
1

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 1

Structural Programming
and Data Structures

Dr. Osmar R. Zaïane

University of Alberta

Winter 2000

CMPUT 102: File Input/Output

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 2

• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion

2

Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection
• Repetition

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 3

Objectives of Lecture 22

• Introduce the concept of a file in Java;

• Learn how to write data to files;

• Learn how to read data from files.

File Input/OutputFile Input/Output

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 4

Outline of Lecture 22

• Files and basic operations on files

• Writing to a file (File output)

• Reading from a file (File input)

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 5

User - input/output

• A program can input data from the user, process
the data and output some results to the screen. The
data is stored and manipulated in main memory.

• However, if you run the program once, obtain the
data, exit the program and then start the program
again, all of the data is lost.

• Main memory is volatile, in the sense that data
stays in memory only as long as the program is still
in execution and the computer is on.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 6

Main Memory versus Disk

• In order to store data for a long period of
time, it is better to store the data on disk.

• Data stored on disk can be accessed even
after the program has been terminated and
restarted again.

Main Memory

Data Data

Disk

2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 7

File - input/output

• A program that outputs data to a disk file,
exits and then re-starts, can access the data
again, by inputting it from the disk file.

• Java has a class called File whose instances
are used to representdisk files.

• You can create a File object that represents
a disk file called “people”:
File aFile;

aFile = new File(“people”);
File Object

“people”

aFile

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 8

The File Class
• Here are some messages you can send to a File object:

boolean exists()

// returns true if the file exists

void delete()

// deletes the file.

void renameTo(File aFile)

// rename this file to the name of the given File.

• However, you cannot create a disk fileusing a File
object, or read or write data to a disk file directly!

“people”

aFileexists ?

newname

delete

re
na

m
eT

o
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 9

Outline of Lecture 22

• Files and basic operations on files

• Writing to a file (File output)

• Reading from a file (File input)

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 10

FileOutputStream Class

• To create a disk file and to write to it, you need
to create an instance of FileOutputStream “on”
the File object:
File aFile;

FileOutputStream outputStream;

aFile = new File(“people”);

outputStream = new FileOutputStream(aFile);

• If a disk file named “people” did not exist then
creating the FileOutputStream creates it.

• If the file already existed, it is emptied.

“people”

aFile

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 11

PrintStream Class

• Unfortunately, the only thing you can do with
a FileOutputStream is to output bytes onto it.

• We usually want to output Strings or ints or
other more interesting objects and values.

• To do this we create a PrintStream object “on”
the FileOutputStream:

PrintStream aPrintStream;

aPrintStream = new PrintStream(outputStream);
file

FileOutputStream

PrintStream

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 12

Output Objects

aFile

outputStream

println printStream

write to disk

"Fred"

w
rit

e

'F' byte

w
rit

e
w

rit
e

writ
e

'r' byte

'e' byte

'd' byte

d e r F Fred

3

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 13

PrintStream class (con’t)

• We have already used an instance of
PrintStream in this course, but it was not
created on a FileStream.

• The object reference, “System.out” is bound
to a PrintStream on the screen.

• When we send the message:
System.out.println(“hello”);

we are sending a message to an instance of
PrintStream.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 14

File Output Example
import java.io.*;
public class FileOutput {
// This program is an example of file output.
public static void main(String args[]) throws Exception {

File aFile;
FileOutputStream outputStream;
PrintStream aPrintStream;
aFile = new File(”people");
outputStream = new FileOutputStream(aFile);
aPrintStream = new PrintStream(outputStream);
aPrintStream.println(”Flinstone, Fred");
aPrintStream.close();
}

}

necessary “magic” when
creating a FileOutputStream

people
Flintstone, Fred

Closing the stream is
necessary

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 15

Outline of Lecture 22

• Files and basic operations on files

• Writing to a file (File output)

• Reading from a file (File input)

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 16

FileInputStream class
• To read a disk file, you need to create an

instance of FileInputStream “on” the File
object:

File aFile;

FileInputStream aFileStream;

aFile = new File(“people”);

aFileStream = new FileInputStream(aFile);

• If a disk file named “people” exists, the
FileInputStream is ready to read it.

• If not, an “exception” will occur and your
program will terminate.

“people”

aFile

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 17

InputStreamReader class
• Unfortunately, the only thing you can do with

a FileInputStream is to input bytes.

• We usually want to input each line of a file as
a String or int or some other object or value.

• To do this we first create an
InputStreamReader object “on” the
FileInputStream that reads characters:

InputStreamReader aReader;

aReader = new InputStreamReader(aFileStream); file

FileInputStream

InputStreamReader

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 18

BufferedReader class

• To read lines as Strings instead of reading
characters, we need to construct a
BufferedReader “on” the InputStreamReader:

BufferedReader aBufferedReader;

String aString;

aBufferedReader = new BufferedReader(aReader);

aString = aBufferedReader.readLine()
file

FileInputStream

InputStreamReader

BufferReader

4

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 19

File Input Example

import java.io.*;
public class FileOutput {
// This program is an example of file input.

public static void main(String args[]) throws Exception {

File aFile;
FileInputStream inputStream;
InputStreamReader aReader;
BufferedReader aBufferedReader;
String aString;

necessary “magic” when
creating a FileInputStream

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 20

File Input Example (con’t)

aFile = new File(”people");
inputStream = new FileInputStream(aFile);
aReader = new InputStreamReader(inputStream);
aBufferedReader = new BufferedReader(aReader);
aString = aBufferedReader.readLine();
System.out.println(aString);
aBufferReader.close();
}

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 21

Input Objects

aFile

reader

readLine()

bufferedReader

re
ad()

read disk

inputStream

read()

"Fred" 'F' byte

read()read()read()

re
ad()

re
ad()

re
ad()

'F' byte'F' byte'd' byte

'F' byte'F' byte'F' byte'd'

Fred

F r e d

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 22

Questions

• How to store a collection of objects in a file with
objects having different instance variables?
(records with many attributes)

• How to update a file?
(delete, add, and change records)

• How to sequentially access a list of objects in a
file, one after the other?

• How to randomly access an object in a file at a
given position?

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 23

Summary
• Declare a file stream
• Open file
• Write to file
• Read from file
• Close file

• Files can only be used with applications (not applets);
• Create a file abstraction object;

• The file objects recognizes some messages
exist(), length(), renameTo(), delete()…;

• Create stream object on the file object;
• The stream object is either for input or for output ;
• It receives or sends bytes from/to the file;

• Other streams can be created on top to facilitate
operations with strings and numbers;
• A close() message should be sent to the upper stream to
close the I/O stream when it is not needed anymore.

In Java

