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Objectives of Lecture 21

Searching

Introduce two techniques for searching for an
element in a collection;

e Learn sequential search algorithm;

Learn the binary search algorithm for ordered
collections.

¢ Learn how to evaluate the complexity of an
algorithm and compare between algorithms.

Outline of Lecture 21

Review the simple array examples
¢ Sequential search approach
Complexity of sequential search

« Binary search approach
Complexity of binary search

« Compare sequential search and
binary search
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Array Example

// Find the largest element in an array of ifts MarkArray
5010
int markArray[] = {50, 37, 71, 99, 63}; 371
int index; ;; g
int max; 531 4
index = 0; .
max = markArray[index]; index=5
for (index = 1; index < markArray.length; index++)
if (markArray[index] > max) max
max = markArray[index];
System.out.printin(max);
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Array Example2

// Find the index of the largest element in an MarkATay
array of ints 5010
int markArray[] = {50, 37, 71, 99, 63}; 371
int index; ;; g
int indexOfMax; 4
index = 0; '
indexOfMax = 0; index =5

for (index = 1; index < markArray.length; index++)
if (markArray[index] > markArray[indexOfMax])  indexOfMax

indexOfMax = index;

System.out.printin(indexOfMax);
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Outline of Lecture 21 i

Review the simple array examples
Sequential search approach
Complexity of sequential search
« Binary search approach
Complexity of binary search

¢ Compare sequential search and
binary search

The Search Problem ﬁ

« Given a container, find the index of a particulaf

element, called the key.
¢ Technique applies for vectors, arrays, files, et

 Applications: information retrieval, database
querying, etc.

-30
25|50/10]95|75/30| 70| 55| 60| 80
Element Collection
sought for
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Sequential Search

¢ Compare the key to each element in turn,
until the correct element is found, and
return its index.

25/50]10] 95] 75730770 55/ 60| 80

{30]30]30]30]30! 30 @’@/

Sequential Search Code

Compare all elements of the collection until we find the key.

/* a sequential search code (first tentative) */
public static int sequential_search( int data[], int key ) {
boolean found = false;
intindex = 0;

while ( found) {
if ( key == datafindex] )
found = true;
else
index = index + 1;

return index;

)

}
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Element not found Search Algorithm
INPUT: data: array ofint; key: int;

¢ We must take into account that the key we
are searching for may not be in the array.

« In this case we must return a special index,
say -1.

(25150 10| 95|75/ 30/ 70| 51 60/ &0

{35/35/35]35/ 35 35] 35353535%

OUTPUT: index : an int such that
datafindex] == key if key is in data|
or-1 if key is not stored in data.
Method:
1. index = 0; found=false;
2. While ( not found and index < data.length )
check similarity datafindex] and key
index = index + 1
3. if notfound then index =-1;
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/* a sequential search method */
public static int sequential_search( int data[], int key ) {
boolean found = false;
intindex = 0;

while ( 'found && index < dta.length ) {
if ( key == datafindex] )
found = true;
else

index = index + 1; Revised Sequentia|
Search Code

}

if (found) index =-1;
return index;

}
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Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach
Complexity of binary search

Compare sequential search and
binary search
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Complexity Analysis

¢ How efficient is this algorithm?

¢ In general if we have an algorithm that does
something witn objects, we want to express th
time efficiency of the algorithm as a functionrof

* Such an expression is called thee complexity
of the algorithm.

¢ In the case of search, we can count the numbgr of
comparison operations between the key and the

elements.
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Worst, Best and Average cases

¢ In fact, we usually have multiple
expressions:
— the worst case complexity,
— the best case complexity
— the average case complexity.
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Complexity of Sequential Search

¢ How many comparison operations are required
a sequential search of an n-element container?

* In the worst cas® n.

In the best cas® 1.

In the average case:
1+2+3+.4+n_ n(n+1) _ (n+)

2 2
¢ In this case, we saynthe complnexity of Search ig
the order oh, denoted a®(n).

e Can we improve this algorithm?
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¢ Review the simple array examples
¢ Sequential search approach

¢ Complexity of sequential search
¢ Binary search approach

« Complexity of binary search

¢ Compare sequential search and
binary search
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Binary Search

« |f the elements are orderade can do
better.
¢ Guess the middle and adjust accordingly.

The order
is important

Y
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Binary Search Algorithm

[ guess= (low + high) /2 ]
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Strategy of Binary Search
Given an ordered array of integers, and a value of integer, searcl for
the value in the array using an approactbafide and Conquer .

?

?
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Like searching in a
dictionary, calendar or
white pages.

Similar strategy as gues:
game in Lab exercise 6.
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Binary Search Code
Divide in 2 between lower and upper bounds until we find the kgy.

/* abinary search code of ordered array (first tentative) */
public static int binary_search( int data[], int key ) {
boolean found = false;
int guess; int low = 0O; int high=data.leigt;

while ( found) {
guess = (high+low)/2;
if ( key == data[guess] )found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

}

return guess;

}
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Element not found

\ = (low + high) /2 |

10| 25/ 30| 50| 55| 60| 70| 75| 80| 95| [high = -1
\ = (low + high) /2 ]

10| 25[30/ 50| 55| 60| 70| 75| 80| 95| [low = +1
= (low + high) /2 ]
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Element not found (con’t)

10] 25|30/ 50] 55| 60 70| 75| 80| 95| [low = +1
\ = (low + high) /2 ]

10| 25/ 30/ 50| 55| 60 70| 75| 80| 95| [high = -1
\ = (low + high) /2 ]

B
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Binary Search Agorithm

INPUT: data: array ofordered int; key: int;
OUTPUT: index : an int such that
datafindex] = = key if key is in data,
or -1 if key is not stored in data.
Method:
1. lower = 0; upper = length;
2. While ( not found && low < =upper )
index = (lower + upper) /2;
check similarity datafindex] and key
if similar then found, otherwise
if key < datafindex]
upper = index-1;
else lower = index +1;
3. If (datafindex] != key) index = -1;
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/* abinary search code of ordered array */
public static int binary_search( int data[], int key ) {
boolean found = false;
int guess; int low = 0O; int high=data.leigt;

while ( found && low <= high) {
guess = (high+low)/2;
if ( key == data[guess] )found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

<=

}
if (! found) guess = -1; Revised Binary
return guess;

} Search Code
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_ e Worst-case Binaly Search
Outline of Lecture 21 S

¢

¢ Review the simple array examples
¢ Sequential search approach
Complexity of sequential search
Binary search approach
Complexity of binary search

Compare sequential search and
binary search
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< Each time we guess, we divide the list in halr:

« In the worst case:
— 10 elements, make guess 1, then
— 5 elements, make guess 2, then
— 2 elements, make guess 3, then
— 1 element, make guess 4, done3 S

1
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Worst-case Binaly Search(con't)
« If there were 15 elements:

— 15 elements, make guess 1, then

— 7 elements, make guess 2, then

— 3 elements, make guess 3, then

— 1 elements, make guess 4, done

These results are the same, but if we have
from 16 to 31 elements it takes 5 guesses.
This formula is: [log, (n) +1
* log, (n) is number of times you have to

dividenby 2 toget 1
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Average-case Binay Search

« If there were 15 elements:
— 1 element takes 1 guess
— 2 elements take 2 guesses
— 4 elements take 3 guesses
— 8 elements take 4 guesses
¢ The average is:

YDA IFE D _29_,

¢ The average case is about one less than th
worst case, so this iéIbgz(n)[
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Time Complexity of Binary Search

The number of comparisons is proportional to the height of the
following search tree

(AP
N\

ki

The height of the tree is in the|
order of log(n).

Thus, the time complexity is
O(log,(n)).
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Sequential and Binary Search

¢ For average and worst case sequential
search, it takes(n+1) amd
2

¢ For average and worst case binary search, if

takes: [[bgz(n)[ an@)gz(n)ﬂ[

list |SequentigSequentig Binary | Binary .

size average| worst | average| worst Ratio

10 6 10 3 4 2

100 51 100 6 7 8

1000 501 1000 9 10 55

10000 5001 10000 13 14 384
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Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach
Complexity of binary search

Compare sequential search and
binary search
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