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• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion
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Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection 
• Repetition

Structural Programming and Data Structures University  of Alberta Dr. Osmar R. Zaïane, 2000 3

Objectives of Lecture 24

• Introduce the notion of inheritance in object-
oriented programming;

• Understand the concepts of superclass (base 
class) and subclass  (derived class);

• Learn how to take advantage of similarities 
between objects from different classes to derive 
one class from another and inherit instance 
variables and methods.

InheritanceInheritance
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Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance
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The Idea Behind Inheritance
• Extending the capabilities (i.e. behaviour

and state) of a class C1 in order to generate 
a new class C2 with the same capabilities as 
C1 in addition to new capabilities.  

Object of class C1

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_n+1
Method_c

O
bject of class C
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Inheritance Hierarchy

person
Name
Address
Birthdate
Etc.

professional Salary
Profession

student
StudentID
GPA
Degree

Specialty
Scores
Team

soccer
player

Physician
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Inheritance in the Real World
• How is a student like a person?

• Well, every student is a person!

• Students have all of the “properties” of 
persons, plus some others.

• For example, every person has a name and 
an age and so does every student.

• However, not every person is a student.

• Every student has a student id and a grade 
point average, that other persons don't have.
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Two Different Approaches

• In Java, we model a person by a Person class.

• In Java, we model a student by a Student class.

• Introduce two independent classes, one for Student and 
one for Person
– we lost relationships between the two

– a Student class has to redefine all the properties of a Person class

• Define a Student class as a specialization of a Person class
– characterize special relationships

– software reusability
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Subclasses and Superclasses

• Since  a student is like a person 
with extra properties, we say the 
class Student is a subclassof the 
class Person (or derived class).

• We also say that Person is a 
superclassof Student (or base 
class).

Superclass

Subclass
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The Java Inheritance Tree

• In general, Person can have other subclasses 
as well, say Teacher.

• We  put all the classes in an inheritance tree
with class Object as the root.

• We draw the tree with the root at the top.

Object

Person

Student Teacher

String Component

Button TextFieldLabel

...
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Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance
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Type Inheritance

• We say that a subclass inherits all of the 
messages from its superclass.

• Any message that can be sent to an instance 
of a class can also be sent to an instance of 
its subclasses.

• However, you can add additional instance 
messages and static messages to a subclass.
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Type Inheritance (con’t)

• If you declare the type of a variable to be 
some class, it can then be bound to an 
instance of that class or any subclass.

• If the type of a message parameter or the 
return type of a message is a class, you can 
use any subclass as well.

• The property of being able to use an instance 
of a subclass, wherever you can use an 
instance of a class is called substitutability .
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Type Inheritance Example

• Assume that we are defining a class called Store.
• Assume that we have already defined a class 

called Person, with a message called name() and 
two subclasses: Student and Teacher.

• Assume that we have defined a message in this 
“Store” class called register that takes a Person as 
a parameter:

public void register(Person aPerson) {
// Register the given Person as a customer.
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Type Inheritance Example (con’t)
• Here is a method that creates a Person, Student or 

Teacher customer, depending on a char parameter.
public Person createCustomer(char aChar, String aString){

Person customer;

if (aChar == ‘T’) customer = new Teacher(nameString);
else if (aChar == ‘S’) customer = new Student(nameString);
else customer = new Person(nameString);

System.out.println(“Welcome “ + customer.name());
this.register(customer);
return customer;

}
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Instance Variable and Static Variable 
(Representation) Inheritance

• In Java, a subclass also inherits all of the 
instance variables and all of the static 
variables of its superclass.

• However, if a variable is private, it cannot 
be accessed directly in the subclass code.

• If a variable is declared as protected it can 
be accessed directly in the subclass code.

• A subclass can also add state by defining 
additional instance and static variables.
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Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance
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Method (Implementation) 
Inheritance

• In Java, a subclass also inherits the methods 
of its superclass, so they do not have to be re-
implemented.

• However, you can also override any method 
if you want.

• In addition, you can add some code to an 
inherited method, using the super object 
reference.
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Method Override
Object of class C1

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_n+1
Method_a

O
bject of class C

2

Method_a

Class C1 Class C2

Method_a

Method_a
Super.Method_a( )
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Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance
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Representation (or Data) 
Inheritance

Object of class C1

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_1
instance variable_2
…
instance variable_n
Method_a
Method_b

instance variable_n+1
Method_c

O
bject of class C

2
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Representation/Implementation 
Inheritance - Example

public class Person {
// Each instance represents a Person.
. . .
// Public methods

public void output() {
// Output a representation of myself

System.out.print(“name: “ + this.name + “ age: “);
System.out.print(this.age());

}
. . .
// Instance Variables

protected String name;
private Date birthdate;

. . .

name is protected: it is 
accessed only by class 
Person and its subclasses.
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Representation /Implementation 
Inheritance - Example (con’t)

public class Student extends Person {
// Each instance represents a Student.
// Public methods

public void output() {
// Output a representation of myself

super.output();
System.out.print(“ id: “);
System.out.print(this.id);

}
...

// Instance Variables
// cannot access birthdate, but can access name because it is protected
private int   id;
...

Calls the output() 
method of the 
superclass Person.
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Outline of Lecture 24

• Subclasses and Superclasses

• Type inheritance

• Method inheritance

• Representation inheritance

• Constructor inheritance
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Constructor Chaining

• Constructors are not inherited like other 
methods. We say constructors are chained. 

• If you want to call another constructor in 
the same subclass, you just use “this()” with 
the appropriate arguments.

• If you want to call another constructor in 
the superclass, you just use “super()” with 
the appropriate arguments.
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Constructor Chaining (con’t)

• However, each constructor must “ultimately” call 
one of the constructors in its superclass.

• This can be done in one of three ways:
– An explicit call to super() with arguments.

– A call to another constructor in the subclass using this() 
with arguments.

– If neither of these appear as the first statement of the 
subclass constructor, the compiler inserts an implicit 
call to the zero argument super constructor super(). 
However, the a constructor with no arguments should 
exist in the superclass.

Structural Programming and Data Structures University  of Alberta Dr. Osmar R. Zaïane, 2000 27

Constructors - Example
public class Person {
// Each instance represents a Person.
// Constructors

public Person() {
// Set the name “unknown” and birtdate: today

this.name = “unknown”;
this.birthdate = new Date();

}

public Person(String nameString) {
// Set the given name and birthdate: today

this(); // do the 0 argument constructor first
this.name = nameString;

}
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Constructors - Example (con’t)

public class Student extends Person {
// Each instance represents a Student.

public Student() {
// Set the name: “unknown”, birtdate: today, id: 0

this.id = 0; // implicit call to super(); first
}
public Student(String nameString) {
// Set the given name, birthdate: today, id: 0

super(nameString); // explicit call
this.id = 0;

}
public Student(String nameString, int anInt) {
// Set the given name and id, birthdate: today

this(nameString); // or super(nameString)
this.id = anInt;

}

Structural Programming and Data Structures University  of Alberta Dr. Osmar R. Zaïane, 2000 29

Multiple Inheritance

• Multiple inheritance is the inheritance of 
properties from more than just one base class. 

• Java does not allow multiple inheritance.

• Other Object-Oriented languages such as C++

allow multiple inheritance; 

parent

child child

parent1 parent2

Simple
inheritance

Multiple
inheritance


