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• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion
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Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection 
• Repetition
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Objectives of Lecture 22

• Introduce the concept of a file in Java;

• Learn how to write data to files;

• Learn how to read data from files.

File Input/OutputFile Input/Output
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Outline of Lecture 22

• Files and basic operations on files

• Writing to a file (File output)

• Reading from a file (File input)
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User - input/output

• A program can input data from the user, process 
the data and output some results to the screen. The 
data is stored and manipulated in main memory.

• However, if you run the program once, obtain the 
data, exit the program and then start the program 
again, all of the data is lost.

• Main memory is volatile, in the sense that data 
stays in memory only as long as the program is still 
in execution and the computer is on. 
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Main Memory versus Disk

• In order to store data for a long period of 
time, it is better to store the data on disk.

• Data stored on disk can be accessed even 
after the program has been terminated and 
restarted again.

Main Memory

Data Data

Disk
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File - input/output

• A program that outputs data to a disk file, 
exits and then re-starts, can access the data 
again, by inputting it from the disk file.

• Java has a class called File whose instances 
are used to representdisk files.

• You can create a File object that represents 
a disk file called “people”:
File aFile;

aFile = new File(“people”);
File Object

“people”

aFile
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The File Class
• Here are some messages you can send to a File object:

boolean exists()

// returns true if the file exists

void delete()

// deletes the file.

void renameTo(File aFile)

// rename this file to the name of the given File.

• However, you cannot create a disk fileusing a File 
object, or read or write data to a disk file directly!

“people”

aFileexists ?

newname

delete
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o
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Outline of Lecture 22

• Files and basic operations on files

• Writing to a file (File output)

• Reading from a file (File input)
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FileOutputStream Class

• To create a disk file and to write to it, you need 
to create an instance of FileOutputStream “on” 
the File object:
File aFile;

FileOutputStream outputStream;

aFile = new File(“people”);

outputStream = new FileOutputStream(aFile);

• If a disk file named “people” did not exist then 
creating the FileOutputStream creates it.

• If the file already existed, it is emptied.

“people”

aFile
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PrintStream Class 

• Unfortunately, the only thing you can do with 
a FileOutputStream is to output bytes onto it.

• We usually want to output Strings or ints or 
other more interesting objects and values.

• To do this we create a PrintStream object “on” 
the FileOutputStream:

PrintStream aPrintStream;

aPrintStream = new PrintStream(outputStream);
file

FileOutputStream

PrintStream
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Output Objects

aFile

outputStream

println printStream

write to disk
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PrintStream class (con’t)

• We have already used an instance of 
PrintStream in this course, but it was not 
created on a FileStream.

• The object reference, “System.out” is bound 
to a PrintStream on the screen.

• When we send the message:
System.out.println(“hello”);

we are sending a message to an instance of 
PrintStream.
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File Output Example
import java.io.*;
public class FileOutput {
// This program is an example of file output.
public static void main(String args[]) throws Exception {

File aFile;
FileOutputStream outputStream;
PrintStream aPrintStream;
aFile = new File(”people");
outputStream = new FileOutputStream(aFile);
aPrintStream = new PrintStream(outputStream);
aPrintStream.println(”Flinstone, Fred");
aPrintStream.close();
}

}

necessary “magic” when
creating a FileOutputStream

people
Flintstone, Fred

Closing the stream is 
necessary
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Outline of Lecture 22

• Files and basic operations on files

• Writing to a file (File output)

• Reading from a file (File input)
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FileInputStream class
• To read a disk file, you need to create an 

instance of FileInputStream “on” the File 
object:

File aFile;

FileInputStream aFileStream;

aFile = new File(“people”);

aFileStream = new FileInputStream(aFile);

• If a disk file named “people” exists, the 
FileInputStream is ready to read it.

• If not, an “exception” will occur and your 
program will terminate.

“people”

aFile
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InputStreamReader class
• Unfortunately, the only thing you can do with 

a FileInputStream is to input bytes.

• We usually want to input each line of a file as 
a String or int or some other object or value.

• To do this we first create an 
InputStreamReader object “on” the 
FileInputStream that reads characters:

InputStreamReader aReader;

aReader = new InputStreamReader(aFileStream); file

FileInputStream

InputStreamReader
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BufferedReader class

• To read lines as Strings instead of reading 
characters, we need to construct a 
BufferedReader “on” the InputStreamReader:

BufferedReader aBufferedReader;

String aString;

aBufferedReader = new BufferedReader(aReader);

aString = aBufferedReader.readLine()
file

FileInputStream

InputStreamReader

BufferReader
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File Input Example

import java.io.*;
public class FileOutput {
// This program is an example of file input.

public static void main(String args[]) throws Exception {

File aFile;
FileInputStream inputStream;
InputStreamReader aReader;
BufferedReader aBufferedReader;
String aString;

necessary “magic” when
creating a FileInputStream
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File Input Example (con’t)

aFile = new File(”people");
inputStream = new FileInputStream(aFile);
aReader = new InputStreamReader(inputStream);
aBufferedReader = new BufferedReader(aReader);
aString = aBufferedReader.readLine();
System.out.println(aString);
aBufferReader.close();
}

}
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Input Objects
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Questions

• How to store a collection of objects in a file with 
objects having different instance variables? 
(records with many attributes)

• How to update a file?                                  
(delete, add, and change records)

• How to sequentially access a list of objects in a 
file, one after the other?

• How to randomly access an object in a file at a 
given position?
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Summary
• Declare a file stream
• Open file
• Write to file
• Read from file
• Close file

• Files can only be used with applications (not applets); 
• Create a file abstraction object;

• The file objects recognizes some messages
exist(), length(), renameTo(), delete()…;

• Create stream object on the file object;
• The stream object is either for input or for output ;
• It receives or sends bytes from/to the file;

• Other streams can be created on top to facilitate 
operations with strings and numbers;
• A close() message should be sent to the upper stream to 
close the I/O stream when it is not needed anymore.

In Java


