Structural Prgrammirg
and Data Structures

Winter 2000
CMPUT 102: Recursion

Dr. Osmar R. Zalane

University of Alberta

University of Alberta ; g.— 1

Structural Programming and Data Structures

Course Content

* Introduction * Vectors

» Objects » Testing/Debugging
* Methods * Arrays

» Tracing Programs | < Searching

* Object State * Files /O

» Sharing resources | ¢ Sorting

» Selection * Inheritance

* Repetition Recursion

University of Alberta ; g.— 2

Structural Programming and Data Structures

Objectives of Lecture 25

Recursion

Introduce the concept of recursion;
Understand how recursion works;

Learn how recursion can be used instead of
repetition;

See some examples that use recursion.

Structural Programming and Data Structures University of Alberta | g.— 3

Vg
22

Outline of Lecture 25 S

 What is recursion?
Conditions for termination
Factorial

Stack frames

MergeSort

Towers of Hanoi

University of Alberta ; §; 4

Structural Programming and Data Structures

Recursion

» Recursionoccurs when a method calls
itself, either directly or indirectly.

 If a problem can be resolved by solving a
simple part of it a resolving the rest of the
big problem the same way, we can write a
method that solves the simple part of the
problem then calls itself to resolve the rest
of the problem.

e This is called aecursive method

Structural Programming and Data Structures ~ University of Alberta | ==

Recursive Method Example

e Suppose we want to calcul#®’. We know that
23 is 23*235. If we know the solution fo23 we
would know the solution fae3’.

148035889 6436343 279841

12167

@@@@

23*529 3*23 23*1

AR 28 O

23'? 23+*6436343 23*279841 23*12167

ab & =)

237= 23*2%=
23 * (23*2P) =
23 * (23* (23* 23)) =
23 * (23%(23*(23* 2F))) =
23 * (23%(23*(23*(23*2F))))=
23 * (23*(23*(23*(23*(23*23h))))=
23 * (23 *(23*(23*(23*(23*(23*29))))=
23 * (23 *(23*(23*(23*(23%(23*1))))))=
23 * (23 *(23*(23*(23*(23%(23))))))=
23 * (23 *(23*(23*(23%(529)))))=
23 * (23 *(23*(23*(12,167))))=
23 * (23 *(23*(279,841)))=
23 * (23 *(6,436,343))=
23 * (148,035,889)=
3,404,825,447

Structural Programming and Data Structures ~ University of Alberta | ==

What is recursion?
Conditions for termination
Factorial

Stack frames

MergeSort

Towers of Hanoi

Structural Programming and Data Structures

-3
f '\‘"//)

Outline of Lecture 25 SR,

Recursive Methods

» For recursion téerminate, two conditions
must be met:;

— the recursive call must somehow be simpler
than the original call.

— there must be one or more simple cases that do
not make recursive calls.

Structural Programming and Data Structures ~ University of Alberta | ==

Outline of Lecture 25 Qa\i)/

What is recursion?
Conditions for termination
Factorial

Stack frames

MergeSort

Towers of Hanoi

Structural Programming and Data Structures

E N’
fero))

PR

Factorial
» For example, we would like to write a
recursive method that computes the factorial
of an Integer:

o=1

=1

21=2*1=2 = 2! =2*11
31=3*2*1=6 = 3! =3*2!

n! = n*(n-1) * ... *3*2* 1 = n! = n*(n-1)!

* The last observation, together with the simple
cases is the basis for a recursive method.

Structural Programming and Data Structures ~ University of Alberta | ==

Integer Factorial Method

* In the class Integer we want to add:
public int factorial() {
/I Return the factorial of me.

int answer;

Integer selfMinusl;

if ((this.intValue() ==
answer = 1,
else {
selfMinusl1 = new Integer(this.intValue() - 1);

0)||(this.intValue() == 1))

answer = this.intValue()*selfMinus1.factorial();

}

return answer;

Structural Programming and Data Structures

No Factorial in Integer

« Unfortunately, we cannot add methods to
class Integer or create a subclass and add
the method there (since class Integer is a
“final” class).

» Therefore, we will build a new class called
IntegerPlus and add the factorial method.

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures ~ University of Alberta | == .

Recursive Factorial Method

public class IntegerPlus {

[* Each instance of this class represents an Integer.
The class was created as a repository for Integer
methods, since the Integer class is final. */

/I Private Instance Variables
private int value;

public IntegerPlus(int anint) {
/* Initialize me to have the given value. */

this.value = anint;

0 Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures ~ University of Alberta | ==

Recursive Factorial Method (con't)

public int factorial() {
/I Return the factorial of me.
int answer;
IntegerPlus selfMinusl,
if ((this.value == 0) || (this.value == 1))
answer = 1;
else {
selfMinusl = new IntegerPlus(this.value - 1);
answer = this.value * selfMinus1.factorial();

}

return answer;

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures ~ University of Alberta | &= |

Loop Example

// Find the largest element in an array of ifits MarkArmay
50/ 0
int markArray[] = {50, 37, 71, 99, 63}; 37]1
int index; ;; g
int max; 63 4
index = 0; o
max = markArray[index]; index=5
for (index = 1; index < markArray.length; index++)
if (markArray[index] > max) max

max = markArray[index]; 99

System.out.printin(max);

[Dr. Osmar R. Zaiane, 2000 University of Alberta 3& 16
e

Structural Programming and Data Structures

Recursion Example

// Find the largest element in an array of ints markArray

int markArray[] = {50, 37, 71, 99, 63},

int max=Ilargest(markArray,0,markArray.length-1); 991501 O

System.out.printin(max); /gg 31 ;

public static int largest(int table[], int first, int last){ |||/ 99993
if (first >= last) return tablelast] 63]63] 4
else { 4 4

int myMax=largest(table,first+1,last)able first last

if (myMax > table[first])
return myMax;

else return tableffirst]; 99

max

[Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

University of Alberta ;’é_ 17
=

-
. 2
Outline of Lecture 25 SR,

-

What is recursion?
Conditions for termination
Factorial

Stack frames

MergeSort

Towers of Hanoi

[Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

University of Alberta ;’é_ 18
s

Direct References in Methods

When a method is executing it can access some
objects and some values.

The receiver object can be referenced directly usin
the pseudo-variabléis.

Other objects and values can be referenced directl
using method parameters and local variables.

Still other objects and values can only be accessed
indirectly by sending messages that return
references to them.

O Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

University of Alberta ;’é_ 19
s

©

Method Activations and Frames

A method can only access objects while it is
executing orctive,

The collection of all direct references in a method
is called thérame or stack frame of a method.

The frame is created when the method is invoked,
and destroyed when the method finishes.

If a method is invoked again, a new frame is
created for it.

0 Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

University of Alberta ;':i 20
s

Multiple Activations of a Method

* When we invoke a recursive method on an object, the
method becomes active.

» Before it is finished, it makes a recursive call to the
same method.

* This means that when recursion is used, there is more
than one copy of the same method active at once.

» Therefore, each active method has its own frame which
contains independent copies of its direct references.

Structural Programming and Data Structures ~ University of Alberta | ==

Method Frames for Factorial

Each frame has its own pseudo-variabies,
bound to a different receiver object.

Each frame has its local variable, answer,
bound to a different value.

Each frame has its local variable, selfMinusl
bound to a different IntegerPlus object.

These frames all exist at the same time.

University of Alberta ;"é(22
e

Structural Programming and Data Structures

Recursive Factorial Method(again)

public int factorial() {

/I Return the factorial of me.
int answer,
IntegerPlus selfMinusl,

if ((this.value == 0) || (this.value == 1))
answer = 1;

else {
selfMinusl = new IntegerPlus(this.value - 1);
answer = this.value * selfMinus1.factorial();

}

return answer;

University of Alberta :& 23
e

Structural Programming and Data Structures

Calling (4).factorial()

(new IntegerPlus(4)).factorial()

this P4 D

answer
selfMinus]|

selfMinusl = new IntegerPlus(this.value - 1);

this P4 D

answer

seIfMinusl-»@

answer = this.value * selfMinus1.factorial();

University of Alberta = 24
e

Structural Programming and Data Structures

Calling (3).factorial()

this

answer

this

answer

selfMinusii

=4

selfMinusil

selfMinusl = new IntegerPlus(this.value - 1);

this

answer

this

answer

4D
selfMinusl*(E{

selfMinusl@

answer = this.value * selfMinus1.factorial();

O Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Calling (2).factorial()

this 4 O this this
answer answer answer
selfMinusi; selfMinusi; selfMinus]|
selfMinusl = new IntegerPlus(this.value - 1);
this__ P4 O] this this
answer answer answer
selfMinusii selfMinusi; selfMinus];

answer = this.value * selfMinus1.factorial();

0 Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Calling & Exiting (1).factorial()

this 4 O this this
answer answer answer
selfMinus1] selfMinus1] selfMinus1»"1 >
this
answer
selfMinusi|
answer = 1;
this 4 O this this
answer answer answer
selfMinus1 selfMinus1 selfMinusIp™ 1 >
this
answer —1] return answer;
selfMinus]| ==>1

O Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

University of Alberta | = 27
e

Exiting (2)factorial()

this

>4

answer

this

answer

selfMinusl;

i

selfMinusl*@g

answer = this.value * selfMinus1.factorial();

2

this

1

this

answer

selfMinus1»C_ 1 >

answer

this

answer

this

selfMinusl;

selfMinusl*@é

0 Dr. Osmar R. Zaiane, 2000

answer

i

‘ 2
selfMinusi

return answer,
==>2

Structural Programming and Data Structures

University of Alberta | £= 1 28
e

Exiting (3).factorial()

this 4D [this
answer answer
selfMinus selfMinus1»C 2 D

answer = this.value * selfMinus1.factorial();

3 2

this 4 DO this

answer answer | 6
selfMinusii selfMinusii
return answer;
==>6

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures ~ University of Alberta | == .

selfMinusi

Exiting (4).factorial()

this @ @
answer
(3D

answer = this.value * selfMinus1.factorial();

4 6
this 4 >
answer |

selfMinus1>C_ 3 D

0 Dr. Osmar R. Zaiane,

return answer,
==>24

2000

Structural Programming and Data Structures ~ University of Alberta | ==

-4
Outline of Lecture 25 .

What is recursion?
Conditions for termination
Factorial

Stack frames

MergeSort

Towers of Hanol

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures ~ University of Alberta | &= |

Recursive MergeSort Concept

» We can build a recursive sort, called
mergesSort:
— split the list into two equal sub-lists
— sort each sub-list using a recursive call
— merge the two sorted sub-lists

0 Dr. Osmar R. Zaiane, 2000

University of Alberta | “?é 32

Structural Programming and Data Structures

MergeSort Example - split

iyl
| 25]50[10| 95| 75|30 70| 55| 60| 80|
0 1 2 3 4 5 6 7 8 9

n
130] 70| 55| 60| 80|
5 6 7 8 9

n
| 25|50] 10| 95] 75|
0 1 2 3 4

5l i3l i3l
| 25| 50| 110]95] 75| |3o|7o| |55]60] 80|
0 1 2 3 4 5 6 7 8 9
25| |50] |10 75| |30 f%%} fé%T 60| 80
0o 1 2 4 5

6 7 8 9
5
Iﬂi 60| |80

O
Elamr

Structural Programming and Data Structures

MergeSort Example - join

110]25]30|50|55|60| 70| 75| 80| 90|
0 1 2 3 4 5 6 7 8 9

130|55| 60| 70| 80|
5 6 7 8 9

110|25|50| 75| 95|
0 1 2 3 4

o
[30[70] [55]60]80)
0 1 2 3 4 5 6 7 8 9
o o
25| |50] [10] |75]95] |30] |70] |[55] |60]80]|

2 31,4 5 6 7

3 4

0 1

8t9

Structural Programming and Data Structures

Logical representation of an
array inside a physical array.

Structural Programming and Data Structures

MergeSort Needs Extra Storage

» Unlike selection sort, merge sort does not
work “in place”.

» A temporary collection is needed so twice
as much memory is required.

110] 25|50] 75] 95|
0O 1 2 3 4 temp
f array

1025507595
@ 01234>@
|

0 1 2 3 4
[10]75]95]
1 2 3 4 array

| 25|50
0 1 2 3 4

Structural Programming and Data Structures

Class SubArray

public class SubArray {
/I An instance of this class represents a sub-array
/l of an Array of ints.

/I Constructor

public SubArray(int anArray([], int start, int end) {
/I Initialize me to represent the given range of
/Il the given Array.

this.list = anArray;
this.start = start;
this.end = end;

O Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Instance Variables

/I Private Instance Variables
private int start;
private int end;
private int list[];

private int size() {
Il Answer my size.
if (this.end < this.start) return O;
else return this.end - this.start + 1,

0 Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Code for sort

public void sort() {
/I Sort myself.
SubArray temp;

temp = new SubArray(new int[this.list.length],
this.start, this.start-1);
/I the new subArray has the physical size of list but is empty
/lthat is why the end is start-1
this.mergeSort(temp);

O Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Code for mergeSort

public void mergeSort(SubArray temp) {
/I Sort myself using a merge sort.

int middle;
SubArray lowArray;
SubArray highArray;

if (this.start < this.end) {
middle = (this.start + this.end) / 2;
lowArray = new SubArray(this.list, this.start, middle);
lowArray.mergeSort(temp);
highArray = new SubArray(this.list, middle+1, this.end);
highArray.mergeSort(temp);
this.merge(lowArray, highArray, temp);

0 Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Code for merge

private void merge(SubArray lovgubArray high, COde for mOvesma”eSt
SubArray tempp{
/I Assume that both SubArrays are sorted.

. . : private void moveSmallest(SubArray low, SubArray high) {
/I Merge them into me using the given temp.

I/l Move the first element of one of the two SubArrays to

temp.start = 0: /I me. Pick the element which is smallest.

temp.end = -1; . . T

while ((low.size() > 0)&&(high.size() > 0)) i ('Om}'ési'g\‘;‘gétriﬂ (Towggj'_'sqh'gh'Sta”])
temp.moveSmallest(low, high); else ' ren

temp.moveFrom(low, low.size()); this.moveFrom(high, 1):

temp.moveFrom(high, high.size()); ' gn. L,

this.end = this.start - 1; }

this.moveFrom(temp, temp.size());

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures ~ University of Alberta | == .

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures ~ University of Alberta | == .

Complexity of MergeSort
« The complexity of the MergeSort algorithm

is beyond the scope of this course.
private void moveFrom(SubArray source, int count) {

/I Move the given count of ints from the source to me. However, the comparisons occur only in
moveSmallest, which for an initially

Code for moveFrom

intindex; random collection, on average gets called

for (index = 0; index < count; index++) { aboutn* log(n) times for an array of size n.
this.end = this.end + 1; « Sample times for our Java program:
this.list[this.end] = source.list[source.start];
source.start = source.start + 1; n =20,000 n=100,000

} merge sort <1 second 1 second

selection sort 16 seconds 400 seconds

0 Dr. Osmar R. Zaiane, 2000

University of Alberta ;"é(44
e

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures ~ University of Alberta | &= |

Structural Programming and Data Structures

pero)
A% I
Outline of Lecture 25 Q\@i}, Towers of Hanol m

To move n disks from tower 1 to 2:

» What is recursion? * No disk can be on top * Move n-1 disks from tower 1 to 3;

« Conditions for termination of a smaller disk;

« Factorial * Only one dls_k |s- é

e Stack f moved at a time; * Move 1 disk from tower 1 to 2;
ackirames » A disk must be placed

* MergeSort on a tower;

* Towers of Hanoi * Only the top most disk * Move n-1 disks from tower 3 to 2.

can be moved. % ‘

Structural Programming and Data Structures

University of Alberta ; g.— 46

Structural Programming and Data Structures University of Alberta | g_— 45

Towers of Hanoi 1 Towers of Hanoi 2

&53323
SS355i

1T
11

University of Alberta | % 48

AT
AT

University of Alberta ; g.— 47

Sassss
CEEErE
Ssgsss

Structural Programming and Data Structures

Structural Programming and Data Structures

Towers of Hanoi 4

Towers of Hanoi 3

0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta f}:"?’.- 49 0 Dr. Osmar R. Zaiane, 2000 Structural Programming and Data Structures University of Alberta ;”i"i"’_- 50

