
1

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 1

Structural Programming
and Data Structures

Dr. Osmar R. Zaïane

University of Alberta

Winter 2000

CMPUT 102: Searching

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 2

• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion

2

Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection
• Repetition

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 3

Objectives of Lecture 21

• Introduce two techniques for searching for an
element in a collection;

• Learn sequential search algorithm;

• Learn the binary search algorithm for ordered
collections.

• Learn how to evaluate the complexity of an
algorithm and compare between algorithms.

SearchingSearching

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 4

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 5

Array Example
// Find the largest element in an array of ints

int markArray[] = {50, 37, 71, 99, 63};
int index;
int max;
index = 0;
max = markArray[index];
for (index = 1; index < markArray.length; index++)

if (markArray[index] > max)
max = markArray[index];

System.out.println(max);

max

50
37
71
99
63

markArray

0
1
2
3
4

50

index
0

50

index
1

71

index
2

99

index
3index
4

index=5

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 6

Array Example2
// Find the index of the largest element in an
array of ints
int markArray[] = {50, 37, 71, 99, 63};
int index;
int indexOfMax;
index = 0;
indexOfMax = 0;
for (index = 1; index < markArray.length; index++)

if (markArray[index] > markArray[indexOfMax])
indexOfMax = index;

System.out.println(indexOfMax);

indexOfMax

50
37
71
99
63

markArray

0
1
2
3
4

0

index
1

0

index
2

2

index
3

3

index
4

33

index = 5

2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 7

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 8

The Search Problem

• Given a container, find the index of a particular
element, called the key.

• Technique applies for vectors, arrays, files, etc.

• Applications: information retrieval, database
querying, etc.

30
25 50 10 95 75 30 70 55 60 80
0 1 2 3 4 5 6 7 8 9

CollectionElement
sought for

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 9

Sequential Search

• Compare the key to each element in turn,
until the correct element is found, and
return its index.

303030303030

25 50 10 95 75 30 70 55 60 80
0 1 2 3 4 5 6 7 8 9

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 10

/* a sequential search code (first tentative) */
public static int sequential_search(int data[], int key) {
boolean found = false;
int index = 0;

while (!found) {
if (key == data[index])
found = true;

else
index = index + 1;

}
return index;

}

Sequential Search Code
Compare all elements of the collection until we find the key.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 11

Element not found

• We must take into account that the key we
are searching for may not be in the array.

• In this case we must return a special index,
say -1.

3535

25 50 10 95 75 30 70 55 60 80
0 1 2 3 4 5 6 7 8 9

35 35 35 35 35 35 35 35 35

-1

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 12

INPUT: data: array of int; key: int;
OUTPUT: index : an int such that

data[index] == key if key is in data,
or -1 if key is not stored in data.

Method:
1. index = 0; found=false;
2. While (not found and index < data.length)

check similarity data[index] and key
index = index + 1

3. if not found then index = -1;

Search Algorithm

3

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 13

/* a sequential search method */
public static int sequential_search(int data[], int key) {
boolean found = false;
int index = 0;

while (!found && index < data.length) {
if (key == data[index])
found = true;

else
index = index + 1;

}

if (!found) index = -1;
return index;

}

Revised Sequential
Search Code

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 14

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 15

Complexity Analysis

• How efficient is this algorithm?

• In general if we have an algorithm that does
something with n objects, we want to express the
time efficiency of the algorithm as a function of n.

• Such an expression is called the time complexity
of the algorithm.

• In the case of search, we can count the number of
comparison operations between the key and the
elements.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 16

Worst, Best and Average cases

• In fact, we usually have multiple
expressions:
– the worst case complexity,

– the best case complexity

– the average case complexity.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 17

Complexity of Sequential Search

• How many comparison operations are required for
a sequential search of an n-element container?

• In the worst case Î n.
• In the best case Î 1.
• In the average case:

• In this case, we say the complexity of Search is in
the order of n, denoted as O(n).

• Can we improve this algorithm?

2

)1(

2

)1(...321 +=+=++++ n

n

nn

n

n

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 18

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

4

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 19

Binary Search
• If the elements are ordered, we can do

better.

• Guess the middle and adjust accordingly.

30

too big

1
30

too small

2

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

30
3

The order
is important

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 20

Binary Search Algorithm

30

high = guess- 1

guess= (low + high) / 2

G HL

low = guess+ 1

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

L H

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

L H

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

G guess= (low + high) / 2

G guess= (low + high) / 2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 21

Strategy of Binary Search:
Given an ordered array of integers, and a value of integer, search for
the value in the array using an approach of Divide and Conquer .

? ?

? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?? ? ? ?

? ?? ? ? ? ? ?

? ? ??
Like searching in a
dictionary, calendar or
white pages.
Similar strategy as guess
game in Lab exercise 6.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 22

/* a binary search code of ordered array (first tentative) */
public static int binary_search(int data[], int key) {
boolean found = false;
int guess; int low = 0; int high=data.length-1;

while (!found) {
guess = (high+low)/2;
if (key == data[guess])found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

}
return guess;

}

Binary Search Code
Divide in 2 between lower and upper bounds until we find the key.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 23

Element not found

35

guess= (low + high) / 2

HGL

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

high = guess- 1

L HG

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

guess= (low + high) / 2

low = guess+ 1

L HG

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

guess= (low + high) / 2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 24

Element not found (con’t)

35 L HG

low <= high

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

H

low = guess+ 1

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

guess= (low + high) / 2LG

high = guess- 1

H L

10 25 30 50 55 60 70 75 80 95
0 1 2 3 4 5 6 7 8 9

G guess= (low + high) / 2

5

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 25

INPUT: data: array of ordered int; key: int;
OUTPUT: index : an int such that

data[index] = = key if key is in data,
or -1 if key is not stored in data.

Method:
1. lower = 0; upper = length;
2. While (not found && low < =upper)

index = (lower + upper) /2;
check similarity data[index] and key
if similar then found, otherwise

if key < data[index]
upper = index-1;

else lower = index +1;
3. If (data[index] != key) index = -1;

Binary Search Algorithm

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 26

/* a binary search code of ordered array */
public static int binary_search(int data[], int key) {
boolean found = false;
int guess; int low = 0; int high=data.length-1;

while (!found && low <= high) {
guess = (high+low)/2;
if (key == data[guess])found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

}
if (! found) guess = -1;
return guess;

}

Revised Binary
Search Code

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 27

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 28

Worst-case Binary Search
• Each time we guess, we divide the list in half:

• In the worst case:
– 10 elements, make guess 1, then

– 5 elements, make guess 2, then

– 2 elements, make guess 3, then

– 1 element, make guess 4, done

1 23 4

1 2
3

4

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 29

Worst-case Binary Search (con’t)
• If there were 15 elements:

– 15 elements, make guess 1, then

– 7 elements, make guess 2, then

– 3 elements, make guess 3, then

– 1 elements, make guess 4, done

• These results are the same, but if we have
from 16 to 31 elements it takes 5 guesses.

• This formula is:

• log2 (n) is number of times you have to
divide n by 2 to get 1

 1)(log
2

+n

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 30

Average-case Binary Search
• If there were 15 elements:

– 1 element takes 1 guess

– 2 elements take 2 guesses

– 4 elements take 3 guesses

– 8 elements take 4 guesses

• The average is:

• The average case is about one less than the
worst case, so this is:)(log

2
n

3
15

49

15

)4*8()3*4()2*2()1*1(
≈=+++

6

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 31

Time Complexity of Binary Search
The number of comparisons is proportional to the height of the
following search tree:

? ?

? ? ? ? ? ? ? ?? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ?? ? ? ?

? ?? ? ? ? ? ?

? ? ??

The height of the tree is in the
order of log2(n).

Thus, the time complexity is
O(log2(n)).

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 32

Outline of Lecture 21

• Review the simple array examples

• Sequential search approach

• Complexity of sequential search

• Binary search approach

• Complexity of binary search

• Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 33

Sequential and Binary Search
• For average and worst case sequential

search, it takes: and n.

• For average and worst case binary search, it
takes: and .

list
size

Sequential
average

Sequential
worst

Binary
average

Binary
worst

10 6 10 3 4
100 51 100 6 7
1000 501 1000 9 10
10000 5001 10000 13 14

2

)1(+n

)(log
2

n 1)(log
2

+n

Ratio

2
8

55
384

