Structural Programming
and Data Structures

Winter 2000

Course Content

* Introduction * Vectors
« Objects « Testing/Debugging
¢ Methods * Arrays

. + Tracing Programsés Searching
CMPUT 102: Searching + Object State % Files I/O
. « Sharing resources | * Sorting
Dr. Osmar R. Zaiane * Selection * Inheritance
* Repetition « Recursion
=
University of Alberta
£ Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta g 1 [1Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta g - 2
=F =F
A3

Objectives of Lecture 21

Searching

Introduce two techniques for searching for an
element in a collection;

e Learn sequential search algorithm;

Learn the binary search algorithm for ordered
collections.

¢ Learn how to evaluate the complexity of an
algorithm and compare between algorithms.

Outline of Lecture 21

Review the simple array examples
¢ Sequential search approach
Complexity of sequential search

« Binary search approach
Complexity of binary search

« Compare sequential search and
binary search

(1Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures. Universiy of Aberta g 3
So*

(1Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures. Universiy of Aberta g 4
L3

Array Example

// Find the largest element in an array of ifts MarkArray
5010
int markArray[] = {50, 37, 71, 99, 63}; 371
int index; ;; g
int max; 531 4
index = 0; .
max = markArray[index]; index=5
for (index = 1; index < markArray.length; index++)
if (markArray[index] > max) max
max = markArray[index];
System.out.printin(max);

[1Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g 5
L3

Array Example2

// Find the index of the largest element in an MarkATay
array of ints 5010
int markArray[] = {50, 37, 71, 99, 63}; 371
int index; ;; g
int indexOfMax; 4
index = 0; '
indexOfMax = 0; index =5

for (index = 1; index < markArray.length; index++)
if (markArray[index] > markArray[indexOfMax]) indexOfMax

indexOfMax = index;

System.out.printin(indexOfMax);

=

[1Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures. Universiy of Aberta g 6
So*

A3
Z

w1
Outline of Lecture 21 i

Review the simple array examples
Sequential search approach
Complexity of sequential search
« Binary search approach
Complexity of binary search

¢ Compare sequential search and
binary search

The Search Problem ﬁ

« Given a container, find the index of a particulaf

element, called the key.
¢ Technique applies for vectors, arrays, files, et

 Applications: information retrieval, database
querying, etc.

-30
25|50/10]95|75/30| 70| 55| 60| 80
Element Collection
sought for

[0 Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g - 7
L3

[0 Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g - 8
So*

Sequential Search

¢ Compare the key to each element in turn,
until the correct element is found, and
return its index.

25/50]10] 95] 75730770 55/ 60| 80

{30]30]30]30]30! 30 @’@/

Sequential Search Code

Compare all elements of the collection until we find the key.

/* a sequential search code (first tentative) */
public static int sequential_search(int data[], int key) {
boolean found = false;
intindex = 0;

while (found) {
if (key == datafindex])
found = true;
else
index = index + 1;

return index;

)

}
[Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta j‘ 9 0Dr. Osmar R. Zalane, 2000 Structural Programming and Data Structures University of Aberta j‘ 10
— 1 — 1
Element not found Search Algorithm
INPUT: data: array ofint; key: int;

¢ We must take into account that the key we
are searching for may not be in the array.

« In this case we must return a special index,
say -1.

(25150 10| 95|75/ 30/ 70| 51 60/ &0

{35/35/35]35/ 35 35] 35353535%

OUTPUT: index : an int such that
datafindex] == key if key is in data|
or-1 if key is not stored in data.
Method:
1. index = 0; found=false;
2. While (not found and index < data.length)
check similarity datafindex] and key
index = index + 1
3. if notfound then index =-1;

00 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Uriversity of Aberta g - 11]
L3

£0r. Osmar R. Zaiane, 2000

Structural Programming and Data Structures University of Aberta

& 12

R

/* a sequential search method */
public static int sequential_search(int data[], int key) {
boolean found = false;
intindex = 0;

while ('found && index < dta.length) {
if (key == datafindex])
found = true;
else

index = index + 1; Revised Sequentia|
Search Code

}

if (found) index =-1;
return index;

}

[Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta i 13|
]

Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach
Complexity of binary search

Compare sequential search and
binary search

[Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta i 14]
]

Complexity Analysis

¢ How efficient is this algorithm?

¢ In general if we have an algorithm that does
something witn objects, we want to express th
time efficiency of the algorithm as a functionrof

* Such an expression is called thee complexity
of the algorithm.

¢ In the case of search, we can count the numbgr of
comparison operations between the key and the

elements.

£0r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g 15|

D

Worst, Best and Average cases

¢ In fact, we usually have multiple
expressions:
— the worst case complexity,
— the best case complexity
— the average case complexity.

£0r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g - 16

Complexity of Sequential Search

¢ How many comparison operations are required
a sequential search of an n-element container?

* In the worst cas® n.

In the best cas® 1.

In the average case:
1+2+3+.4+n_ n(n+1) _ (n+)

2 2
¢ In this case, we saynthe complnexity of Search ig
the order oh, denoted a®(n).

e Can we improve this algorithm?

(1D, Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta g 17
——

¢ Review the simple array examples
¢ Sequential search approach

¢ Complexity of sequential search
¢ Binary search approach

« Complexity of binary search

¢ Compare sequential search and
binary search

(1D, Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g 18
——

Binary Search

« |f the elements are orderade can do
better.
¢ Guess the middle and adjust accordingly.

The order
is important

Y

£0r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

University of Alberta i 19|
e
e ——

Binary Search Algorithm

[guess= (low + high) /2]

£0r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

University of Alberta i 20}
e

Strategy of Binary Search
Given an ordered array of integers, and a value of integer, searcl for
the value in the array using an approactbafide and Conquer .

?

?

N
o

KR ERER kLR
d

Like searching in a
dictionary, calendar or
white pages.

Similar strategy as gues:
game in Lab exercise 6.

£0r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g - 21]
L3
——

Binary Search Code
Divide in 2 between lower and upper bounds until we find the kgy.

/* abinary search code of ordered array (first tentative) */
public static int binary_search(int data[], int key) {
boolean found = false;
int guess; int low = 0O; int high=data.leigt;

while (found) {
guess = (high+low)/2;
if (key == data[guess])found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

}

return guess;

}

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

University of Alberta i 22
==

Element not found

\ = (low + high) /2 |

10| 25/ 30| 50| 55| 60| 70| 75| 80| 95| [high = -1
\ = (low + high) /2]

10| 25[30/ 50| 55| 60| 70| 75| 80| 95| [low = +1
= (low + high) /2]

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

University of Alberta i 23]
==

Element not found (con’t)

10] 25|30/ 50] 55| 60 70| 75| 80| 95| [low = +1
\ = (low + high) /2]

10| 25/ 30/ 50| 55| 60 70| 75| 80| 95| [high = -1
\ = (low + high) /2]

B

£0r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

University of Alberta i 24)
==

Binary Search Agorithm

INPUT: data: array ofordered int; key: int;
OUTPUT: index : an int such that
datafindex] = = key if key is in data,
or -1 if key is not stored in data.
Method:
1. lower = 0; upper = length;
2. While (not found && low < =upper)
index = (lower + upper) /2;
check similarity datafindex] and key
if similar then found, otherwise
if key < datafindex]
upper = index-1;
else lower = index +1;
3. If (datafindex] != key) index = -1;

£0r. Osmar R. Zaiane, 2000

/* abinary search code of ordered array */
public static int binary_search(int data[], int key) {
boolean found = false;
int guess; int low = 0O; int high=data.leigt;

while (found && low <= high) {
guess = (high+low)/2;
if (key == data[guess])found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

<=

}
if (! found) guess = -1; Revised Binary
return guess;

} Search Code

Structural Programming and Data Structures University of Aberta ‘:!AZS £ Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta ‘!‘ 26
A5 _
_ e Worst-case Binaly Search
Outline of Lecture 21 S

¢

¢ Review the simple array examples
¢ Sequential search approach
Complexity of sequential search
Binary search approach
Complexity of binary search

Compare sequential search and
binary search

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g - 27|

R

< Each time we guess, we divide the list in halr:

« In the worst case:
— 10 elements, make guess 1, then
— 5 elements, make guess 2, then
— 2 elements, make guess 3, then
— 1 element, make guess 4, done3 S

1

EIEIEKE]

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta

@ 28

R

Worst-case Binaly Search(con't)
« If there were 15 elements:

— 15 elements, make guess 1, then

— 7 elements, make guess 2, then

— 3 elements, make guess 3, then

— 1 elements, make guess 4, done

These results are the same, but if we have
from 16 to 31 elements it takes 5 guesses.
This formula is: [log, (n) +1
* log, (n) is number of times you have to

dividenby 2 toget 1

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta

& 29

R

Average-case Binay Search

« If there were 15 elements:
— 1 element takes 1 guess
— 2 elements take 2 guesses
— 4 elements take 3 guesses
— 8 elements take 4 guesses
¢ The average is:

YDA IFE D _29_,

¢ The average case is about one less than th
worst case, so this iéIbgz(n)[

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g - 30|

R

e

Time Complexity of Binary Search

The number of comparisons is proportional to the height of the
following search tree

(AP
N\

ki

The height of the tree is in the|
order of log(n).

Thus, the time complexity is
O(log,(n)).

£10r. Osmar R. Zaiane, 2000 Structural Programming and Data Structures Universiy of Aberta g - 31]

Sequential and Binary Search

¢ For average and worst case sequential
search, it takes(n+1) amd
2

¢ For average and worst case binary search, if

takes: [[bgz(n)[an@)gz(n)ﬂ[

list |SequentigSequentig Binary | Binary .

size average| worst | average| worst Ratio

10 6 10 3 4 2

100 51 100 6 7 8

1000 501 1000 9 10 55

10000 5001 10000 13 14 384
£0Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Aberta ‘i{ 33|
— 1

Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach
Complexity of binary search

Compare sequential search and
binary search

Structural Programming and Data Structures

Universiy of Aberta g - 32)

