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Objectives of Lecture 25

Recursion

Introduce the concept of recursion;
Understand how recursion works;

Learn how recursion can be used instead of
repetition;

See some examples that use recursion.
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 What is recursion?
Conditions for termination
Factorial

Stack frames

MergeSort

Towers of Hanoi
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Recursion

» Recursionoccurs when a method calls
itself, either directly or indirectly.

 If a problem can be resolved by solving a
simple part of it a resolving the rest of the
big problem the same way, we can write a
method that solves the simple part of the
problem then calls itself to resolve the rest
of the problem.

e This is called aecursive method
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Recursive Method Example

e Suppose we want to calcul#®’. We know that
23 is 23*235. If we know the solution fo23 we
would know the solution fae3’.

148035889 6436343 279841

12167

@@@@

23*529 3*23 23*1

AR 28 O

23'?  23+*6436343 23*279841 23*12167

ab & =)

237= 23*2%=
23 * (23*2P) =
23 * (23* (23* 23)) =
23 * (23%(23*(23* 2F))) =
23 * (23%(23*(23*(23*2F))))=
23 * (23*(23*(23*(23*(23*23h))))=
23 * (23 *(23*(23*(23*(23*(23*29))))=
23 * (23 *(23*(23*(23*(23%(23*1))))))=
23 * (23 *(23*(23*(23*(23%(23))))))=
23 * (23 *(23*(23*(23%(529)))))=
23 * (23 *(23*(23*(12,167))))=
23 * (23 *(23*(279,841)))=
23 * (23 *(6,436,343))=
23 * (148,035,889)=
3,404,825,447
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What is recursion?
Conditions for termination
Factorial

Stack frames

MergeSort
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Recursive Methods

» For recursion téerminate, two conditions
must be met:;

— the recursive call must somehow be simpler
than the original call.

— there must be one or more simple cases that do
not make recursive calls.
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Factorial
» For example, we would like to write a
recursive method that computes the factorial
of an Integer:

o=1

=1

21=2*1=2 = 2! =2*11
31=3*2*1=6 = 3! =3*2!

n! = n*(n-1) * ... *3*2* 1 = n! = n*(n-1)!

* The last observation, together with the simple
cases is the basis for a recursive method.
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Integer Factorial Method

* In the class Integer we want to add:
public int factorial() {
/I Return the factorial of me.

int answer;

Integer selfMinusl;

if ((this.intValue() ==
answer = 1,
else {
selfMinusl1 = new Integer(this.intValue() - 1);

0)||(this.intValue() == 1))

answer = this.intValue()*selfMinus1.factorial();

}

return answer;
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No Factorial in Integer

« Unfortunately, we cannot add methods to
class Integer or create a subclass and add
the method there (since class Integer is a
“final” class).

» Therefore, we will build a new class called
IntegerPlus and add the factorial method.
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Recursive Factorial Method

public class IntegerPlus {

[* Each instance of this class represents an Integer.
The class was created as a repository for Integer
methods, since the Integer class is final. */

/I Private Instance Variables
private int value;

public IntegerPlus(int anint) {
/* Initialize me to have the given value. */

this.value = anint;

0 Dr. Osmar R. Zaiane, 2000
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Recursive Factorial Method (con't)

public int factorial() {
/I Return the factorial of me.
int answer;
IntegerPlus  selfMinusl,
if ((this.value == 0) || (this.value == 1))
answer = 1;
else {
selfMinusl = new IntegerPlus(this.value - 1);
answer = this.value * selfMinus1.factorial();

}

return answer;
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Loop Example

// Find the largest element in an array of ifits MarkArmay
50/ 0
int markArray[] = {50, 37, 71, 99, 63}; 37]1
int index; ;; g
int max; 63 4
index = 0; o
max = markArray[index]; index=5
for (index = 1; index < markArray.length; index++)
if (markArray[index] > max) max

max = markArray[index]; 99

System.out.printin(max);
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Recursion Example

// Find the largest element in an array of ints markArray

int markArray[] = {50, 37, 71, 99, 63},

int max=Ilargest(markArray,0,markArray.length-1); 991501 O

System.out.printin(max); /gg 31 ;

public static int largest(int table[], int first, int last){ |||/ 99993
if (first >= last) return tablelast] 63]63] 4
else { 4 4

int myMax=largest(table,first+1,last)able first last

if (myMax > table[first])
return myMax;

else  return tableffirst]; 99

max

[ Dr. Osmar R. Zaiane, 2000
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Direct References in Methods

When a method is executing it can access some
objects and some values.

The receiver object can be referenced directly usin
the pseudo-variabléis.

Other objects and values can be referenced directl
using method parameters and local variables.

Still other objects and values can only be accessed
indirectly by sending messages that return
references to them.

O Dr. Osmar R. Zaiane, 2000
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Method Activations and Frames

A method can only access objects while it is
executing orctive,

The collection of all direct references in a method
is called thérame or stack frame of a method.

The frame is created when the method is invoked,
and destroyed when the method finishes.

If a method is invoked again, a new frame is
created for it.

0 Dr. Osmar R. Zaiane, 2000
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Multiple Activations of a Method

* When we invoke a recursive method on an object, the
method becomes active.

» Before it is finished, it makes a recursive call to the
same method.

* This means that when recursion is used, there is more
than one copy of the same method active at once.

» Therefore, each active method has its own frame which
contains independent copies of its direct references.
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Method Frames for Factorial

Each frame has its own pseudo-variabies,
bound to a different receiver object.

Each frame has its local variable, answer,
bound to a different value.

Each frame has its local variable, selfMinusl
bound to a different IntegerPlus object.

These frames all exist at the same time.
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Recursive Factorial Method(again)

public int factorial() {

/I Return the factorial of me.
int answer,
IntegerPlus  selfMinusl,

if ((this.value == 0) || (this.value == 1))
answer = 1;

else {
selfMinusl = new IntegerPlus(this.value - 1);
answer = this.value * selfMinus1.factorial();

}

return answer;
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Calling (4).factorial()

(new IntegerPlus(4)).factorial()

this P4 D

answer
selfMinus]|

selfMinusl = new IntegerPlus(this.value - 1);

this P4 D

answer

seIfMinusl-»@

answer = this.value * selfMinus1.factorial();

University of Alberta = 24
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Calling (3).factorial()

this

answer

this

answer

selfMinusii

=4

selfMinusil

selfMinusl = new IntegerPlus(this.value - 1);

this

answer

this

answer

4D
selfMinusl*(E{

selfMinusl@

answer = this.value * selfMinus1.factorial();
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Calling (2).factorial()

this 4 O this this
answer answer answer
selfMinusi; selfMinusi; selfMinus]|
selfMinusl = new IntegerPlus(this.value - 1);
this__ P4 O] this this
answer answer answer
selfMinusii selfMinusi; selfMinus];

answer = this.value * selfMinus1.factorial();

0 Dr. Osmar R. Zaiane, 2000
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Calling & Exiting (1).factorial()

this 4 O this this
answer answer answer
selfMinus1] selfMinus1] selfMinus1»"1 >
this
answer
selfMinusi|
answer = 1;
this 4 O this this
answer answer answer
selfMinus1 selfMinus1 selfMinusIp™ 1 >
this
answer —1] return answer;
selfMinus]| ==>1

O Dr. Osmar R. Zaiane, 2000
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Exiting (2)factorial()

this

>4

answer

this

answer

selfMinusl;

i

selfMinusl*@g

answer = this.value * selfMinus1.factorial();

2

this

1

this

answer

selfMinus1»C_ 1 >

answer

this

answer

this

selfMinusl;

selfMinusl*@é
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‘ 2
selfMinusi

return answer,
==>2
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Exiting (3).factorial()

this 4D [ this
answer answer
selfMinus selfMinus1»C 2 D

answer = this.value * selfMinus1.factorial();

3 2

this 4 DO this

answer answer | 6
selfMinusii selfMinusii
return answer;
==>6
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selfMinusi

Exiting (4).factorial()

this @ @
answer
(3D

answer = this.value * selfMinus1.factorial();

4 6
this 4 >
answer |

selfMinus1>C_ 3 D

0 Dr. Osmar R. Zaiane,
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Recursive MergeSort Concept

» We can build a recursive sort, called
mergesSort:
— split the list into two equal sub-lists
— sort each sub-list using a recursive call
— merge the two sorted sub-lists

0 Dr. Osmar R. Zaiane, 2000
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MergeSort Example - split

iyl
| 25]50[ 10| 95| 75|30 70| 55| 60| 80|
0 1 2 3 4 5 6 7 8 9

n
130] 70| 55| 60| 80|
5 6 7 8 9

n
| 25|50] 10| 95] 75|
0 1 2 3 4

5l i3l i3l
| 25| 50| 110]95] 75| |3o|7o| |55]60] 80|
0 1 2 3 4 5 6 7 8 9
25| |50] |10 75| |30 f%%} fé%T 60| 80
0o 1 2 4 5

6 7 8 9
5
Iﬂi 60| |80

O
Elamr
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MergeSort Example - join

110]25]30|50|55|60| 70| 75| 80| 90|
0 1 2 3 4 5 6 7 8 9

130|55| 60| 70| 80|
5 6 7 8 9

110|25|50| 75| 95|
0 1 2 3 4

o
[30[70]  [55]60]80)
0 1 2 3 4 5 6 7 8 9
o o
25| |50] [10] |75]95] |30] |70] |[55] |60]80]|

2 31,4 5 6 7

3 4

0 1

8t9
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Logical representation of an
array inside a physical array.
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MergeSort Needs Extra Storage

» Unlike selection sort, merge sort does not
work “in place”.

» A temporary collection is needed so twice
as much memory is required.

110] 25|50] 75] 95|
0O 1 2 3 4 temp
f array

1025507595
@ 01234>@
|

0 1 2 3 4
[10]75]95]
1 2 3 4 array

| 25|50
0 1 2 3 4
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Class SubArray

public class SubArray {
/I An instance of this class represents a sub-array
/l of an Array of ints.

/I Constructor

public SubArray(int anArray([], int start, int end) {
/I Initialize me to represent the given range of
/Il the given Array.

this.list = anArray;
this.start = start;
this.end = end;

O Dr. Osmar R. Zaiane, 2000

Structural Programming and Data Structures

Instance Variables

/I Private Instance Variables
private int start;
private int end;
private int list[];

private int size() {
Il Answer my size.
if (this.end < this.start) return O;
else return this.end - this.start + 1,

0 Dr. Osmar R. Zaiane, 2000
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Code for sort

public void sort() {
/I Sort myself.
SubArray temp;

temp = new SubArray(new int[this.list.length],
this.start, this.start-1);
/I the new subArray has the physical size of list but is empty
/lthat is why the end is start-1
this.mergeSort(temp);

O Dr. Osmar R. Zaiane, 2000
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Code for mergeSort

public void mergeSort(SubArray temp) {
/I Sort myself using a merge sort.

int middle;
SubArray lowArray;
SubArray highArray;

if (this.start < this.end) {
middle = (this.start + this.end) / 2;
lowArray = new SubArray(this.list, this.start, middle);
lowArray.mergeSort(temp);
highArray = new SubArray(this.list, middle+1, this.end);
highArray.mergeSort(temp);
this.merge(lowArray, highArray, temp);

0 Dr. Osmar R. Zaiane, 2000
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Code for merge

private void merge(SubArray lovgubArray high, COde for mOvesma”eSt
SubArray tempp{
/I Assume that both SubArrays are sorted.

. . : private void moveSmallest(SubArray low, SubArray high) {
/I Merge them into me using the given temp.

I/l Move the first element of one of the two SubArrays to

temp.start = 0: /I me. Pick the element which is smallest.

temp.end = -1; . . T

while ((low.size() > 0)&&(high.size() > 0)) i ('Om}'ési'g\‘;‘gétriﬂ (Towggj'_'sqh'gh'Sta”])
temp.moveSmallest(low, high); else ' ren

temp.moveFrom(low, low.size()); this.moveFrom(high, 1):

temp.moveFrom(high, high.size()); ' gn. L,

this.end = this.start - 1; }

this.moveFrom(temp, temp.size());
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Complexity of MergeSort
« The complexity of the MergeSort algorithm

is beyond the scope of this course.
private void moveFrom(SubArray source, int count) {

/I Move the given count of ints from the source to me.  However, the comparisons occur only in
moveSmallest, which for an initially

Code for moveFrom

intindex; random collection, on average gets called

for (index = 0; index < count; index++) { aboutn* log(n) times for an array of size n.
this.end = this.end + 1; « Sample times for our Java program:
this.list[this.end] = source.list[source.start];
source.start = source.start + 1; n =20,000 n=100,000

} merge sort <1 second 1 second

selection sort 16 seconds 400 seconds

0 Dr. Osmar R. Zaiane, 2000
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To move n disks from tower 1 to 2:

» What is recursion? * No disk can be on top * Move n-1 disks from tower 1 to 3;

« Conditions for termination of a smaller disk;

« Factorial * Only one dls_k |s- é

e Stack f moved at a time; * Move 1 disk from tower 1 to 2;
ackirames » A disk must be placed

* MergeSort on a tower;

* Towers of Hanoi * Only the top most disk * Move n-1 disks from tower 3 to 2.

can be moved. % ‘

Structural Programming and Data Structures

University of Alberta ; g.— 46

Structural Programming and Data Structures University of Alberta | g_— 45

Towers of Hanoi 1 Towers of Hanoi 2
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Towers of Hanoi 4

Towers of Hanoi 3
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