
1

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 1

Structural Programming
and Data Structures

Dr. Osmar R. Zaïane

University of Alberta

Winter 2000

CMPUT 102: Searching

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 2

• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion

2

Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection
• Repetition

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 3

Objectives of Lecture 21

• Introduce two techniques for searching for an
element in a collection;

• Learn sequential search algorithm;

• Learn the binary search algorithm for ordered
collections.

• Learn how to evaluate the complexity of an
algorithm and compare between algorithms.

SearchingSearching

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 4

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 5

Array Example
// Find the largest element in an array of ints

int markArray[] = {50, 37, 71, 99, 63};
int index;
int max;
index = 0;
max = markArray[index];
for (index = 1; index < markArray.length; index++)

if (markArray[index] > max)
max = markArray[index];

System.out.println(max);

max

50
37
71
99
63

markArray

0
1
2
3
4

50

index
0

50

index
1

71

index
2

99

index
3index
4

index=5

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 6

Array Example2
// Find the index of the largest element in an
array of ints
int markArray[] = {50, 37, 71, 99, 63};
int index;
int indexOfMax;
index = 0;
indexOfMax = 0;
for (index = 1; index < markArray.length; index++)

if (markArray[index] > markArray[indexOfMax])
indexOfMax = index;

System.out.println(indexOfMax);

indexOfMax

50
37
71
99
63

markArray

0
1
2
3
4

0

index
1

0

index
2

2

index
3

3

index
4

33

index = 5

2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 7

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 8

The Search Problem

• Given a container, find the index of a particular
element, called the key.

• Technique applies for vectors, arrays, files, etc.

• Applications: information retrieval, database
querying, etc.

30
25 50 10 95 75 30 70 55 60 80
0 1 2 3 4 5 6 7 8 9

CollectionElement
sought for

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 9

Sequential Search

• Compare the key to each element in turn,
until the correct element is found, and
return its index.

303030303030

25 50 10 95 75 30 70 55 60 80
0 1 2 3 4 5 6 7 8 9

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 10

/* a sequential search code (first tentative) */
public static int sequential_search(int data[], int key) {
boolean found = false;
int index = 0;

while (!found) {
if (key == data[index])
found = true;

else
index = index + 1;

}
return index;

}

Sequential Search Code
Compare all elements of the collection until we find the key.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 11

Element not found

• We must take into account that the key we
are searching for may not be in the array.

• In this case we must return a special index,
say -1.

3535

25 50 10 95 75 30 70 55 60 80
0 1 2 3 4 5 6 7 8 9

35 35 35 35 35 35 35 35 35

-1

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 12

INPUT: data: array of int; key: int;
OUTPUT: index : an int such that

data[index] == key if key is in data,
or -1 if key is not stored in data.

Method:
1. index = 0; found=false;
2. While (not found and index < data.length)

check similarity data[index] and key
index = index + 1

3. if not found then index = -1;

Search Algorithm

3

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 13

/* a sequential search method */
public static int sequential_search(int data[], int key) {
boolean found = false;
int index = 0;

while (!found && index < data.length) {
if (key == data[index])
found = true;

else
index = index + 1;

}

if (!found) index = -1;
return index;

}

Revised Sequential
Search Code

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 14

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 15

Complexity Analysis

• How efficient is this algorithm?

• In general if we have an algorithm that does
something with n objects, we want to express the
time efficiency of the algorithm as a function of n.

• Such an expression is called the time complexity
of the algorithm.

• In the case of search, we can count the number of
comparison operations between the key and the
elements.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 16

Worst, Best and Average cases

• In fact, we usually have multiple
expressions:
– the worst case complexity,

– the best case complexity

– the average case complexity.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 17

Complexity of Sequential Search

• How many comparison operations are required for
a sequential search of an n-element container?

• In the worst case Î n.
• In the best case Î 1.
• In the average case:

• In this case, we say the complexity of Search is in
the order of n, denoted as O(n).

• Can we improve this algorithm?

2

)1(

2

)1(...321 +=+=++++ n

n

nn

n

n

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 18

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

4

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 19

Binary Search
• If the elements are ordered, we can do

better.

• Guess the middle and adjust accordingly.

30

too big

1
30

too small

2

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

30
3

The order
is important

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 20

Binary Search Algorithm

30

high = guess- 1

guess= (low + high) / 2

G HL

low = guess+ 1

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

L H

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

L H

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

G guess= (low + high) / 2

G guess= (low + high) / 2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 21

Strategy of Binary Search:
Given an ordered array of integers, and a value of integer, search for
the value in the array using an approach of Divide and Conquer .

? ?

? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?? ? ? ?

? ?? ? ? ? ? ?

? ? ??
Like searching in a
dictionary, calendar or
white pages.
Similar strategy as guess
game in Lab exercise 6.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 22

/* a binary search code of ordered array (first tentative) */
public static int binary_search(int data[], int key) {
boolean found = false;
int guess; int low = 0; int high=data.length-1;

while (!found) {
guess = (high+low)/2;
if (key == data[guess])found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

}
return guess;

}

Binary Search Code
Divide in 2 between lower and upper bounds until we find the key.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 23

Element not found

35

guess= (low + high) / 2

HGL

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

high = guess- 1

L HG

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

guess= (low + high) / 2

low = guess+ 1

L HG

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

guess= (low + high) / 2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 24

Element not found (con’t)

35 L HG

low <= high

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

H

low = guess+ 1

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

guess= (low + high) / 2LG

high = guess- 1

H L

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

G guess= (low + high) / 2

5

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 25

INPUT: data: array of ordered int; key: int;
OUTPUT: index : an int such that

data[index] = = key if key is in data,
or -1 if key is not stored in data.

Method:
1. lower = 0; upper = length;
2. While (not found && low < =upper)

index = (lower + upper) /2;
check similarity data[index] and key
if similar then found, otherwise

if key < data[index]
upper = index-1;

else lower = index +1;
3. If (data[index] != key) index = -1;

Binary Search Algorithm

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 26

/* a binary search code of ordered array */
public static int binary_search(int data[], int key) {
boolean found = false;
int guess; int low = 0; int high=data.length-1;

while (!found && low <= high) {
guess = (high+low)/2;
if (key == data[guess])found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

}
if (! found) guess = -1;
return guess;

}

Revised Binary
Search Code

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 27

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 28

Worst-case Binary Search
• Each time we guess, we divide the list in half:

• In the worst case:
– 10 elements, make guess 1, then

– 5 elements, make guess 2, then

– 2 elements, make guess 3, then

– 1 element, make guess 4, done

1 23 4

1 2
3

4

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 29

Worst-case Binary Search (con’t)
• If there were 15 elements:

– 15 elements, make guess 1, then

– 7 elements, make guess 2, then

– 3 elements, make guess 3, then

– 1 elements, make guess 4, done

• These results are the same, but if we have
from 16 to 31 elements it takes 5 guesses.

• This formula is:

• log2 (n) is number of times you have to
divide n by 2 to get 1

 1)(log
2

+n

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 30

Average-case Binary Search
• If there were 15 elements:

– 1 element takes 1 guess

– 2 elements take 2 guesses

– 4 elements take 3 guesses

– 8 elements take 4 guesses

• The average is:

• The average case is about one less than the
worst case, so this is:  )(log

2
n

3
15

49

15

)4*8()3*4()2*2()1*1(
≈=+++

6

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 31

Time Complexity of Binary Search
The number of comparisons is proportional to the height of the
following search tree:

? ?

? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?? ? ? ?

? ?? ? ? ? ? ?

? ? ??

The height of the tree is in the
order of log2(n).

Thus, the time complexity is
O(log2(n)).

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 32

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 33

Sequential and Binary Search
• For average and worst case sequential

search, it takes: and n.

• For average and worst case binary search, it
takes: and .

list
size

Sequential
average

Sequential
worst

Binary
average

Binary
worst

10 6 10 3 4
100 51 100 6 7
1000 501 1000 9 10
10000 5001 10000 13 14

2

)1(+n

 )(log
2

n  1)(log
2

+n

Ratio

2
8

55
384

