
1

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 1

Structural Programming
and Data Structures

Dr. Osmar R. Zaïane

University of Alberta

Winter 2000

CMPUT 102: Inheritance

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 2

• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion

2

Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection
• Repetition

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 3

Objectives of Lecture 24

• Introduce the notion of inheritance in object-
oriented programming;

• Understand the concepts of superclass (base
class) and subclass (derived class);

• Learn how to take advantage of similarities
between objects from different classes to derive
one class from another and inherit instance
variables and methods.

InheritanceInheritance

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 4

Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 5

The Idea Behind Inheritance
• Extending the capabilities (i.e. behaviour

and state) of a class C1 in order to generate
a new class C2 with the same capabilities as
C1 in addition to new capabilities.

Object of class C1

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_n+1
Method_c

O
bject of class C

2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 6

Inheritance Hierarchy

person
Name
Address
Birthdate
Etc.

professional Salary
Profession

student
StudentID
GPA
Degree

Specialty
Scores
Team

soccer
player

Physician

2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 7

Inheritance in the Real World
• How is a student like a person?

• Well, every student is a person!

• Students have all of the “properties” of
persons, plus some others.

• For example, every person has a name and
an age and so does every student.

• However, not every person is a student.

• Every student has a student id and a grade
point average, that other persons don't have.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 8

Two Different Approaches

• In Java, we model a person by a Person class.

• In Java, we model a student by a Student class.

• Introduce two independent classes, one for Student and
one for Person
– we lost relationships between the two

– a Student class has to redefine all the properties of a Person class

• Define a Student class as a specialization of a Person class
– characterize special relationships

– software reusability

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 9

Subclasses and Superclasses

• Since a student is like a person
with extra properties, we say the
class Student is a subclassof the
class Person (or derived class).

• We also say that Person is a
superclassof Student (or base
class).

Superclass

Subclass

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 10

The Java Inheritance Tree

• In general, Person can have other subclasses
as well, say Teacher.

• We put all the classes in an inheritance tree
with class Object as the root.

• We draw the tree with the root at the top.

Object

Person

Student Teacher

String Component

Button TextFieldLabel

...

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 11

Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 12

Type Inheritance

• We say that a subclass inherits all of the
messages from its superclass.

• Any message that can be sent to an instance
of a class can also be sent to an instance of
its subclasses.

• However, you can add additional instance
messages and static messages to a subclass.

3

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 13

Type Inheritance (con’t)

• If you declare the type of a variable to be
some class, it can then be bound to an
instance of that class or any subclass.

• If the type of a message parameter or the
return type of a message is a class, you can
use any subclass as well.

• The property of being able to use an instance
of a subclass, wherever you can use an
instance of a class is called substitutability .

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 14

Type Inheritance Example

• Assume that we are defining a class called Store.
• Assume that we have already defined a class

called Person, with a message called name() and
two subclasses: Student and Teacher.

• Assume that we have defined a message in this
“Store” class called register that takes a Person as
a parameter:

public void register(Person aPerson) {
// Register the given Person as a customer.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 15

Type Inheritance Example (con’t)
• Here is a method that creates a Person, Student or

Teacher customer, depending on a char parameter.
public Person createCustomer(char aChar, String aString){

Person customer;

if (aChar == ‘T’) customer = new Teacher(nameString);
else if (aChar == ‘S’) customer = new Student(nameString);
else customer = new Person(nameString);

System.out.println(“Welcome “ + customer.name());
this.register(customer);
return customer;

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 16

Instance Variable and Static Variable
(Representation) Inheritance

• In Java, a subclass also inherits all of the
instance variables and all of the static
variables of its superclass.

• However, if a variable is private, it cannot
be accessed directly in the subclass code.

• If a variable is declared as protected it can
be accessed directly in the subclass code.

• A subclass can also add state by defining
additional instance and static variables.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 17

Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 18

Method (Implementation)
Inheritance

• In Java, a subclass also inherits the methods
of its superclass, so they do not have to be re-
implemented.

• However, you can also override any method
if you want.

• In addition, you can add some code to an
inherited method, using the super object
reference.

4

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 19

Method Override
Object of class C1

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_n+1
Method_a

O
bject of class C

2

Method_a

Class C1 Class C2

Method_a

Method_a
Super.Method_a()

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 20

Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 21

Representation (or Data)
Inheritance

Object of class C1

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_n+1
Method_c

O
bject of class C

2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 22

Representation/Implementation
Inheritance - Example

public class Person {
// Each instance represents a Person.
. . .
// Public methods

public void output() {
// Output a representation of myself

System.out.print(“name: “ + this.name + “ age: “);
System.out.print(this.age());

}
. . .
// Instance Variables

protected String name;
private Date birthdate;

. . .

name is protected: it is
accessed only by class
Person and its subclasses.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 23

Representation /Implementation
Inheritance - Example (con’t)

public class Student extends Person {
// Each instance represents a Student.
// Public methods

public void output() {
// Output a representation of myself

super.output();
System.out.print(“ id: “);
System.out.print(this.id);

}
...

// Instance Variables
// cannot access birthdate, but can access name because it is protected
private int id;
...

Calls the output()
method of the
superclass Person.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 24

Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance

5

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 25

Constructor Chaining

• Constructors are not inherited like other
methods. We say constructors are chained.

• If you want to call another constructor in
the same subclass, you just use “this()” with
the appropriate arguments.

• If you want to call another constructor in
the superclass, you just use “super()” with
the appropriate arguments.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 26

Constructor Chaining (con’t)

• However, each constructor must “ultimately” call
one of the constructors in its superclass.

• This can be done in one of three ways:
– An explicit call to super() with arguments.

– A call to another constructor in the subclass using this()
with arguments.

– If neither of these appear as the first statement of the
subclass constructor, the compiler inserts an implicit
call to the zero argument super constructor super().
However, the a constructor with no arguments should
exist in the superclass.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 27

Constructors - Example
public class Person {
// Each instance represents a Person.
// Constructors

public Person() {
// Set the name “unknown” and birtdate: today

this.name = “unknown”;
this.birthdate = new Date();

}

public Person(String nameString) {
// Set the given name and birthdate: today

this(); // do the 0 argument constructor first
this.name = nameString;

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 28

Constructors - Example (con’t)

public class Student extends Person {
// Each instance represents a Student.

public Student() {
// Set the name: “unknown”, birtdate: today, id: 0

this.id = 0; // implicit call to super(); first
}
public Student(String nameString) {
// Set the given name, birthdate: today, id: 0

super(nameString); // explicit call
this.id = 0;

}
public Student(String nameString, int anInt) {
// Set the given name and id, birthdate: today

this(nameString); // or super(nameString)
this.id = anInt;

}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 29

Multiple Inheritance

• Multiple inheritance is the inheritance of
properties from more than just one base class.

• Java does not allow multiple inheritance.

• Other Object-Oriented languages such as C++

allow multiple inheritance;

parent

child child

parent1 parent2

Simple
inheritance

Multiple
inheritance

