge Discovery in Data - March-June, 2006

(Dr. O. Zaiane)

75

-10

73

(Dr. O. Zai

Monotonicity in Constraint-Based Mining

	1	$DD (mm_sup=2)$		2)
Monotonicity	TID	Tra	nsactio	n
	10	a,	b, c, d, f	
 When an intemset S satisfies the 	20	b, c	, d, f, g,	h
constraint, so does any of its	30	a,	c, d, e, f	
supersets	40	с	, e, f, g	
		ltem	Profit	
$-$ sum(S.Price) $\geq v$ is monotone		а	40	
$-$ min(S.Price) $\leq v$ is monotone		b	0	
$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$		С	-20	
• Example. C: range(S.profit) \geq 15		d	10	
 Itemset ab satisfies C 		е	-30	
So doop over a upproat of ab		f	30	
- So does every superset of ab		g	20	
		h	-10	
33459-01: Principles of Knowledge Discovery in Data - March-June, 2006		(Dr. O. Z	aiane)	74

State Of The Art

Constraint pushing techniques have been proven to be effective in reducing the explored portion of the search space in constrained frequent pattern mining tasks.

Anti-monotone constraints:

- Easy to push ...
- FP-Growth with Constraints: Always profitable to do .. J. Pei, J. Han, L. Lakshmanan, ICDE'01

Monotone constraints:

• Hard to push ...

• S	hould we push them, or not?	
	• Dual Miner: C. Bucil, J. Gherke, D. Kiefer and W. White, SIGKD	D'02
	FP-Bonsai: F. Bonchi anf B. Goethals, PAKDD'04	
	 COFI with constraints: M. El-Hajj and O. Zaiane, AI'05 	
	 BifoldLeap: M. El-Hajj and O. Zaiane, ICDM'05 	
33459-01: Princip	les of Knowledge Discovery in Data – March-June, 2006 (D	r. O. Zaiane