
1

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 1

Structural Programming
and Data Structures

Dr. Osmar R. Zaïane

University of Alberta

Winter 2000

CMPUT 102: Object State

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 2

• Vectors
• Testing/Debugging
• Arrays
• Searching
• Files I/O
• Sorting
• Inheritance
• Recursion

2

Course Content

• Introduction
• Objects
• Methods
• Tracing Programs
• Object State
• Sharing resources
• Selection
• Repetition

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 3

Objectives of Lecture 12

• Understand the state of an object.

• Implement classes with objects that have a
state.

• Re-write the Adventure program such that we
have many classes and objects with states.

Implementing Classes Implementing Classes –– Object StateObject State

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 4

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 5

public class Tunes {
/*

Creates a collection of CDs. Adds CDs to the collection
and displays a summary of the collection value.

*/

public static void main(String args[]) {

/* Program statements go here */

CD_Collection music;

music = new CD_Collection(5, 50.00f);

music.addCDs(1, 10.99f);
music.addCDs(3, 20.99f);
music.displayCDs();

}
}

class CD_Collection {
/* Monitors the value of a collection of musical CDs. */

/* Private instance variables */

private int numCDs;
private f loat valueCDs;

public CD_Collection (int initialNum, f loat initialVal) {
/*

Initializes the collection with the given number of CDs
and the given value of the CD collection.

*/

this.numCDs = initialNum;
this.valueCDs = initialVal;

}

public void add_cds(int number, float value) {
/*

Adds CDs to the collection and adjusts the total value.
*/

this.numCDs = this.numCDs + number;
this.valueCDs = this.valueCDs + value;

}

public void displayCDs() {
/*

Displays the number of CDs in the collection and the total
value of the collection.

*/

System.out.println("=================================");
System.out.print ("Total Number of CDs: ");
System.out.println(this.numCDs);
System.out.print ("Total Value of Collection: ");
System.out.println(this.valueCDs);
System.out.print ("Average cost per CD: $");
System.out.println(this.averageCost());
System.out.println("=================================");

}

private f loat averageCost() {
/*

Determines the average cost of a CD in the collection.
*/

float average;

average = this.valueCDs/this.numCDs;

return average;
}

}

numCDs
valueCDs

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 6

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

2

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 7

Using a Class

• To use a class we only need to know the
class protocol:
– a list of public variables

– a list of constructors

– a list of instance messages

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 8

Using Class Adventurer

• Consider the protocol for an Adventurer class that
has no public variables, has instance messages:
publicString name()

public Integer tokens()

publicvoid gainTokens(int gain)

publicvoid loseTokens(int loss)

publicvoid reportTokens()

and has a constructor:
publicAdventurer(String name)

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 9

Request Messages

• Recall that an object must be able to return an
object or value when a message is sent to it.

• For example, an Adventurer object must return
a String in response to the name message.

• How do we implement such messages?
– let an object “remember” all “requestable” objects

– ask another object for the requested object

– compute a new object built from other objects

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 10

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 11

Remembering versus Computing

• An object only needs to remember enough
information to satisfy its protocol.

• For example, if a Person object must respond
to the messages age() and birthDate(), it is
sufficient to remember a birth-date object.

• An age object can then be computed from the
birth-date object and a current date object.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 12

Object State

• The stateof an object is the set of objects and
values that an object “remembers”.

• We use variables to remember this information.

• When a class is implemented we declare one
instance variablefor each object or value that
an instance of that class must remember.

• Like other variables, each instance variable has
a name and declared type.

3

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 13

Object State for Adventurer

• The state of an Adventurer object consists
of two instance variables.

• The first is called namewith declared class,
String.

• The second is called tokenswith declared
type int.

• Alternately we could have declared tokens
to have type Integer.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 14

Instance Variables
• The lifetime of an instance variable is the lifetime

of the object that contains it.

• For example, the Adventurer name instance
variable can be used as soon as an Adventurer
object is created and lasts until the object is
destroyed.

• A Java object is destroyed when no object
reference refers to it anymore.

• The scope of an instance variable is either public
or private.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 15

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 16

Public Instance Variables
• A public instance variablecan be accessed

from anywhere in the program.

• For example the class Point has two public
instance variables called x and y, representing
its x and y coordinates.

• The object that an instance variable is bound
to can be accessed using:
<obj ref> . <instance var name>

• For example:
aPoint.x

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 17

Private Instance Variables

• A private instance variablecan be accessed
only in the methods of the class that defines it.

• For example, if we declare an instance variable
in the Adventurer class:
privateString name;

then we could not use the expression:
anAdventurer.name

in some other class like the Adventure class or
Room class.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 18

No Public Instance Variables
• Some programmers never declare any public

instance variables.

• If public access is required then a message is
provided that returns the object bound to the
instance variable.

• If public modification is required then a
message is provided that binds the instance
variable to an argument object.

• This approach has some program maintenance
advantages.

4

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 19

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior
Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 20

Instance Variables and this

• Recall that inside of a method, the object
reference this can be used to send a message
to the current object :
this.greeting()

• It can also be used to access an instance
variable of the current object:
this.tokens

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 21

Class Implementations
• A class implementationcontains:

– a list of instance variable declarations.

– a method that implements each message in the
protocol, including the constructors.

– code to create any public objects.

• In Java, the class implementation must be
stored in a file whose file name is
“Classname.java”.

• This means that if you have multiple classes in
a program, you will have multiple files.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 22

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 23

Implementing Class Adventurer (1)

• In the Adventurer class, we will declare two
private instance variables :
privateString name;

privateint tokens;

• We will implement a method for the
constructor:
publicAdventurer(String nameString)

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 24

Implementing Class Adventurer (2)

• We will also implement methods for each
instance message :
publicString name()

public int tokens()

publicvoid gainTokens(int anInt)

publicvoid loseTokens(int anInt)

publicvoid reportTokens()

5

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 25

Class - Adventurer 3.1

public classAdventurer{
/*

An instance of this class represents a player of the Adventure game.
*/

/* Constructors */
public Adventurer(String nameString) {
/*

Initialize me with the given name and zero tokens.
*/

this.name = nameString;
this.tokens = 0;

}

an object reference to the current object.

an instance variable object reference

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 26

Class - Adventurer 3.2
/* Instance Methods */

public String name() {
/*

Answer a String representing my name.
*/

returnthis.name;
}

public int tokens() {
/*

Answer my number of Tokens.
*/

returnthis.tokens;
}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 27

Class - Adventurer 3.3

public void gainTokens(int anInt) {
/*

Add the given number of tokens to my total.
*/

this.tokens = this.tokens + anInt;
}

public void loseTokens(int anInt) {
/*

Remove the given number of tokens from my total.
*/

this.tokens = this.tokens - anInt;
}

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 28

Class - Adventurer 3.4

public void reportTokens() {
/*

Output the number of tokens I have.
*/

System.out.print("You have");
System.out.print(this.tokens);
System.out.println(" tokens in your pocket.");

}

/* Private Instance Variables */

privateString name;

privateint tokens;

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 29

The Revised Adventure Program

• Given this Adventurer class, the Adventure
game can be rewritten to use this class.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 30

Program - Adventure 3.1
import java.util.*;
public classAdventure{

/* Version 3

This program is an arithmetic adventure game ...

*/

/* Constructors */
public Adventure () {
/*

Initialize an adventure by creating the appropriate
objects.

*/
}

NO CHANGES

6

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 31

Program - Adventure 3.2

/* Main program */

public static voidmain(String args[]) {
Adventure game;

game = new Adventure();
game.play();

}

NO CHANGES

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 32

Program - Adventure 2.3

/* Private Instance Methods */
private voidplay() {
/*

Play the Adventure game.
*/

String name;
Integer tokens;

name = this.greeting();
tokens = this.enterRoom(name);
this.farewell(name, tokens);

}

OLD

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 33

Program - Adventure 3.3

/* Private Instance Methods */

private voidplay() {
/*

Plays the Adventure game.
*/

Adventurer adventurer;

adventurer = this.greeting();
this.enterRoom(adventurer);
this.farewell(adventurer);

}

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 34

Program - Adventure 2.4

private voidfarewell(String userName,
Integer tokenCount) {

/*
Say farewell to the user with the given name and
report the given count of tokens earned.

*/

System.out.print("Congratulations ");
System.out.print(userName);
System.out.print(" you have left the game with ");
System.out.print(tokenCount);
System.out.println(" tokens.");

}

OLD

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 35

Program - Adventure 3.4

private voidfarewell(Adventurer adventurer) {
/*

Say farewell to the user and report the game result.
*/

System.out.print("Congratulations ");
System.out.print(adventurer.name());
System.out.print(" you have left the game with ");
System.out.print(adventurer.tokens());
System.out.println(" tokens.");

}

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 36

Program - Adventure 2.5
privateString greeting() {
/*

Greet the user and answer a String that represents
the player’s name.

*/
String playerName;

System.out.println("Welcome to the Arithmetic Adventure game.");
System.out.print("The date is ");
System.out.println(new Date());
System.out.println();
System.out.print("What is your name?");
playerName = Keyboard.in.readString();

OLD

7

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 37

Program - Adventure 2.6

System.out.print("Well ");
System.out.print(playerName);
System.out.println(", after a day of hiking you spot a silver cube.");
System.out.println("The cube appears to be about 5 meters on each side.");
System.out.println("You find a green door, open it and enter.");
System.out.println("The door closes behind you with a soft whir and disappears.");
System.out.println("There is a feel of mathematical magic in the air.");
Keyboard.in.pause();
returnplayerName;

}

OLD

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 38

Program - Adventure 3.5

privateAdventurer greeting() {
/*

Greet the user and answer an Adventurer that
represents the user.

*/
String playerName;

System.out.println("Welcome to the Arithmetic Adventure game.");
System.out.print("The date is ");
System.out.println(new Date());
System.out.println();
System.out.print("What is your name?");
playerName = Keyboard.in.readString();

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 39

Program - Adventure 3.6

System.out.print("Well ");
System.out.print(playerName);
System.out.println(", after a day of hiking you spot a silver cube.");
System.out.println("The cube appears to be about 5 meters on each side.");
System.out.println("You find a green door, open it and enter.");
System.out.println("The door closes behind you with a soft whir and disappears.");
System.out.println("There is a feel of mathematical magic in the air.");
Keyboard.in.pause();
returnnew Adventurer(playerName);

}

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 40

Program - Adventure 2.7
privateInteger enterRoom(String theName) {
/*

The user with the given name has entered the
first room. After the adventure is done, return the
number of tokens obtained during the game.

*/
Integer myTokens;

System.out.print("How many tokens would you like, ");
System.out.print(theName);
System.out.print("?");
myTokens = Keyboard.in.readInteger();
returnmyTokens;

}

OLD

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 41

Program - Adventure 3.7

privatevoid enterRoom(Adventurer adventurer) {
/*

The given adventurer has entered the
first room.

*/
Integer myTokens;

System.out.print("How many tokens would you like, ");
System.out.print(adventurer.name());
System.out.print("?");
myTokens = Keyboard.in.readInteger();
adventurer.gainTokens(myTokens.intValue());

}

NEW

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 42

Outline of Lecture 12
• Re-visit the Tune program.

• Using a class

• Instance variables for object state

• Syntax for instance variable references

• Accessing the state of the current object -this

• Example class implementation - Adventurer in
Adventure Version 3

• Managing multiple classes in Code Warrior

8

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 43

Demonstration Adventure 3

• Enter the Adventure Version 3 code into
CodeWarrior in two separate classes.

• Add the file Adventurer.java to the project.

• Compile and run.

Structural Programming and Data Structures University of Alberta Dr. Osmar R. Zaïane, 2000 44

Debugger Object State

• A demonstration of object state inspection
for Adventure Version 3 in the debugger
will be given in the lab next week.

