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• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion
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Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection 
• Repetition
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Objectives of Lecture 21

• Introduce two techniques for searching for an 
element in a collection;

• Learn sequential search algorithm;

• Learn the binary search algorithm for ordered 
collections.

• Learn how to evaluate the complexity of an 
algorithm and compare between algorithms. 

SearchingSearching
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Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and 
binary search
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Array Example
// Find the largest element in an array of ints

int  markArray[] = {50, 37, 71, 99, 63};
int  index;
int  max;
index = 0;
max = markArray[index];
for (index = 1; index < markArray.length; index++)

if (markArray[index] > max)
max = markArray[index];

System.out.println(max);
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Array Example2
// Find the index of the largest element in an 
array of ints
int  markArray[] = {50, 37, 71, 99, 63};
int  index;
int  indexOfMax;
index = 0;
indexOfMax = 0;
for (index = 1; index < markArray.length; index++)

if (markArray[index] > markArray[indexOfMax])
indexOfMax = index;

System.out.println(indexOfMax);
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Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and 
binary search
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The Search Problem

• Given a container, find the index of a particular 
element, called the key.

• Technique applies for vectors, arrays, files, etc.

• Applications: information retrieval, database 
querying, etc.

30
25 50 10 95 75 30 70 55 60 80
0 1 2 3 4 5 6 7 8 9

CollectionElement
sought for
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Sequential Search

• Compare the key to each element in turn, 
until the correct element is found, and 
return its index.

303030303030

25 50 10 95 75 30 70 55 60 80
0 1 2 3 4 5 6 7 8 9
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/*   a sequential search code (first tentative)  */
public static int sequential_search( int data[], int key ) {
boolean found = false;
int index = 0;

while ( !found) {
if ( key == data[index] )
found = true;

else
index = index + 1;

}
return index;

}

Sequential Search Code
Compare all elements of the collection until we find the key.
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Element not found

• We must take into account that the key we 
are searching for may not be in the array.

• In this case we must return a special index, 
say -1.

3535
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-1
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INPUT:  data:   array of int;   key:  int;
OUTPUT:  index : an int such that

data[index] ==  key if  key is in data, 
or -1   if  key is not stored in data.

Method: 
1.   index = 0; found=false;
2.   While ( not found  and index < data.length ) 

check similarity data[index] and key
index = index + 1

3.   if  not found then  index = -1;

Search Algorithm
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/*   a sequential search method  */
public static int sequential_search( int data[], int key ) {
boolean found = false;
int index = 0;

while ( !found && index < data.length ) {
if ( key == data[index] )
found = true;

else
index = index + 1;

}

if  (!found) index = -1;
return index;

}

Revised Sequential 
Search Code
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Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and 
binary search
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Complexity Analysis

• How efficient is this algorithm?

• In general if we have an algorithm that does 
something with n objects, we want to express the 
time efficiency of the algorithm as a function of n.

• Such an expression is called the time complexity
of the algorithm.

• In the case of search, we can count the number of 
comparison operations between the key and the 
elements.
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Worst, Best and Average cases

• In fact, we usually have multiple 
expressions:
– the worst case complexity,

– the best case complexity

– the average case complexity.
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Complexity of Sequential Search

• How many comparison operations are required for 
a sequential search of an n-element container?

• In the worst case Î n.
• In the best case Î 1.
• In the average case:

• In this case, we say the complexity of Search is in 
the order of n, denoted as O(n).

• Can we improve this algorithm?
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Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and 
binary search
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Binary Search
• If the elements are ordered, we can do 

better.

• Guess the middle and adjust accordingly.

30

too big

1
30

too small

2
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30
3

The order
is important
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Binary Search Algorithm

30

high = guess- 1

guess= (low + high) / 2

G HL

low = guess+ 1
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G guess= (low + high) / 2

G guess= (low + high) / 2
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Strategy of Binary Search:
Given an ordered array of integers, and a value of integer, search for 
the value in the array using an approach of  Divide and Conquer .

? ?

? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?? ? ? ?

? ?? ? ? ? ? ?

? ? ??
Like searching in a 
dictionary, calendar or 
white pages.
Similar strategy as guess 
game in Lab exercise 6.
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/*   a binary search code of ordered array (first tentative)  */
public static int binary_search( int data[], int key ) {
boolean found = false;
int guess; int low = 0; int high=data.length-1;

while ( !found) {
guess = (high+low)/2;
if ( key == data[guess] )found = true;
else if (key < data[guess])  high=guess-1;
else low = guess+1;

}
return guess;

}

Binary Search Code
Divide in 2 between lower and upper bounds until we find the key.
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Element not found

35

guess= (low + high) / 2
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Element not found (con’t)

35 L HG

low <= high
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INPUT:     data:   array of  ordered int;  key: int;
OUTPUT:  index : an int such that

data[index] = = key if  key is in data, 
or -1   if  key is not stored in data.

Method: 
1.   lower = 0;  upper = length;
2.   While ( not found && low < =upper )

index = (lower + upper) /2;
check similarity data[index] and key
if similar then found, otherwise

if  key  < data[index] 
upper =  index-1;

else   lower = index +1;
3.   If  ( data[index] != key )  index = -1;

Binary Search Algorithm
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/*   a binary search code of ordered array  */
public static int binary_search( int data[], int key ) {
boolean found = false;
int guess; int low = 0; int high=data.length-1;

while ( !found && low <= high) {
guess = (high+low)/2;
if ( key == data[guess] )found = true;
else if (key < data[guess])  high=guess-1;
else low = guess+1;

}
if (! found) guess = -1;
return guess;

}

Revised Binary 
Search Code
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Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and 
binary search
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Worst-case Binary Search
• Each time we guess, we divide the list in half:

• In the worst case:
– 10 elements, make guess 1, then

– 5 elements, make guess 2, then

– 2 elements, make guess 3, then

– 1 element, make guess 4, done

1 23 4

1 2
3

4
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Worst-case Binary Search (con’t)
• If there were 15 elements:

– 15 elements, make guess 1, then

– 7 elements, make guess 2, then

– 3 elements, make guess 3, then

– 1 elements, make guess 4, done

• These results are the same, but if we have 
from 16 to 31 elements it takes 5 guesses.

• This formula is: 

• log2 (n) is number of times you have to 
divide n by 2 to get 1

 1)(log
2

+n
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Average-case Binary Search
• If there were 15 elements:

– 1 element takes 1 guess

– 2 elements take 2 guesses

– 4 elements take 3 guesses

– 8 elements take 4 guesses

• The average is:

• The average case is about one less than the 
worst case, so this is:  )(log

2
n

3
15

49

15
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Time Complexity of Binary Search
The number of comparisons is proportional to the height of  the 
following search tree:

? ?

? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?? ? ? ?

? ?? ? ? ? ? ?

? ? ??

The height of the tree is in the 
order of  log2(n).

Thus, the time complexity is   
O(log2(n)).
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Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and 
binary search
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Sequential and Binary Search
• For average and worst case sequential 

search, it takes:             and  n.

• For average and worst case binary search, it 
takes:                   and                     .

list
size

Sequential
average

Sequential
worst

Binary
average

Binary
worst

10 6 10 3 4
100 51 100 6 7
1000 501 1000 9 10
10000 5001 10000 13 14

2

)1( +n

 )(log
2

n  1)(log
2

+n

Ratio

2
8

55
384


