Week 10-11 Tutorial exercises (May 12 and may 26th 2006) Clustering - K-means, Nearest Neighbor and Hierarchical.

Exercise 1. K-means clustering

Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). The distance matrix based on the Euclidean distance is given below:

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	$\sqrt{58}$
A8								0

Suppose that the initial seeds (centers of each cluster) are A1, A4 and A7. Run the k-means algorithm for 1 epoch only. At the end of this epoch show:

- a) The new clusters (i.e. the examples belonging to each cluster)
- b) The centers of the new clusters
- c) Draw a 10 by 10 space with all the 8 points and show the clusters after the first epoch and the new centroids.
- d) How many more iterations are needed to converge? Draw the result for each epoch.

Solution:

d(a,b) denotes the Eucledian distance between a and b. It is obtained directly from the distance matrix or calculated as follows: $d(a,b)=sqrt((x_b-x_a)^2+(y_b-y_a)^2)$

seed1=A1=(2,10), seed2=A4=(5,8), seed3=A7=(1,2)

epoch1 - start:

A1:

$$d(A1, seed1) = 0$$
 as A1 is seed1
 $d(A2, seed1) = \sqrt{25} = 5$
 $d(A1, seed2) = \sqrt{13} > 0$
 $d(A1, seed3) = \sqrt{65} > 0$
 $A1 \in \text{cluster1}$

A2:
 $d(A2, seed1) = \sqrt{18} = 4.24$
 $d(A2, seed3) = \sqrt{10} = 3.16$ $A2 \in \text{cluster3}$

A3:
 $d(A3, seed1) = \sqrt{36} = 6$

A4:
 $d(A4, seed1) = \sqrt{13}$

A3:
$$d(A3, seed 1) = \sqrt{36} = 6$$
 $d(A4, seed 1) = \sqrt{13}$ $d(A3, seed 2) = \sqrt{25} = 5$ \iff smaller $d(A3, seed 3) = \sqrt{53} = 7.28$ $d(A4, seed 3) = \sqrt{52} > 0$ $d(A4, seed 3) = \sqrt{52} > 0$ $d(A4, seed 3) = \sqrt{52} > 0$ $d(A5, seed 3) = \sqrt{50} = 7.07$ A6: $d(A5, seed 1) = \sqrt{50} = 7.07$ $d(A6, seed 1) = \sqrt{52} = 7.21$

d(A5, seed2)= $\sqrt{13}$ = 3.60 **smaller** d(A5, seed3)= $\sqrt{45}$ = 6.70

→ A5 ∈ cluster2

 $d(A6, seed2) = \sqrt{17} = 4.12$ \leftarrow smaller

 $d(A6, seed3) = \sqrt{29} = 5.38$

→ A6 ∈ cluster2

A7:

 $d(A7, seed1) = \sqrt{65} > 0$

 $d(A7, seed2) = \sqrt{52} > 0$

d(A7, seed3)=0 as A7 is seed3

→ A7 ∈ cluster3

end of epoch1

A8:

 $d(A8, seed1) = \sqrt{5}$

 $d(A8, seed2) = \sqrt{2}$ smaller

 $d(A8, seed3) = \sqrt{58}$

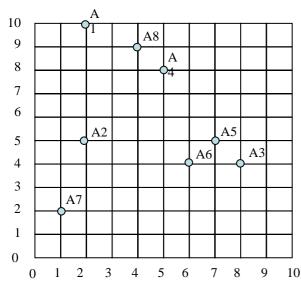
 \rightarrow A8 \in cluster2

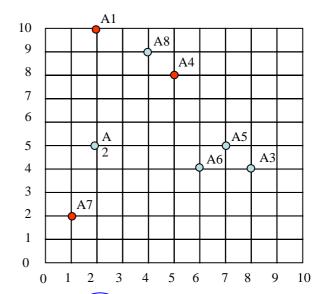
new clusters: 1: {A1}, 2: {A3, A4, A5, A6, A8}, 3: {A2, A7}

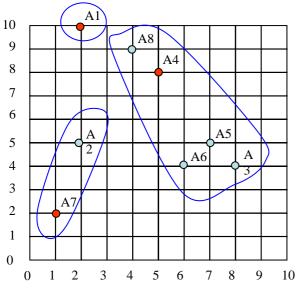
b) centers of the new clusters:

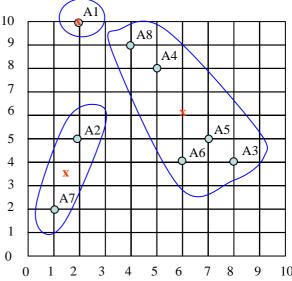
C1=(2, 10), C2=((8+5+7+6+4)/5, (4+8+5+4+9)/5)=(6, 6), C3=((2+1)/2, (5+2)/2)=(1.5, 3.5)

c)









d)

We would need two more epochs. After the 2nd epoch the results would be:

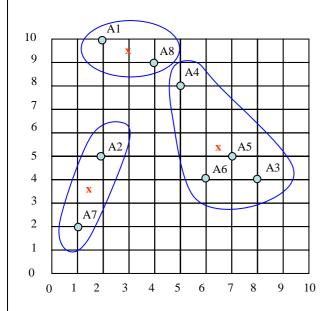
1: {A1, A8}, 2: {A3, A4, A5, A6}, 3: {A2, A7}

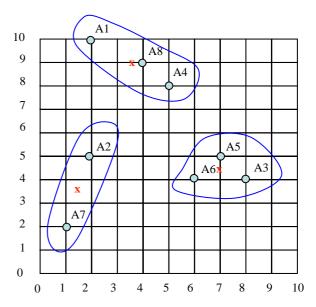
with centers C1=(3, 9.5), C2=(6.5, 5.25) and C3=(1.5, 3.5).

After the 3rd epoch, the results would be:

1: {A1, A4, A8}, 2: {A3, A5, A6}, 3: {A2, A7}

with centers C1=(3.66, 9), C2=(7, 4.33) and C3=(1.5, 3.5).





Exercise 2. Nearest Neighbor clustering

Use the Nearest Neighbor clustering algorithm and Euclidean distance to cluster the examples from the previous exercise: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). Suppose that the threshold t is 4.

Solution:

A1 is placed in a cluster by itself, so we have $K1=\{A1\}$.

We then look at A2 if it should be added to K1 or be placed in a new cluster.

$$d(A1,A2) = \sqrt{25} = 5 > t \rightarrow K2 = \{A2\}$$

A3: we compare the distances from A3 to A1 and A2.

A3 is closer to A2 and d(A3,A2)= $\sqrt{36} > t \implies K3 = \{A3\}$

A4: We compare the distances from A4 to A1, A2 and A3.

A1 is the closest object and $d(A4,A1) = \sqrt{13} < t \rightarrow K1 = \{A1, A4\}$

A5: We compare the distances from A5 to A1, A2, A3 and A4.

A3 is the closest object and $d(A5,A3) = \sqrt{2} < t \implies K3 = \{A3, A5\}$

A6: We compare the distances from A6 to A1, A2, A3, A4 and A5.

A3 is the closest object and $d(A6,A3) = \sqrt{2} < t \rightarrow K3 = \{A3, A5, A6\}$

A7: We compare the distances from A7 to A1, A2, A3, A4, A5, and A6.

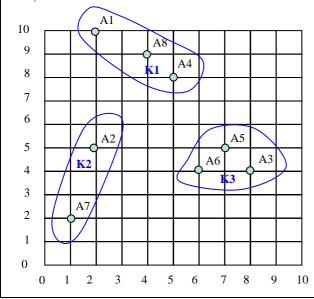
A2 is the closest object and $d(A7,A2) = \sqrt{10} < t \implies K2 = \{A2, A7\}$

A8: We compare the distances from A8 to A1, A2, A3, A4, A5, A6 and A7.

A4 is the closest object and d(A8,A4)= $\sqrt{2}$ < t \rightarrow K1={A1, A4, A8}

Thus: $K1=\{A1, A4, A8\}, K2=\{A2, A7\}, K3=\{A3, A5, A6\}$

Yes, it is the same result as with K-means.



Exercise 3. Hierarchical clustering

Use single and complete link agglomerative clustering to group the data described by the following distance matrix. Show the dendrograms.

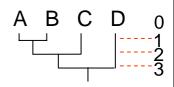
	A	В	С	D
A	0	1	4	5
В		0	2	6
С			0	3
D				0

Solution:

Agglomerative \rightarrow initially every point is a cluster of its own and we merge cluster until we end-up with one unique cluster containing all points.

a) single link: distance between two clusters is the shortest distance between a pair of elements from the two clusters.

d	k	K	Comments
0	4	$\{A\}, \{B\}, \{C\}, \{D\}$	We start with each point = cluster
1	3	$\{A, B\}, \{C\}, \{D\}$	Merge {A} and {B} since A & B are the
			closest: d(A, B)=1
2	2	${A, B, C}, {D}$	Merge {A, B} and {C} since B & C are
			the closest: d(B, C)=2
3	1	$\{A, B, C, D\}$	Merge D



b) complete link: distance between two clusters is the longest distance between a pair of elements from

the	the two clusters.					
	d	k	K	Comments		
	0	4	$\{A\}, \{B\}, \{C\}, \{D\}$	We start with each point = cluster	A B C D o	
	1	3	$\{A, B\}, \{C\}, \{D\}$	$d(A,B)=1 \le 1 \implies merge \{A\} \text{ and } \{B\}$	2	
4	2	3	$\{A, B\}, \{C\}, \{D\}$	d(A,C)=4>2 so we can't merge C with	3	
				{A,B}	45	
				d(A,D)=5>2 and $d(B,D)=6>2$ so we can't	6	
				merge D with {A, B}		
				d(C,D)=3>2 so we can't merge C and D		
′.	3	2	${A, B}, {C, D}$	- d(A,C)=4>3 so we can't merge C with		
				{A,B}		
				- d(A,D)=5>3 and $d(B,D)=6>3$ so we can't		
				merge D with {A, B}		
				$- d(C,D)=3 \le 3$ so merge C and D		
4	4	2	${A, B}, {C, D}$	{C,D} cannot be merged with {A, B} as		
				d(A,D)= 5 > 4 (and also d(B,D)= 6 > 4)		
				although $d(A,C)=4 \le 4$, $d(B,C)=2 \le 4$		
[:	5	2	${A, B}, {C, D}$	{C,D} cannot be merged with {A, B} as		
				d(B,D) = 6 > 5		
	6	1	$\{A, B, C, D\}$	{C, D} can be merged with {A, B} since		
				$d(B,D)=6 \le 6$, $d(A,D)=5 \le 6$, $d(A,C)=$		
				$4 \le 6$, $d(B,C) = 2 \le 6$		

Exercise 4: Hierarchical clustering (to be done at your own time, not in class)

Use single-link, complete-link, average-link agglomerative clustering as well as medoid and centroid to cluster the following 8 examples:

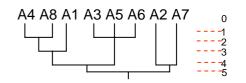
A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).

The distance matrix is the same as the one in Exercise 1. Show the dendrograms.

Solution:

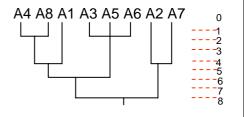
Single Link:

d	k	K
0	8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}
1	8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}
2	5	{A4, A8}, {A1}, {A3, A5, A6}, {A2}, {A7}
3	4	{A4, A8, A1}, {A3, A5, A6}, {A2}, {A7}
4	2	{A1, A3, A4, A5, A6, A8}, {A2, A7}
5	1	{A1, A3, A4, A5, A6, A8, A2, A7}

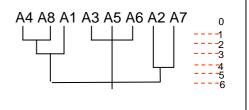


Complete Link

d	k	K
0	8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}
1	8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}
2	5	{A4, A8}, {A1}, {A3, A5, A6}, {A2}, {A7}
3	5	{A4, A8}, {A1}, {A3, A5, A6}, {A2}, {A7}
4	3	{A4, A8, A1}, {A3, A5, A6}, {A2, A7}
5	3	{A4, A8, A1}, {A3, A5, A6}, {A2, A7}
6	2	{A4, A8, A1, A3, A5, A6}, {A2, A7}
7	2	{A4, A8, A1, A3, A5, A6}, {A2, A7}
8	1	{A4, A8, A1, A3, A5, A6, A2, A7}



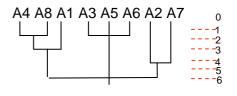
Avera	Average Link				
d	k	K			
0	8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}			
1	8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}			
2	5	{A4, A8}, {A1}, {A3, A5, A6}, {A2}, {A7}			
3	4	{A4, A8, A1}, {A3, A5, A6}, {A2}, {A7}			
4	3	{A4, A8, A1}, {A3, A5, A6}, {A2, A7}			
5	3	{A4, A8, A1}, {A3, A5, A6}, {A2, A7}			
6	1	{A4, A8, A1, A3, A5, A6, A2, A7}			



Average distance from {A3, A5, A6} to {A1, A4, A8} is 5.53 and is 5.75 to {A2, A7}

Centroid

k	K
8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}
8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}
5	{A4, A8}, {A1}, {A3, A5, A6}, {A2}, {A7}
5	{A4, A8}, {A1}, {A3, A5, A6}, {A2}, {A7}
3	{A4, A8, A1}, {A3, A5, A6}, {A2, A7}
3	{A4, A8, A1}, {A3, A5, A6}, {A2, A7}
1	{A4, A8, A1, A3, A5, A6, A2, A7}
	8 5 5 3

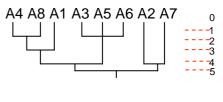


Centroid of $\{A4, A8\}$ is B=(4.5, 8.5) and centroid of $\{A3, A5, A6\}$ is C=(7, 4.33) distance(A1, B) = 2.91 Centroid of $\{A1, A4, A8\}$ is D=(3.66, 9) and of $\{A2, A7\}$ is E=(1.5, 3.5) distance(D,C)=5.74 distance(D,E)=5.90

Medoid

This is not deterministic. It can be different depending upon which medoid in a cluster we chose.

d	k	K
0	8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}
1	8	{A1}, {A2}, {A3}, {A4}, {A5}, {A6}, {A7}, {A8}
2	5	{A4, A8}, {A1}, {A3, A5, A6}, {A2}, {A7}
3	4	{A4, A8, A1}, {A3, A5, A6}, {A2}, {A7}
4	2	{A1, A3, A4, A5, A6, A8}, {A2, A7}
5	1	{A1, A3, A4, A5, A6, A8, A2, A7}



Exercise 5: DBScan

If Epsilon is 2 and minpoint is 2, what are the clusters that DBScan would discover with the following 8 examples: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). The distance matrix is the same as the one in Exercise 1. Draw the 10 by 10 space and illustrate the discovered clusters. What if Epsilon is increased to $\sqrt{10}$?

Solution:

What is the Epsilon neighborhood of each point?

 $N_2(A1)=\{\}; N_2(A2)=\{\}; N_2(A3)=\{A5, A6\}; N_2(A4)=\{A8\}; N_2(A5)=\{A3, A6\};$

 $N_2(A6)=\{A3, A5\}; N_2(A7)=\{\}; N_2(A8)=\{A4\}$

So A1, A2, and A7 are outliers, while we have two clusters C1={A4, A8} and C2={A3, A5, A6}

If Epsilon is $\sqrt{10}$ then the neighborhood of some points will increase:

A1 would join the cluster C1 and A2 would joint with A7 to form cluster C3={A2, A7}.

