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Course Content

* Introduction
» Objects
+ Methods

* Object State
» Sharing resources
» Selection

* Repetition

» Tracing Programas

* Vectors
» Testing/Debugging
* Arrays

Searching
* Files I/O
e Sorting
* Inheritance
* Recursion
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Objectives of Lecture 21

Searching

Introduce two techniques for searching for an
element in a collection;

Learn sequential search algorithm;

Learn the binary search algorithm for ordered
collections.

Learn how to evaluate the complexity of an
algorithm and compare between algorithms.
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Sequential search approach
Complexity of sequential search
Binary search approach

Complexity of binary search

Compare sequential search and
binary search
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Array Example

/l Find the largest element in an array of if

int markArray[] = {50, 37, 71, 99, 63},

int index;

int max;

index = 0;

max = markArray[index];

for (index = 1; index < markArray.length; index-+1

if (markArray[index] > max)

max = markArray[index];

System.out.printin(max);

)
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Array Example2

/I Find the index of the largest element in an Ma"kArTay
array of ints 5010
int markArray[] = {50, 37, 71, 99, 63}; 37| 1
int index; ;g é
int indexOfMax; =
index = 0; |
indexOfMax = 0; index =5

for (index = 1; index < markArray.length; index++)
if (markArray[index] > markArray[indexOfMax]) ndexOfMax
indexOfMax = index; 3
System.out.printin(indexOfMax);

University of Alberta | =
e

Structural Programming and Data Structures

Outline of Lecture 21 SN

-4

3
SZ)
L7

/
\

Review the simple array examples

| Sequential search approach

Complexity of sequential search
Binary search approach
Complexity of binary search

Compare sequential search and
binary search

Structural Programming and Data Structures

University of Alberta | =
e

The Search Problem

» Given a container, find the index of a particular
element, called the key.

» Technique applies for vectors, arrays, files, etc.

» Applications: information retrieval, database
guerying, etc.

-30
25|/50(/10|95|75|/30(70|55|60|80
Element Collection
sought for
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Sequential Search

« Compare the key to each element in turn,

until the correct element is found, and
return its index.
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Sequential Search Code

Compare all elements of the collection until we find the key.
[* a sequential search code (first tentative) */

public static int sequential_search( int data[], int key ) {
boolean found = false;

intindex = 0;

while ( !found) {

if ( key == data[index] )
found = true;
else

index = index + 1;
}

return index;
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Element not found

* We must take into account that the key we
are searching for may not be in the array.

* In this case we must return a special index,
say -1.

25/50/ 10/ 95/ 75/ 30| 70| 55| 60| 807

i'f?e%‘aJ_§°e5_'_[35_'_[_35_'_[3_5].?5]35[35[35[35_
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Search Algorithm

INPUT: data: array of int; key: int;
OUTPUT: index : an int such that
data[index] == key if key is in data

or-1 if key is not stored in data.
Method:

1. index = 0; found=false;
2. While ( not found and index < data.length )

check similarity data[index] and key
index = index + 1
3. if not found then index = -1;
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[* a sequential search method */
public static int sequential_search( int data[], int key ) {
boolean found = false;
intindex = 0;

while ( !'found && index < data.length ) {
if ( key == data[index] )
found = true;
e_Ise _
, naexmndert - Revised Sequential

Search Code

if (!found) index = -1,
return index;

}
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Review the simple array examples
Sequential search approach
| Complexity of sequential search

Blnary search approach
Complexity of binary search

Compare sequential search and
binary search
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Complexity Analysis

How efficient is this algorithm?
In general if we have an algorithm that does

something withn objects, we want to express the
time efficiency of the algorithm as a functionrof

Such an expression is called three complexity
of the algorithm.

In the case of search, we can count the number of
comparison operations between the key and the
elements.
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Worst, Best and Average cases

* In fact, we usually have multiple
expressions:
— the worst case complexity,
— the best case complexity
— the average case complexity.
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Complexity of Sequential Search

How many comparison operations are required for
a sequential search of an n-element container?

In the worst case& n.

In the best cas® 1.

In the average case:
1+2+3+...+n _ n(n+1) _ (n+1)

2 2
In this case, we saynthe comprexity of Search is in
the order oh, denoted a®(n).

Can we improve this algorithm?
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Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach

Complexity of binary search

Compare sequential search and
binary search
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Binary Search

 |f the elements are orderede can do
better.

» Guess the middle and adjust accordingly.

The order
is important

A
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Binary Search Algorithm

| guess= (low + high) / 2 |

10/25|30|50|55] 60| 70| 75| 80| 95| |high = -1

| guess= (low + high) / 2 |

10]25[30[50| 55| 60[ 70| 75| 80| 95| [low = +1]

| guess= (low + high) / 2 |

@@
’
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Strategy of Binary Search Binary Search Code

tCr;]ivenIan grciﬁred array of integers, andf&:f’%'gzg; igtoer?er’e ?earch for Divide in 2 between lower and upper bounds until we find the key.
€ value In the array Uusing an approaction quer- [* a binary search code of ordered array (first tentative) */
212121212122 ? “) 21212121212(? puinC static int binary_search( int data[], int key){
boolean found = false;
%\Q int guess; int low = 0O; int high=data.length-1;
7???'??9 Q 2[2[21212]?2]2]?
/. while ( !found) {
(8\3 “ guess = (high+low)/2;
21?1?17 T |22 ﬁ? ? if (key == data[guess] ) found = true;
/\.'\ — else if (key < data[guess]) high=guess-1;
Like searching in a else low = guess+1;
? \') (B\Q ?17? dictionary, calendar or } J
white pages. .
/\\ Similar strategy as guess return guess;
l “ game in Lab exercise 6. }
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Element not found Element not found (con’t)

| = (low + high) / 2 |

: 10]25/30|50| 55| 60| 70| 75|80 95| |low = +1]
10[25[30|50|55] 60| 70|75 80| 95| [high = - 1] :

: | = (low + high) / 2 |
| = (low + high) / 2 |

10| 25|30|50|55| 60| 70| 75| 80| 95| |high = - 1]
10|25|30|50|55|60|70| 75|80 95| |low = +1] :

: | = (low + high) / 2 |
| = (low + high) / 2 |
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Binary Search Algorithm

INPUT: data: array of ordered int; key: int;
OUTPUT: index : an int such that
data[index] = = key if key is in data,
or-1 if key is not stored in data.

Method:
1. lower =0; upper = length;
2. While ( not found && low < =upper)
index = (lower + upper) /2;
check similarity data[index] and key
if similar then found, otherwise
if key < datafindex]
upper = index-1;
else lower =index +1;
3. If (data[index] = key) index =-1;

Structural Programming and Data Structures

/* a binary search code of ordered array */
public static int binary_search( int data][], int key ) {
boolean found = false;
int guess; int low = 0; int high=data.length-1;
while ( found && low <= high) { </
guess = (high+low)/2;
if ( key == data[guess]) found = true;
else if (key < data[guess]) high=guess-1;
else low = guess+1;

}

if (! found) guess = -1; Revised Binary
return guess;

) Search Code
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Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach

| Complexity of binary search

Compare sequential search and
binary search
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Worst-case Binary Search

» Each time we guess, we divide the list in half:

* In the worst case:
— 10 elements, make guess 1, then
— 5 elements, make guess 2, then
— 2 elements, make guess 3, then
— 1 element, make guess 4, done3 4

[ —

I 1
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Worst-case Binary Searchcon't)

* If there were 15 elements:
— 15 elements, make guess 1, then
— 7 elements, make guess 2, then
— 3 elements, make guess 3, then
— 1 elements, make guess 4, done

 These results are the same, but if we have
from 16 to 31 elements it takes 5 guesses.

» This formula is: log, (n) +1]

* log, (n) is number of times you have to
dividenby 2to get 1
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Average-case Binary Search

If there were 15 elements:
— 1 element takes 1 guess
— 2 elements take 2 guesses
— 4 elements take 3 guesses
— 8 elements take 4 guesses
The average is:

@*)+(2*2)+(4*3)+(8* 4) :@23

15 15

The average case is about one less than the
worst case, so this dIbg L
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Time Complexity of Binary Search
The number of comparisons is proportional to the height of the
following search tree

????????'\79??????

v
/\' N The height of the tree is in the
5o <8Q NP order of log(n).

- Thus, the time complexity is
\

/ a7 Olog(n).
—Q
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Review the simple array examples
Sequential search approach
Complexity of sequential search
Binary search approach
Complexity of binary search

| Compare sequential search and
binary search

Structural Programming and Data Structures ~ University of Alberta | == .




Seqguential and Binary Search

» For average and worst case sequential

search, it takes(n+1)

» For average and worst case binary search, it

2

amd

takes: [og (L anfog (n)+1
2 2

list |SequentigSequentig Binary | Binary .
size average| worst | average| worst Ratlo

10 6 10 3 4 2
100 51 100 6 7 8
1000 501 1000 9 10 55
10000 5001 10000 13 14 384
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