
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 1

Structural Programming
and Data Structures

Dr. Osmar R. Zaïane

University of Alberta

Winter 2000

CMPUT 102: Testing and Debugging

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 2

• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion

2

Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection
• Repetition

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 3

Objectives of Lecture 18

• Learn how to perform black-box testing on a
program unit.

• After finding an error, we will use planned
debugging to locate the error.

Black box testing and planned debuggingBlack box testing and planned debugging

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 4

Outline of Lecture 18

• Kinds of program errors

• Testing

• Testing example, black-box testing of Person

• Planned debugging

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 5

Kinds of Errors

• There are four basic kinds of errors that can
occur in a program:
– syntax errors

– compile-time semantic errors

– run-time errors

– logic or semantic errors

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 6

Syntax Errors

• A syntax error is a grammatical error:
name = aString. // period instead of semi-colon

years = today.getYear[]; // wrong kind of brackets

aPerson.setName(‘Fred’); // wrong String delimiter

• Syntax errors:
– are found by the compiler

– are often caused by typos

– can usually be fixed quickly and easily.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 7

Compile-Time Semantic Errors
• A compile-time semantic erroris a non-

syntax error that can be found by the
compiler.

• One common class is type errors:
String yearString = today.getYear();
// bind a String variable to an int expression
int years = aPerson.getYear();
// A Person doesn’t understand the getYear() message

• These errors:
– are often caused by conceptual problems

– are more difficult to fix than syntax errors
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 8

Run-time Errors

• A run-time error is an error that causes the
program to stop running:
int years = birthdate.getYears();
// If birthdate is bound to null this program dies
Integer choice = Keyboard.in.readInteger();
int index = choice.intValue();
// If the user enters an invalid integer, the program dies

• Run-time errors
– are notfound by the compiler

– are often due to uninitialized variables or bad input

– may not be found until software is deployed

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 9

Logic Errors
• A logic error or semantic error is an error

that produces incorrect results:
aPerson = new Person(“Fred”, new Date(69, 11, 25));

System.out.println(aPerson.age());
// If the current date is October, 28, 1999 and this program
outputs 30, there is a logic error.

• Logic errors
– are notfound by the compiler

– do not result in program termination

– might never be discovered

– can be difficult to find and fix

– can cause inconvenience, financial losses or disasters
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 10

Outline of Lecture 17

• Kinds of program errors

• Testing

• Testing example, black-box testing of Person

• Planned debugging

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 11

Testing versus Verification
• Testing is done to reduce the chances of

releasing software that contains errors.

• Testing alone, can never guarantee that a
program has no errors left.

• Sometimes, the correctness of critical portions
of software are verified using an automatic
proof checker.

• Verification is often too expensive for
common software or for large software
systems.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 12

Time for Testing
• There are four common times when

software is tested:
– When a small unit of software is written, it

undergoes a unit test.
– When software units are integrated together,

integration testing is done.

– When the entire software system is finished,
system testingis done.

– When a unit is modified either to fix a problem
or to add new features, regression testingis
done to make sure no new errors are made.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 13

Black-box & White-box
Testing

• There are two kinds of testing, black-box
testingand white-box testing.

• In black-box testing, the tester treats the
software as a black box and does not see the
implementation code.

• In white-box testing, the tester looks at the
implementation code.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 14

Black-box Testing

• Is used for functional testing to see if the
software meets the specification and
satisfies the user requirements.

• The tester creates a test based on all of the
features in the specification.

• The tester checks the outputs for each input
against the expected outputs defined by the
specification.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 15

White-box Testing

• The tester studies the implementation code.

• The tester chooses inputs that exercise each
statement or path in the code.

• The tester also chooses inputs that check
boundary conditions of selection and
repetition control structures.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 16

Design for Testing

• Testing is not something that should be
done to software when it is finished.

• Software should be designed with testing in
mind.

• Test suites should be constructed as the
software is being specified and designed.

• Test code should be included with the
software as it is written and kept for
regression testing.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 17

Testing Output

• You must know what output should be
produced by the program, so you can tell if
the test is successful.

• This output must be computed in an
independent way.

• It is helpful to output the correct answers as
part of the test routine.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 18

Testing Object-Oriented
Software

• For object-oriented software, a class is a good
unit for testing.

• Black-box test suites consist of main programs
that exercise all of the public methods.

• White-box test suites are created as public static
methods.

• This approach is necessary since the state and
some methods are usually private.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 19

Outline of Lecture 18

• Kinds of program errors

• Testing

• Testing example, black-box testing of Person

• Planned debugging

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 20

Unit Test Example - Person

• To demonstrate testing we will test a class
called Person
– Read specification

– Construct an external black-box test suite

– Run test suite

– Correct errors by Debugging

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 21

Specification Person(1)

public class Person {
/*

Each instance of this class represents a Person with a name
and age.

*/

/* Constructors */

public Person(String aString, Date aDate) {
/*

Initialize me to have the given name and
the given date as my birth date.

*/

Person

aDate

aS
tri

ng

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 22

Specification - Person(2)
/* Instance Methods */

public String getName() {
/*

Return my name.
*/

public void setName(String aString) {
/*

Set my name to the given String.
*/

public int getAge() {
/*

Return my current age.
*/

Person

aDate

aS
tri

ng

getA
ge

ge
tN

am
e

setName

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 23

External Test Suite - Person 1

public static void main(String args[]) {

Person person;
String aName;
// check Constructor for name init and getName()
person = new Person("Barney", new Date(68, 11, 15));
aName = person.getName();
System.out.println(aName);
System.out.println(“Should be:Barney”);

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 24

External Test Suite - Person 2

// check setName(String);
person.setName("Fred");
aName = person.getName();
System.out.println(aName);
System.out.println(“Should be:Fred”);

// check constructor for birthdate and getAge()
System.out.println(person.getAge());
System.out.println(“Should be:29”);
// assume today’s date is October 28, 1998

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 25

Output of External Test -
Person

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 26

Errors in class - Person

• Assume that today’s date is October 28,
1998.

• The age of someone born on November 15,
1968 is being reported as 30 instead of 29.

• We need to correct the program to fix this
error.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 27

Outline of Lecture 18

• Kinds of program errors

• Testing

• Testing example, black-box testing of Person

• Planned debugging

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 28

Debugging
• Run-time and logic errors are called bugs and

fixing these bugs is called debugging.

• Debugging starts when an error is discovered
during testing.

• Testing only identifies a symptom of the error,
usually in an output statement.

• The error itself may be “far away” from the
symptom in the code.

• The hardest part of debugging is finding the
specific code that caused the error.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 29

Debugging Approaches

• There are two kinds of debugging: ad-hoc
and planned.

• In the plannedapproach, the programmer
uses a four step process to try to deduce the
location of the bug.

• In the ad-hocapproach, the programmer
tries to examine the state of the program at
various points of execution, looking for
locations where the state is incorrect to zero
in on the error location.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 30

Four-Step Planned Debugging

1. understand the problem
– make sure there are enough test cases to understand

the real problem

2. devise a plan
– develop one or more theories about the error

– make a plan to confirm these theories

3. execute the plan
– write more test cases to confirm one of the theories

4. review the solution
– Inspect the code to verify that it is causing the error

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 31

Debug Example - Person
Understand the problem:

• The age is off by one year.

• Try another birth date to make sure that this
is really the error:
person = new Person("Barney", new Date(68, 6, 15));

• The output is now 30 which is correct.

• The age is not always off by one year.

• Perhaps the age is off by one year if the
person has not had a birthday yet this year.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 32

Debug Example - Person
Devise a plan:

• Conjecture: the age is off by one year if the
person has not had a birthday yet this year
and correct if the birthday has occurred.

• Construct test cases with some birthdays in
each category to verify the conjecture:
– January 1, 1950 - should be: 48

– March 30, 1960 - should be: 38

– November 10, 1970 - should be: 27

– November 30, 1980 - should be: 17

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 33

Debug Example - Person
Execute the plan:

// check constructor for birthdate and getAge()
// birthdate after date in current year

person = new Person("Barney", new Date(50, 1, 1));
System.out.println(person.getAge());
System.out.println(“Should be:48”);
person = new Person("Barney", new Date(60, 3, 30));
System.out.println(person.getAge());
System.out.println(“Should be:38”);

// check constructor for birtdate and getAge()
// birthdate before date in current year

person = new Person("Barney", new Date(70, 11, 10));
System.out.println(person.getAge());
System.out.println(“Should be:27”);
person = new Person("Barney", new Date(80, 11, 30));
System.out.println(person.getAge());
System.out.println(“Should be:17”);

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 34

Output of Revised External Test

• The conjecture appears correct!

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 35

Debug Example - Person
Review the solution (1)

import java.util.*;
public class Person {
/* Each instance of this class represents a Person with a name

and age. */
/* Constructors */

public Person(String aString, Date aDate) {
/*

Initialize me to have the given name and
the given date as my birth date.

*/
this.name = aString;
this.birthdate = aDate;

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 36

Debug Example - Person
Review the solution (2)

/* Instance Methods */
public String getName() {
/*

Return my name.
*/

return this.name;
}
public void setName(String aString) {
/*

Set my name to the given String.
*/

this.name = aString;
}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 37

Debug Example - Person
Review the solution (3)

public int getAge() {
/* Return my current age. */

Date today;
int todayYear;
int currentYear;
int age;

today = new Date();
todayYear = today.getYear();
currentYear = this.birthdate.getYear();
age = todayYear - currentYear;
return age;

}

Subtracting years is not
sufficient if the month
and day of the birth
date has not passed yet.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 38

Debug Example - Person
Review the solution (4)

/* Instance Variables */
private String name;
private Date birthdate;

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 39

Debug Example - Person
Fix the code 1

public int getAge() {
/* Return my current age. */

Date today; int age;
int todayYear; int currentYear;

today = new Date();
todayYear = today.getYear();
currentYear = this.birthdate.getYear();
age = todayYear - currentYear;
if (! this.hadBirthdayThisYear())

age = age - 1;
return age;

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 40

Debug Example - Person
Fix the code 2

private boolean hadBirthdayThisYear() {
/* Return true if I have already had my

birthday this year. */

Date today; int todayMonth;
int myMonth; int myDayOfMonth;
int todayDayOfMonth;

today = new Date();
todayMonth = today.getMonth();
myMonth = this.birthdate.getMonth();
todayDayOfMonth = today.getDate();
myDayOfMonth = birthdate.getDate();

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 41

Debug Example - Person
Fix the code 3

if (myMonth < todayMonth)
return true;

else if (myMonth > todayMonth)
return false;

else if (myDayOfMonth <= todayDayOfMonth)
return true;

else
return false;

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 42

Output of Revised External Test
After fixing the birthday bug

• The birthday bug is fixed.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 43

• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion

43

Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection
• Repetition

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 44

Objectives of Lecture 19

• Learn how to perform white-box testing on a
program unit.

• After finding an error, we will use ad-hoc
debugging to locate the error.

White box testing and adWhite box testing and ad--hoc debugginghoc debugging

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 45

Outline of Lecture 19

• Inspecting an example Class's code for paths.

• Constructing an internal white-box test suite.

• Correcting errors by Ad-hoc Debugging.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 46

Unit Test Example - Person

• To demonstrate testing we will continue
testing a class called Person
– Inspect code

– Construct an internal white-box test suite

– Run test suite

– Correct errors by Debugging

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 47

Example - Person
Inspect the code for paths 1

public int getAge() {
/* Return my current age. */

Date today; int age;
int todayYear; int currentYear;

today = new Date();
todayYear = today.getYear();
currentYear = this.birthdate.getYear();
age = todayYear - currentYear;
if (! this.hadBirthdayThisYear())

age = age - 1;
return age;

}

Find tests that execute
both paths, but also
include the boundary.
Look in this method to
identify the boundary.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 48

Example - Person
Inspect the code for paths 2

private boolean hadBirthdayThisYear() {
/* Return true if I have already had my

birthday this year. */

Date today; int todayMonth;
int myMonth; int myDayOfMonth;
int todayDayOfMonth;

today = new Date();
todayMonth = today.getMonth();
myMonth = this.birthdate.getMonth();
todayDayOfMonth = today.getDate();
myDayOfMonth = this.birthdate.getDate();

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 49

Example - Person
Inspect the code for paths 3

if (myMonth < todayMonth)
return true;

else if (myMonth > todayMonth)
return false;

else if (myDayOfMonth <= todayDayOfMonth)
return true;

else
return false;

}
Pick myMonth one less, equal and one greater
then todayMonth.

Pick myDayOfMonth one less, equal and one
greater than todayDayOfMonth

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 50

Outline of Lecture 19

• Inspecting an example Class's code for paths.

• Constructing an internal white-box test suite.

• Correcting errors by Ad-hoc Debugging.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 51

Example - Person
White-box test method

• If today’s date is October 28, 1998

• Construct test cases for birth dates:
– September 28, 1950 - should be: 48

– October 28, 1950 - should be: 48

– November 28, 1950 - should be: 47

– October 27, 1950 - should be: 48

– October 29, 1950 - should be: 47

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 52

Test Example - Person
code for white box test method 1

public static void test() {

Person person;
String aName;

// check Constructor for name init and getName()
person = new Person("Barney", new Date(68, 11, 15));
aName = person.getName();
System.out.println(aName);
System.out.println(“Should be:Barney”);

// check setName(String);
person.setName("Fred");
aName = person.getName();
System.out.println(aName);
System.out.println(“Should be:Fred”);

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 53

Test Example - Person
code for white box test method 2

// check constructor for birtdate and getAge()
person = new Person("Barney", new Date(50, 9, 28));
System.out.println(person.getAge());
System.out.println(“Should be:48”);
person = new Person("Barney", new Date(50, 10, 28));
System.out.println(person.getAge());
System.out.println(“Should be:48”);
person = new Person("Barney", new Date(50, 11, 28));
System.out.println(person.getAge());
System.out.println(“Should be:47”);
person = new Person("Barney", new Date(50, 10, 27));
System.out.println(person.getAge());
System.out.println(“Should be:48”);
person = new Person("Barney", new Date(50, 10, 29));
System.out.println(person.getAge());
System.out.println(“Should be:47”);

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 54

Output of Person
White-box test method

• We have found another bug!

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 55

Outline of Lecture 19

• Inspecting an example Class's code for paths.

• Constructing an internal white-box test suite.

• Correcting errors by Ad-hoc Debugging.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 56

Ad-hoc Debugging
• Assume that testing uncovered an error

when the value of a variable called
myVariable was output.

• The error occurred sometime between when
the program started and when the output
statement was performed.

• By examining the values that myVariable
was bound to at various points of program
execution, the location of the bug can be
narrowed.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 57

Examining Program State

• There are three common techniques for
examining program state:
– tracing the code by hand and recording the state

when it changes

– putting output statements into the code
whenever a variable is rebound

– using an automated debugger to step through
the execution and examine the program state

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 58

Example - Person
Ad-hoc debugging - output statements: (1)

private boolean hadBirthdayThisYear() {
/* Return true if I have already had my

birthday this year. */
Date today; int todayMonth;
int myMonth; int myDayOfMonth;
int todayDayOfMonth;

today = new Date();
System.out.print(“today: “);
System.out.println(today.toString());
System.out.print(“birthdate: “);
System.out.println(this.birthdate.toString());
...

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 59

Output of Person
Ad-hoc debugging - output statements

• The months of the birthdates are wrong!

September 28, 1950
October 28, 1950
November 28, 1950
October 27, 1950
October 29, 1950

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 60

Output of Person
Ad-hoc debugging - output statements

• Find all places in the code, before the
incorrect output, where the variable
birthdate is rebound.

• Find all places in the code, before the
incorrect output, where a message is sent to
the birthdate object that could change its
state.

• Put output statements after these places.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 61

Example - Person
references to birthdate

import java.util.*;
public class Person {
/* Each instance ... */

/* Constructors */
public Person(String aString, Date aDate) {
/* Initialize me ... */

this.name = aString;
this.birthdate = aDate;
System.out.print(“birthdate: “);
System.out.println(this.birthdate);

}

birthdate reference

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 62

Example - Person
references to birthdate

public int getAge() {
/*… Return my current age. … */

Date today; int age;
int todayYear; int currentYear;

today = new Date();
todayYear = today.getYear();
currentYear = this.birthdate.getYear();
System.out.print(“birthdate: “);
System.out.println(this.birthdate);
age = todayYear - currentYear;
if (! this.hadBirthdayThisYear()) age = age - 1;
return age;

}

birthdate reference

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 63

Output of Person
Ad-hoc debugging - output statements

• The months are wrong in the constructor!

September 28, 1950
October 28, 1950
November 28, 1950
October 27, 1950
October 29, 1950

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 64

Example - Person
Ad-hoc debugging - output statements

• The output statements indicate that the birthdate is
incorrect when it is first passed to the constructor:

/* Constructors */
public Person(String aString, Date aDate) {
/* Initialize me … */

this.name = aString;
this.birthdate = aDate;

}
person = new Person("Barney", new Date(50, 9, 28));

• Check the spec of the Date constructor to see why
Date(50, 9, 28) seems to return October 28 instead of
September 28

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 65

Example - Person
Date Constructor Specification:

public Date()

Allocates a Date object and initializes it so that it
represents midnight, local time, at the beginning of the day
specified by the year, month, and date arguments.

Parameters:

year - the year minus 1900.

month - the month between 0-11.

date - the day of the month between 1-31.

The month must be from 0 - 11
instead of from 1 - 12!

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 66

Example - Person
Fix the test method:

• The bug was actually in the test method, not the
class itself.

• The test method must be modified.

• Also include documentation in the test method
that indicates how to use the Date constructor
properly.

• Re-run the test.

• Remove the debugging code and re-run it again.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 67

Example - Person
final code for white box test method 1

public static void test() {

Person person;
String aName;

// check Constructor for name init and getName()
person = new Person("Barney", new Date(68, 11, 15));
aName = person.getName();
System.out.println(aName);
System.out.println(“Should be:Barney”);

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 68

Example - Person
final code for white box test method 2

// check setName(String);
person.setName("Fred");
aName = person.getName();
System.out.println(aName);
System.out.println(“Should be:Fred”);

// check constructor for birtdate and getAge()
person = new Person("Barney", new Date(50, 8, 28));

// September 28, 1950, since month: 0-11, day: 1-31
System.out.println(person.getAge());
System.out.println(“Should be:48”);
person = new Person("Barney", new Date(50, 9, 28));
System.out.println(person.getAge());
System.out.println(“Should be:48”);

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 69

Example - Person
final code for white box test method 3

person = new Person("Barney", new Date(50, 10, 28));
System.out.println(person.getAge());
System.out.println(“Should be:47”);
person = new Person("Barney", new Date(50, 9, 27));
System.out.println(person.getAge());
System.out.println(“Should be:48”);
person = new Person("Barney", new Date(50, 9, 29));
System.out.println(person.getAge());
System.out.println(“Should be:47”);

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 70

Output of Person
White-box testing

