About This Lecture

Objects and Values

Cmput 114 - Lecture 4
Department of Computing Science

University of Alberta

©Duane Szafron 1999

o INnt
an(

e \We
Col

his lecture, we will learn about values
1 how they differ from objects.

also learn how to do simple
nputations with values.

| ©Duane Szafron 1999

Outli

Ine

e Ob
e Pu

jects versus values
re and hybrid languages

e Java values and primitive types

e So

me Java operators

| ©Duane Szafron 1999

Objects versus Values

e SO
we
obj

me real world entities are so simple that
represent them by values instead of by
ects.

e A value has no protocol, so it cannot
respond to messages.

e HO

wever, values can be used as

arguments in messages.

e Va

ues can also be returned as the results

of messages.

| ©Duane Szafron 1999

Pure Paradm Larguages

e How simple is simple enough to represent
as a value?

e The answer depends on the programming
language used.

e In ‘fpure” procedural programming
languages like C and Pascal, there are no
objects, only values.

e In fpure” object-oriented languages like
Smalltalk, there are no values, just

objects.
| ©Duane Szafron 1999 |

Hybrid Praggrammirg Languages

e Languages with both objects and values
are object-procedural hybrid languages.

e Hybrid languages differ on what is an
object and what is a value.

e In Java, numbers can be represented by
values or objects while in C++ they are
values.

e In Java, strings are objects while in C++
they are values.

e In both languages, Streams are objects.
| ©Duane Szafron 1999 |

Simple Prggram in Java and C++

e |f qur simple program is expressed in
Java, then the “Hello” message argument
IS an object.

e If our simple program is expressed in C++,
then the “Hello” message argument is a

value. This is a PrintStream obje¢
in both Java and C++

print

g

C++

“Hello”

[©Duane Szafron 1999 |

~—

Java Values - Primitiveyipes

e We group similar kinds of Java values
together so that every value has a
primitive type.

e For example, the numbers 3, 4 and 5 have
primitive type int.

e Since a value is not an object, it does not
have a class.

e To|avoid saying "the class of an object or
the primitive type of a value", we use the

word type to mean class or primitive type.
[©Duane Szafron 1999 |

Java Values

e Here are some of the primitive types for

Java values:
int 43 -12 9999999
char ‘H \” \n’ (newline) \t’ (tab)
float 43.0f -12.5f 9.5E-5f
boolean true false

| ©Duane Szafron 1999

10

Conmputing with Values

e Since we cannot send messages to

values, how can we do any computing

with values?

e There are three ways to use values:

— use them as arguments to messages

— return them as the results of a message

— use operators on them

| ©Duane Szafron 1999

11

Using Values as Aguments

print
50

| ©Duane Szafron 1999

12

Using Values as Results

(D

length @ 5

| ©Duane Szafron 1999

13
Java (perators
|
e Values can be manipulated using Nhiarcrt Craaticn Nhiac
Operators. VIJJKI | S] | ULLIUI Iy VIJ \ A o)
e Operators are not messages! References and Va Iab!es
e For example, there are some arithmetic ‘
operators that take numerical operands
and compute numerical results. Cmput 114 - Lectgre 5 _
> - > - 5 - > Departm.ent of Computing Science
+ 5 * " / 3 % N University of Alberta
M w w ©Duane Szafron 1999
| ©Duane Szafron 1999 |
15 16
About This Lecture Outline
| |

e In this lecture we will learn how to create
objects in our language independent
diagram world.

e We will learn about various kinds of object
references that can be used to identify the
objects that we want to use.

e We will also study different kinds of
variables including static variables and
local variables.

[©Duane Szafron 1999 |

e Object creation and Date example

e References

— Literals

— Values

— Variables

— Constants
e Static variables
e Local variables

e Message Parameters

[©Duane Szafron 1999 |

17

Object Creation is Needed

e \Wh

en we express a computation using a

diagram, we never have to create any
objects, we just draw them and then send

me

ssages to them.

e In a written program, we must provide
some instructions to create objects before

we

can send any messages to them.

| ©Duane Szafron 1999

18

Object Creation

e Every object must be created before it can
be used.

e An|object creation primitive creates a new
“empty” object.

e A custom message called a constructor is
sent to the object to initialize its state.

e A class may have more than one
constructor.

e In many languages, the name of the

constructor is the name of the class.
| ©Duane Szafron 1999 |

19

Partial Constructor Protocol - Date

e All
diffi

constructors have the same name, but
er in the types of the argument objects.

Date

> e Set the new Date to today.

Date

e Set the new Date to the
Date represented by the
argument String.

[©Duane Szafron 1999 |

20

Object Creation - Date

| Two different constructors.

new

| ©Duane Szafron 1999

21

Object References are Needed

e In a diagram, we can send a message to
any object that we have drawn simply by
pointing a message arrow at it.

e In a written program, we need to have
some notation for referring to objects so
we| can send messages to them.

e |f we create an object and don’t have a
reference to it, we can never use it.

| ©Duane Szafron 1999

22

Object References - Literal

e An|object reference is a language
expression that refers to an object.

e The simplest kind of object reference is a
literal object reference.

e A literal object reference refers to the
same object at all times.

e You can think of a literal object reference
as a nameplate attached to an object.

| ©Duane Szafron 1999

23

Literal Ofyect References - Stgn

[literal object reference | Literals cannot be re-bound

o

“Fred”
“Fred”

object

| ©Duane Szafron 1999

24

Value References

e In a hybrid language, a value reference is
a language expression that refers to a
value.

e The simplest kind of value reference is a
literal value reference that refers to the
same value at all times.

e You can think of a literal value reference
as a nameplate attached to a value.

e A literal is either a literal object reference

or a literal value reference.
[©Duane Szafron 1999 |

25

Literal Value References - ints

| literal value reference | Literals cannot be re-bound

| ©Duane Szafron 1999

26

Variables

e A variable object reference is an object
reference that may refer to different
objects at different times.

e A variable value reference is a value
reference that may refer to different values
at different times.

e A variable is either a variable object
reference or a variable value reference.

e A variable is said to be bound to its object

or value.
| ©Duane Szafron 1999 |

27

Re-bindirg Variables

e A variable can be re-bound to a different
object or value.

e You can think of a variable as a nameplate
that can be moved.

e However, in some languages, a variable is
restricted to objects or values of a
particular type called its declared type.

e Mare than one variable can be bound to
the same object or value at the same time.

[©Duane Szafron 1999 |

28

Variables - Exarple

More than one variable bound
to the same object.

D

Rebinding a variabl

[[
\variable object reference
» | variable value referende

taxRate

26 “Mr. Slate”

| ©Duane Szafron 1999

29

Constants

e A gonstant is like a variable, but once
bound to an object or value it cannot be
rebound.

e It is different than a literal since:

t is not restricted to those types that have
iterals

ts language notation is like a variable

| ©Duane Szafron 1999

2~

30

ynstants - Exapile

onstant object referente

| .

friend

“Fred”

birthDate

constant value referenk:e

E

taxRate
26

IpemK

| ©Duane Szafron 1999

| Constants cannot be re-bound

31

Kinds of Variables

® The

— ¢

.

— |
— I
— 1
o Eve
® The
pro
® The
exi

ere are four kinds of variables:
static (class) variables

ocal (temporary or method) variables
message parameters

nstance (object) variables

ery variable has two characteristics.
2 scope or visibility is the region of
gram code that can use the variable.

> |ifetime is the time that the variable
sts (can be used).

[©Duane Szafron 1999 |

32

Static Variables

e A static variable or class variable is

declared in a class.

e Its [ifetime is the entire time that the
program is run.

e Its scope is either:

— public (the entire program)
— pprivate (the class where it is declared)

e Static constants are also allowed.

| ©Duane Szafron 1999

33

Public Static Variables

e There may be three different types
involved with a public static variable.

e Recall that the declared type of a variable

IS the type of object or value to which it
can be bound.

e The exporting class is the class in which it

is declared.

e The using class is the class in which it is
used to reference an object or value.

| ©Duane Szafron 1999 |

34

Public Static Variablesout

System

out

screen

The exporting class of out is System.

It is actually a constant.

The declared type of out is PrintStream.

| ©Duane Szafron 1999 |

35

Local Variables

e A local variable or temporary variable or
method variable is declared in a block of
code called a method.

e lts lifetime is the time that the method is
running.

e |ts scope is the method it is declared in.

e Local constants are also allowed.

| ©Duane Szafron 1999

36

Local Variables - Exaple

— 0

main()

today

Jan. 19
2000

| ©Duane Szafron 1999

37

Mes

s@e Parameters

e A message parameter is declared at the

sta

rt of a block of code called a method.

e A message parameter is bound to an

arg
me

e [tS
run

ument object or value when the
thod is called and cannot be re-bound.

lifetime is the time that the method is
ning.

e |ts scope is the method it is declared in.

| ©Duane Szafron 1999

38

Mess@e Parameters - Exaie

-

concat(String aString)

aString

* Flintstone’

| ©Duane Szafron 1999

39

Instance Variables

e We
futd

will discuss instance variables in a
ure lecture.

| ©Duane Szafron 1999

40

General Ofect References

e Recall that an object reference is any
language expression that refers to an
object and a value reference is any

language expression that refers to a value.
e There are many other kinds of references

in addition to literals, variables and
constants.

e For example, since a message expression

returns an object or value, the message
expression itself is also a reference.
[©Duane Szafron 1999 |

41

ess@e Expression Ofect Reference

\J =4

(O

toUpperCEs} “ HELLO "

K trim

This message expression is an
object reference, so another

e,

message can be sent to the res

sult

| ©Duane Szafron 1999 |

