Structural Prgrammirg
and Data Structures

Winter 2000
CMPUT 102: Searching

Dr. Osmar R. Zalane

Structural Programming and Data Structures

Course Content

* Introduction
» Objects
+ Methods

* Object State
» Sharing resources
» Selection

* Repetition

» Tracing Programas

* Vectors
» Testing/Debugging
* Arrays

Searching
* Files I/O
e Sorting
* Inheritance
* Recursion

Structural Programming and Data Structures

University of Alberta | =
e

Objectives of Lecture 21

Searching

Introduce two techniques for searching for an
element in a collection;

Learn sequential search algorithm;

Learn the binary search algorithm for ordered
collections.

Learn how to evaluate the complexity of an
algorithm and compare between algorithms.

University of Alberta | =
e

Structural Programming and Data Structures

fv @)
Outline of Lecture 21 i

V-4

3
/Z

Review the simple array exampl

=S

Structural Programming and Data Structures

Sequential search approach
Complexity of sequential search
Binary search approach

Complexity of binary search

Compare sequential search and
binary search

University of Alberta ; =
T

Array Example

/l Find the largest element in an array of if

int markArray[] = {50, 37, 71, 99, 63},

int index;

int max;

index = 0;

max = markArray[index];

for (index = 1; index < markArray.length; index-+1

if (markArray[index] > max)

max = markArray[index];

System.out.printin(max);

)

Structural Programming and Data Structures

WS

markArray

50
37
71
99
63

index=5

A WONPEFO

max
99

Array Example2

/I Find the index of the largest element in an Ma"kArTay
array of ints 5010
int markArray[] = {50, 37, 71, 99, 63}; 37| 1
int index; ;g é
int indexOfMax; =
index = 0; |
indexOfMax = 0; index =5

for (index = 1; index < markArray.length; index++)
if (markArray[index] > markArray[indexOfMax]) ndexOfMax
indexOfMax = index; 3
System.out.printin(indexOfMax);

University of Alberta | =
e

Structural Programming and Data Structures

Outline of Lecture 21 SN

-4

3
SZ)
L7

/
\

Review the simple array examples

| Sequential search approach

Complexity of sequential search
Binary search approach
Complexity of binary search

Compare sequential search and
binary search

Structural Programming and Data Structures

University of Alberta | =
e

The Search Problem

» Given a container, find the index of a particular
element, called the key.

» Technique applies for vectors, arrays, files, etc.

» Applications: information retrieval, database
guerying, etc.

-30
25|/50(/10|95|75|/30(70|55|60|80
Element Collection
sought for

University of Alberta ;i
T

Structural Programming and Data Structures

Sequential Search

« Compare the key to each element in turn,

until the correct element is found, and
return its index.

Structural Programming and Data Structures

University of Alberta ;g 9

Sequential Search Code

Compare all elements of the collection until we find the key.
[* a sequential search code (first tentative) */

public static int sequential_search(int data[], int key) {
boolean found = false;

intindex = 0;

while (!found) {

if (key == data[index])
found = true;
else

index = index + 1;
}

return index;

Structural Programming and Data Structures

University of Alberta ; & 10

Element not found

* We must take into account that the key we
are searching for may not be in the array.

* In this case we must return a special index,
say -1.

25/50/ 10/ 95/ 75/ 30| 70| 55| 60| 807

i'f?e%‘aJ_§°e5_'_[35_'_[_35_'_[3_5].?5]35[35[35[35_

Structural Programming and Data Structures

University of Alberta | g 11

Search Algorithm

INPUT: data: array of int; key: int;
OUTPUT: index : an int such that
data[index] == key if key is in data

or-1 if key is not stored in data.
Method:

1. index = 0; found=false;
2. While (not found and index < data.length)

check similarity data[index] and key
index = index + 1
3. if not found then index = -1;

Structural Programming and Data Structures

University of Alberta | % 12

[* a sequential search method */
public static int sequential_search(int data[], int key) {
boolean found = false;
intindex = 0;

while (!'found && index < data.length) {
if (key == data[index])
found = true;
e_Ise _
, naexmndert - Revised Sequential

Search Code

if (!found) index = -1,
return index;

}

Structural Programming and Data Structures

E N’
fe19)

Outline of Lecture 21 %%,Si)/

Review the simple array examples
Sequential search approach
| Complexity of sequential search

Blnary search approach
Complexity of binary search

Compare sequential search and
binary search

Structural Programming and Data Structures

Complexity Analysis

How efficient is this algorithm?
In general if we have an algorithm that does

something withn objects, we want to express the
time efficiency of the algorithm as a functionrof

Such an expression is called three complexity
of the algorithm.

In the case of search, we can count the number of
comparison operations between the key and the
elements.

Structural Programming and Data Structures

Worst, Best and Average cases

* In fact, we usually have multiple
expressions:
— the worst case complexity,
— the best case complexity
— the average case complexity.

Structural Programming and Data Structures

Complexity of Sequential Search

How many comparison operations are required for
a sequential search of an n-element container?

In the worst case& n.

In the best cas® 1.

In the average case:
1+2+3+...+n _ n(n+1) _ (n+1)

2 2
In this case, we saynthe comprexity of Search is in
the order oh, denoted a®(n).

Can we improve this algorithm?

University of Alberta ; g.— 17

Structural Programming and Data Structures

-
. 2
Outline of Lecture 21 S,

-

Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach

Complexity of binary search

Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta | *&'- 18

Binary Search

 |f the elements are orderede can do
better.

» Guess the middle and adjust accordingly.

The order
is important

A

University of Alberta | g.— 19

too big

>

too small
// N

N

Structural Programming and Data Structures

Binary Search Algorithm

| guess= (low + high) / 2 |

10/25|30|50|55] 60| 70| 75| 80| 95| |high = -1

| guess= (low + high) / 2 |

10]25[30[50| 55| 60[70| 75| 80| 95| [low = +1]

| guess= (low + high) / 2 |

@@
’
4

Structural Programming and Data Structures University of Alberta | §; 20

Strategy of Binary Search Binary Search Code

tCr;]ivenIan grciﬁred array of integers, andf&:f’%'gzg; igtoer?er’e ?earch for Divide in 2 between lower and upper bounds until we find the key.
€ value In the array Uusing an approaction quer- [* a binary search code of ordered array (first tentative) */
212121212122 ? “) 21212121212(? puinC static int binary_search(int data[], int key){
boolean found = false;
%\Q int guess; int low = 0O; int high=data.length-1;
7???'??9 Q 2[2[21212]?2]2]?
/. while (!found) {
(8\3 “ guess = (high+low)/2;
21?1?17 T |22 ﬁ? ? if (key == data[guess]) found = true;
/\.'\ — else if (key < data[guess]) high=guess-1;
Like searching in a else low = guess+1;
? \') (B\Q ?17? dictionary, calendar or } J
white pages. .
/\\ Similar strategy as guess return guess;
l “ game in Lab exercise 6. }

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures

O Dr. Osmar R. Zaiane, 2000

Element not found Element not found (con’t)

| = (low + high) / 2 |

: 10]25/30|50| 55| 60| 70| 75|80 95| |low = +1]
10[25[30|50|55] 60| 70|75 80| 95| [high = - 1] :

: | = (low + high) / 2 |
| = (low + high) / 2 |

10| 25|30|50|55| 60| 70| 75| 80| 95| |high = - 1]
10|25|30|50|55|60|70| 75|80 95| |low = +1] :

: | = (low + high) / 2 |
| = (low + high) / 2 |

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta | % 24

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta | :gg 23

Binary Search Algorithm

INPUT: data: array of ordered int; key: int;
OUTPUT: index : an int such that
data[index] = = key if key is in data,
or-1 if key is not stored in data.

Method:
1. lower =0; upper = length;
2. While (not found && low < =upper)
index = (lower + upper) /2;
check similarity data[index] and key
if similar then found, otherwise
if key < datafindex]
upper = index-1;
else lower =index +1;
3. If (data[index] = key) index =-1;

Structural Programming and Data Structures

/* a binary search code of ordered array */
public static int binary_search(int data][], int key) {
boolean found = false;
int guess; int low = 0; int high=data.length-1;
while (found && low <= high) { </
guess = (high+low)/2;
if (key == data[guess]) found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

}

if (! found) guess = -1; Revised Binary
return guess;

) Search Code

University of Alberta DN 26
e

Structural Programming and Data Structures

-4

Outline of Lecture 21 G

Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach

| Complexity of binary search

Compare sequential search and
binary search

Structural Programming and Data Structures University of Alberta | = 27
"

Worst-case Binary Search

» Each time we guess, we divide the list in half:

* In the worst case:
— 10 elements, make guess 1, then
— 5 elements, make guess 2, then
— 2 elements, make guess 3, then
— 1 element, make guess 4, done3 4

[—

I 1

Structural Programming and Data Structures University of Alberta ; = 28
T

Worst-case Binary Searchcon't)

* If there were 15 elements:
— 15 elements, make guess 1, then
— 7 elements, make guess 2, then
— 3 elements, make guess 3, then
— 1 elements, make guess 4, done

 These results are the same, but if we have
from 16 to 31 elements it takes 5 guesses.

» This formula is: log, (n) +1]

* log, (n) is number of times you have to
dividenby 2to get 1

Structural Programming and Data Structures

Average-case Binary Search

If there were 15 elements:
— 1 element takes 1 guess
— 2 elements take 2 guesses
— 4 elements take 3 guesses
— 8 elements take 4 guesses
The average is:

@*)+(2*2)+(4*3)+(8* 4) :@23

15 15

The average case is about one less than the
worst case, so this dIbg L

Structural Programming and Data Structures ~ University of Alberta | ==

Time Complexity of Binary Search
The number of comparisons is proportional to the height of the
following search tree

????????'\79??????

v
/\' N The height of the tree is in the
5o <8Q NP order of log(n).

- Thus, the time complexity is
\

/ a7 Olog(n).
—Q

V-4
O

Outline of Lecture 21 %ﬁ@

Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach
Complexity of binary search

| Compare sequential search and
binary search

Structural Programming and Data Structures ~ University of Alberta | == .

Seqguential and Binary Search

» For average and worst case sequential

search, it takes(n+1)

» For average and worst case binary search, it

2

amd

takes: [og (L anfog (n)+1
2 2

list |SequentigSequentig Binary | Binary .
size average| worst | average| worst Ratlo

10 6 10 3 4 2
100 51 100 6 7 8
1000 501 1000 9 10 55
10000 5001 10000 13 14 384

[Dr. Osmar R. Zaiane, 2000

