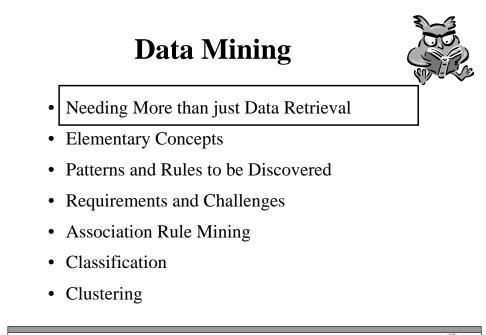
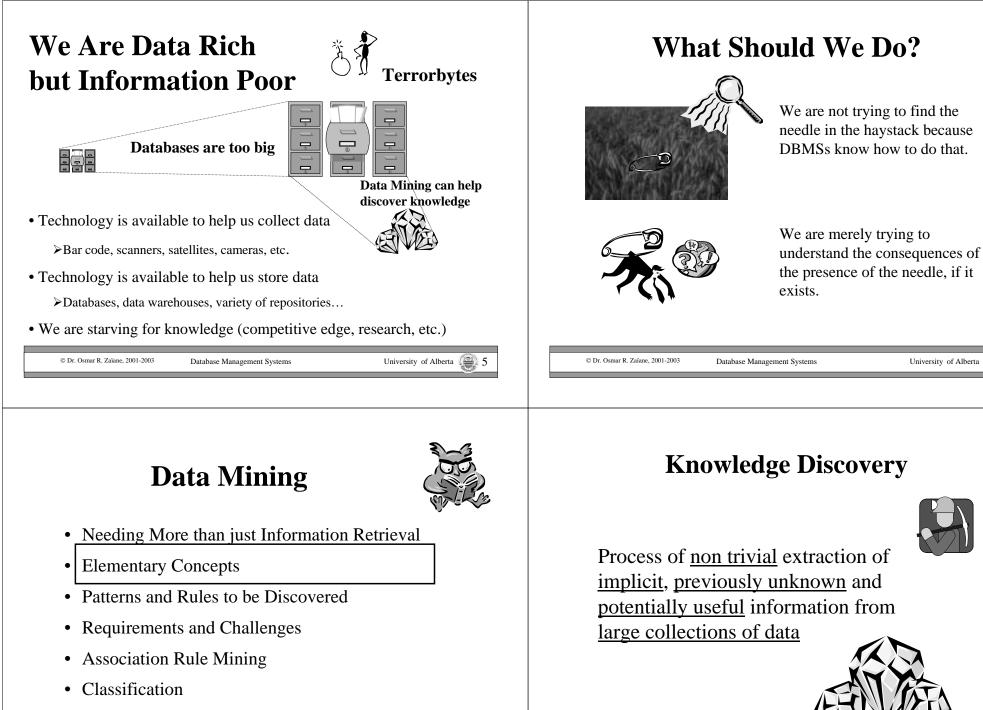
Database Management	Course Content
Systems Winter 2003	 Introduction Database Design Theory Query Processing and Optimisation
CMPUT 391: Data Mining	 Concurrency Control Data Base Recovery and Security Object-Oriented Databases
Dr. Osmar R. Zaïane	 Inverted Index for IR Spatial Data Management XML and Databases Data Warehousing Data Mining
University of Alberta Chapter 26 of Textbook	Parallel and Distributed Databases
© Dr. Osmar R. Zaĭane, 2001-2003 Database Management Systems University of Alberta 😰 1	© Dr. Osmar R. Zaĭane, 2001-2003 Database Management Systems University of Alberta 💽 2

Objectives of Lecture 10 Data Mining

- Get a general idea about what knowledge discovery in databases and data mining are.
- Get an overview about the functionalities and the issues in data mining.
- Get acquainted with some classical algorithms.



© Dr. Osmar R. Zaïane, 2001-2003 Da



• Clustering

© Dr. Osmar R. Zaïane, 2001-2003

Many Steps in KD Process

- Gathering the data together
- Cleanse the data and fit it in together
- Select the necessary data
- Crunch and squeeze the data to extract the *essence* of it
- Evaluate the output and use it \sim

© Dr. Osmar R. Zaïane, 2001-2003

Database Management Systems

University of Alberta

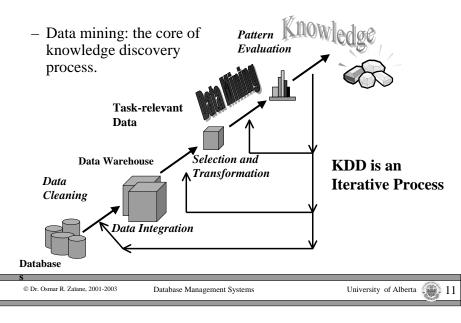
So What Is Data Mining?

- In theory, *Data Mining* is <u>a step</u> in the knowledge discovery process. It is the extraction of implicit information from a large dataset.
- In practice, data mining and knowledge discovery are becoming synonyms.
- There are other equivalent terms: KDD, knowledge extraction, discovery of regularities, patterns discovery, data archeology, data dredging, business intelligence, information harvesting...

• Notice the misnomer for data mining. Shouldn't it be knowledge mining?

© Dr. Osmar R. Zaïane, 2001-2003 Database Management System

University of Alberta

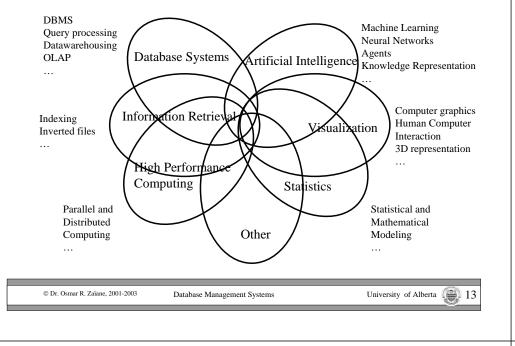


Steps of a KDD Process

→ Learning the application domain (relevant prior knowledge and goals of application)
→ Gathering and integrating of data
→ Cleaning and preprocessing data (may take 60% of effort!)
→ Reducing and projecting data (Find useful features, dimensionality/variable reduction,...)
→ Choosing functions of data mining (summarization, classification, regression, association, clustering,...)
→ Choosing the mining algorithm(s)
→ Data mining: search for patterns of interest
→ Evaluating results
→ Interpretation: analysis of results. (visualization, alteration, removing redundant patterns, ...)
→ Use of discovered knowledge

© Dr. Osmar R. Zaïane, 2001-2003

KDD at the Confluence of Many Disciplines



Data Mining: On What Kind of Data?

- Flat Files
- Heterogeneous and legacy databases
- Relational databases

and other DB: Object-oriented and object-relational databases

• Transactional databases

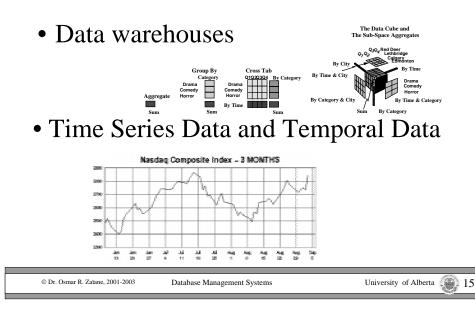
Transaction(<u>TID</u>, Timestamp, UID, {item1, item2,...})

Database Management Systems

© Dr. Osmar R. Zaïane, 2001-2003 D

University of Alberta

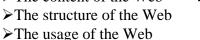
Data Mining: On What Kind of Data?



Data Mining: On What Kind of Data?

- Multimedia databases 🖨
- Spatial Databases

- Text Documents
- The World Wide Web > The content of the Web > The structure of the Web



© Dr. Osmar R. Zaïane, 2001-2003

Designations for Mining Complex Types of Data

• Text Mining:

- Library database, e-mails, book stores, Web pages.

- Spatial Data Mining:
 - Geographic information systems, medical image database.
- Multimedia Mining:
 - Image and video/audio databases.
- Web Mining:

© Dr. Osmar R. Zaïane, 2001-2003

- Unstructured and semi-structured data
- Web access pattern analysis

Data Mining

- Needing More than just Information Retrieval
- Elementary Concepts
- Patterns and Rules to be Discovered
- Requirements and Challenges
- Association Rule Mining
- Classification
- Clustering

© Dr. Osmar R. Zaïane, 2001-2003 Database Management System

University of Alberta

What Can Be Discovered?

Database Management System

What can be discovered depends upon the data mining task employed.

•Descriptive DM tasks Describe general properties

•Predictive DM tasks Infer on available data

University of Alberta

Data Mining Functionality

• Characterization:

Summarization of general features of objects in a target class. (Concept description)

Ex: Characterize grad students in Science

• Discrimination:

Comparison of general features of objects between a target class and a contrasting class. (Concept comparison)

Ex: Compare students in Science and students in Arts

© Dr. Osmar F

Data Mining Functionality (Con't)

• Association

Studies the frequency of items occurring together in transactional databases.

Ex: $buys(x, bread) \rightarrow buys(x, milk)$.

• Prediction:

Predicts some unknown or missing attribute values based on other information.

Ex: group crime locations to find distribution patterns. *Ex:* Forecast the sale value for next week based on available Minimize inter-class similarity and maximize intra-class similarity data. © Dr. Osmar R. Zaïane, 2001-2003 University of Alberta © Dr. Osmar R. Zaïane, 2001-2003 Database Management System Database Management System **Data Mining Functionality (Con't) Data Mining** • Outlier analysis: • Needing More than just Information Retrieval Identifies and explains exceptions (surprises) • Elementary Concepts • Patterns and Rules to be Discovered **Requirements and Challenges** • Time-series analysis: • Association Rule Mining Analyzes trends and deviations; regression, sequential Classification pattern, similar sequences...

Data Mining Functionality (Con't)

• Classification

Organizes data in given classes based on attribute values. (supervised classification)

Ex: classify students based on final result.

• Clustering:

Organizes data in classes based on attribute values. (unsupervised classification)

University of Alberta

• Clustering

© Dr. Osmar R. Zaïane, 2001-2003

Requirements/Challenges in Data Mining

- Security and social issues:
 - → Social impact
 - Private and sensitive data is gathered and mined without individual's knowledge and/or consent.
 - New implicit knowledge is disclosed (confidentiality, integrity)
 - Appropriate use and distribution of discovered knowledge (sharing)

→ Regulations

• Need for privacy and DM policies

tabase Management Systems

University of Alberta 🚑 25

Requirements/Challenges in Data Mining (Con't)

- User Interface Issues:
 - \rightarrow Data visualization.
 - Understandability and interpretation of results
 - Information representation and rendering

Database Management System

- Screen real-estate
- → Interactivity
 - Manipulation of mined knowledge
 - Focus and refine mining tasks
 - Focus and refine mining results

© Dr. Osmar R. Zaïane, 2001-2003

University of Alberta

Requirements/Challenges in Data Mining (Con't)

- Mining methodology issues
 - Mining different kinds of knowledge in databases.
 - Interactive mining of knowledge at multiple levels of abstraction.
 - Incorporation of background knowledge
 - Data mining query languages and ad-hoc data mining.
 - Expression and visualization of data mining results.
 - Handling noise and incomplete data
 - $-\,$ Pattern evaluation: the interestingness problem.

(Source JH)

Requirements/Challenges in Data Mining (Con't)

- Performance issues:
 - \rightarrow Efficiency and scalability of data mining algorithms.
 - Linear algorithms are needed: no medium-order polynomial complexity, and certainly no exponential algorithms.
 - Sampling
 - → Parallel and distributed methods
 - Incremental mining
 - Can we divide and conquer?

Requirements/Challenges in Data Mining (Con't)

- Data source issues:
 - \rightarrow Diversity of data types
 - Handling complex types of data
 - Mining information from heterogeneous databases and global information systems.
 - Is it possible to expect a DM system to perform well on all kinds of data? (distinct algorithms for distinct data sources)
 - → Data glut
 - Are we collecting the right data with the right amount?
 - Distinguish between the data that is important and the data that is not.

Requirements/Challenges in Data Mining (Con't)

- Other issues
 - Integration of the discovered knowledge with existing knowledge: A knowledge fusion problem.

© Dr. Osmar R. Zaŭane, 2001-2003 Database Management Systems University of Alberta 29	© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 🛞 3
Data Mining	Basic Concepts
 Needing More than just Information Retrieval 	A transaction is a set of items: $T = \{i_a, i_b,, i_t\}$
Elementary Concepts	$T \subset I$, where <i>I</i> is the set of all possible items $\{i_1, i_2,, i_n\}$
• Patterns and Rules to be Discovered	
Requirements and Challenges	<i>D</i> , the task relevant data, is a set of transactions.
Association Rule Mining	An association rule is of the form:
Classification	P → Q, where P ⊂ I, Q ⊂ I, and P ∩ Q = Ø
• Clustering	

Basic Concepts (con't)

P→Q holds in *D* with support s and P→Q has a confidence c in the transaction set *D*.

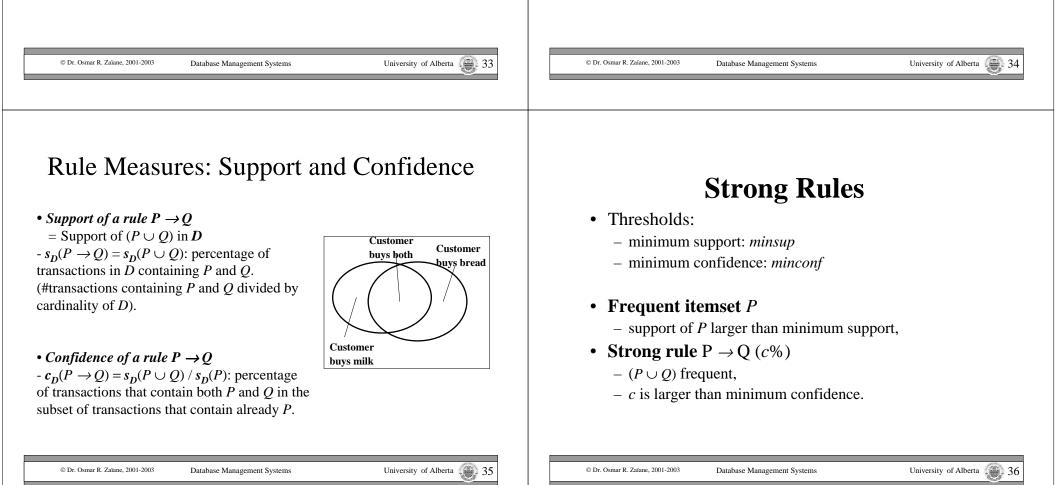
Support($P \rightarrow Q$) = Probability($P \cup Q$) Confidence($P \rightarrow Q$)=Probability(Q / P)

Itemsets

A set of items is referred to as itemset.

An itemset containing k items is called k-itemset.

An items set can also be seen as a conjunction of items (or a predicate)



Mining Association Rules

Transaction IDItems BoughtMin. support 50%2000A,B,CMin. confidence 50%1000A,C $$ 4000A,D $$ 5000B,E,F $$ For rule {A} \rightarrow {C}: $$ support = support({A, C}) = 50% $$ confidence = support({A, C}) = 50% $$ For rule {C} \rightarrow {A}:support = support({A, C}) = 50%confidence = support({A, C}) = 50%	 Input A database of transactions Each transaction is a list of items (Ex. purchased by a customer in a visit) Find <u>all strong rules</u> that associate the presence of one set of items with that of another set of items. Example: 98% of people who purchase tires and auto accessories also get automotive services done There are no restrictions on the number of items in the head or body of the rule.
© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 237	© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta
Mining Frequent Itemsets: the Key Step →Iteratively find the <i>frequent itemsets</i> , i.e. sets of items that	The Apriori Algorithm C_k : Candidate itemset of size k L_k : frequent itemset of size k

of items with that of another set of items. Example: 98% of people who purchase tires and auto accessories also get automotive services done

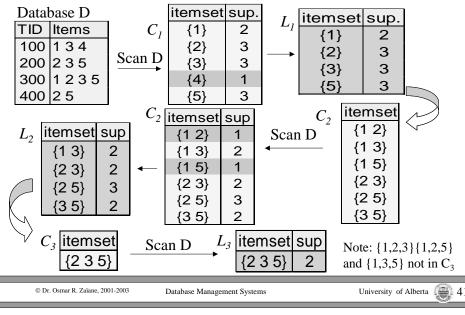
How do we Mine Association Rules?

- have minimum support, with cardinality from 1 to k (k-itemsets)
- →Based on the *Apriori principle*:
 - Any subset of a frequent itemset must also be frequent. E.g., if $\{AB\}$ is a frequent itemset, both $\{A\}$ and $\{B\}$ must be frequent itemsets.
- \rightarrow Use the frequent itemsets to generate association rules.

University of Alberta

The Apriori Algorithm

 $L_1 = \{ \text{frequent items} \};$ for $(k = 1; L_k != \emptyset; k++)$ do begin C_{k+1} = candidates generated from L_k ; for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t L_{k+1} = candidates in C_{k+1} with min_support end **return** $\cup_k L_k$;



Data Mining

- Needing More than just Information Retrieval
- Elementary Concepts
- Patterns and Rules to be Discovered
- Requirements and Challenges
- Association Rule Mining
- Classification
- Clustering

Generating Association Rules from Frequent Itemsets

- Only strong association rules are generated.
- Frequent itemsets satisfy minimum support threshold.
- Strong AR satisfy minimum confidence threshold.

• Confidence(
$$P \rightarrow Q$$
) = Prob(Q/P) = $\frac{\text{Support}(P \cup Q)}{\text{Support}(P)}$

For each frequent itemset, **f**, generate all non-empty subsets of **f**. For every non-empty subset **s** of **f** do output rule $s \rightarrow (\mathbf{f} \cdot \mathbf{s})$ if support(**f**)/support(**s**) \geq min confidence

end

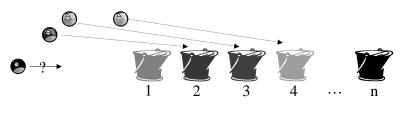
© Dr. Osmar R. Zaïane, 2001-2003 Database Management System

University of Alberta

What is Classification?

The goal of data classification is to organize and categorize data in distinct classes.

- A model is first created based on the data distribution.
- ▶ The model is then used to classify new data.
- ▶ Given the model, a class can be predicted for new data.



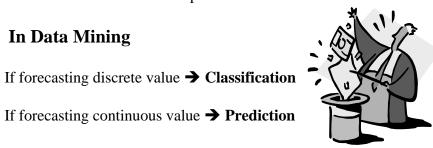
© Dr. Osmar R. Zaïane, 2001-2003

What is Prediction?

The goal of prediction is to forecast or deduce the value of an attribute based on values of other attributes.

- A model is first created based on the data distribution.
- ▶ The model is then used to predict future or unknown values.

In Data Mining



© Dr. Osmar R. Zaïane, 2001-2003

University of Alberta

Classification is a three-step process

1. Model construction (Learning):

Each tuple is assumed to belong to a predefined class, as determined by one of the attributes, called the **class label**.

	,			/ \
Outlook	Tempreature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	Ν
overcast	hot	high	false	Р

The set of all tuples used for construction of the model is called **training set**.

Database Management System

- The model can be represented in the following forms:
 - Classification rules, (IF-THEN statements),
 - **Decision tree**
 - Mathematical formulae

```
© Dr. Osmar R. Zaïane, 2001-2003
```

University of Alberta

Classification is a three-step process

2. Model Evaluation (Accuracy):

Estimate accuracy rate of the model based on a test set.

- The known label of test sample is compared with the classified _ result from the model.
- Accuracy rate is the percentage of test set samples that are correctly classified by the model.
- Test set is independent of training set otherwise over-fitting will occur

Classification is a three-step process

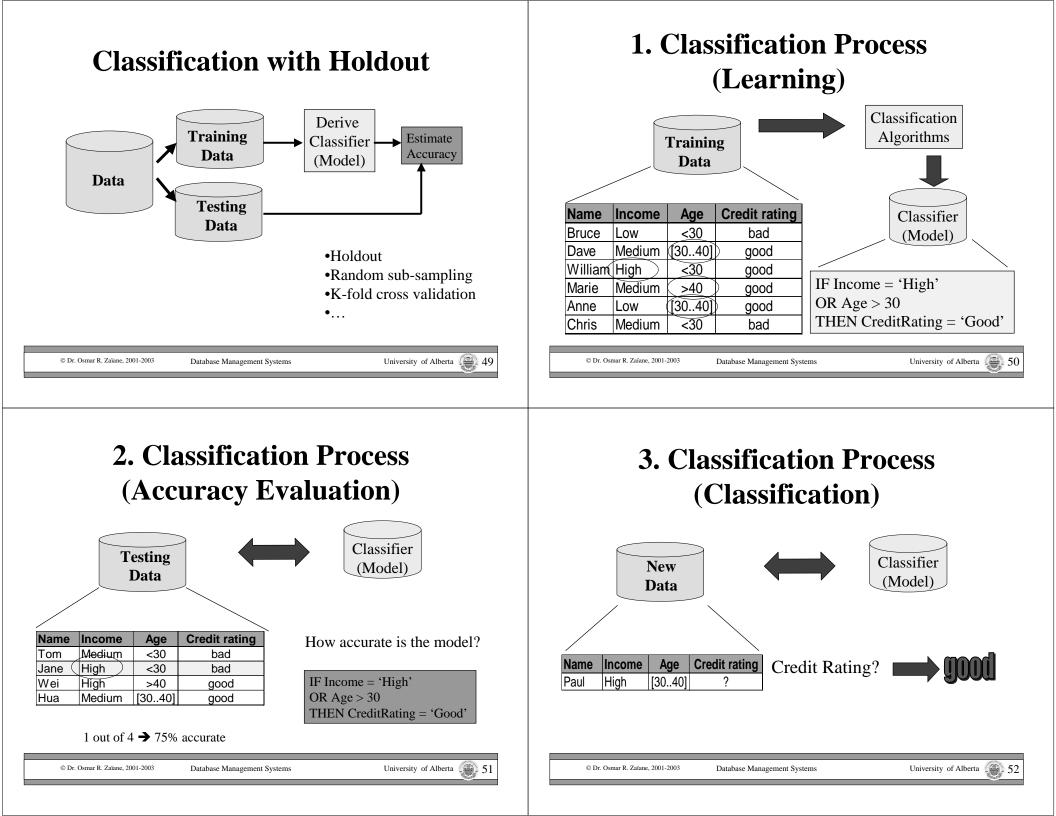
3. Model Use (Classification):

The model is used to classify new objects where the *class label is* not known.

Using the attributes of the new object and the model, assign a class label to the new object

Outlook Tempreature Humidity Windy				Class
rain	hot	high	false	?
sunny	hot	low	true	?
overcast	cold	high	false	?

© Dr. Osmar R. Zaïane, 2001-2003



Classification Methods

→ Decision Tree Induction
→ Neural Networks
→ Bayesian Classification
→ Association-Based Classification
➔ K-Nearest Neighbour
→ Case-Based Reasoning
→ Genetic Algorithms
➔ Rough Set Theory
→ Fuzzy Sets
\rightarrow Etc.

Database Management Systems

© Dr. Osmar R. Zaïane, 2001-2003

What is a Decision Tree?

A decision tree is a flow-chart-like tree structure.

- Atr-? Internal node denotes a test on an attribute
 - \rightarrow Branch represents an outcome of the test

Database Management Systems

All tuples in branch have the same value for the tested attribute.

Atr=?

CL

Atr=?

CL

(CL)

Atr=?

CL

University of Alberta

CL

Leaf node represents class label or class label distribution.

Training	Dataset
-----------------	---------

University of Alberta

53

© Dr. Osmar R. Zaïane, 2001-2003

	Outlook	Tempreature	Humidity	Windy	Class
	sunny	hot	high	false	Ν
An	sunny	hot	high	true	Ν
	overcast	hot	high	false	Р
Example	rain	mild	high	false	Р
from	rain	cool	normal	false	Р
Quinlan's	rain	cool	normal	true	Ν
	overcast	cool	normal	true	Р
ID3	sunny	mild	high	false	Ν
	sunny	cool	normal	false	Р
	rain	mild	normal	false	Р
	sunny	mild	normal	true	Р
	overcast	mild	high	true	Р
	overcast	hot	normal	false	Р
	rain	mild	high	true	Ν
© Dr. Osmar R. Zaïane, 2001-2003	Database Ma	anagement Systems		University of A	Alberta (B)
	Database Mi	and by stories		chirclisity of f	

A Sample Decision Tree

	Outlook	Tempreature	Humidity	Windy	Class
	sunny	hot	high	false	Ν
	sunny	hot	high	true	Ν
	overcast	hot	high	false	Р
	rain	mild	high	false	Р
	rain	cool	normal	false	Р
Outlook?	rain	cool	normal	true	N
	overcast	cool	normal	true	Р
	sunny	mild	high	false	Ν
	sunny	cool	normal	false	Р
sunny overcast rain	rain	mild	normal	false	Р
	sunny	mild	normal	true	Р
	overcast	mild	high	true	Р
Humidity? P Windy?	overcast	hot	normal	false	Р
	rain	mild	high	true	Ν
high normal true fal	se				
	\mathbf{n}				
N P N	P				
© Dr. Osmar R. Zaïane, 2001-2003 Database Management	Systems		University	of Alberta	56

Decision-Tree Classification Methods

• The basic top-down decision tree generation approach usually consists of two phases:

1. Tree construction

- At the start, all the training examples are at the root.
- Partition examples recursively, based on selected attributes.

2. Tree pruning

 Aiming at removing tree branches that may reflect noise in the training data and lead to errors when classifying test data → improve classification accuracy.

© Dr. Osmar R. Zaïane, 2001-2003

ase Management Systems

Partitioning the Data at a Given Node

• Split criterion:

- Use a *goodness/impurity* function to determine the attribute that results in the "purest" subsets with respect to the class label.
- Different goodness functions exist: information gain, gini index, etc.

• Branching scheme:

 binary splitting (numerical attributes, gini index) versus many splitting (categorical attributes, information gain).

© Dr. Osmar R. Zaïane, 2001-2003

University of Alberta

Decision Tree Construction

Recursive process:

- Tree starts a single node representing all data.
- Recursion stops when:

a) Sample in node belong to the same class;

b) There are no remaining attributes on which to split;

Database Management Systems

(CL a) & b) \rightarrow node becomes a leaf labeled with the majority class label. There are no samples with attribute value.

• Otherwise,

- select suitable attribute

- *partition the data according to the attribute values* of the selected attribute into subsets.
- For each of these subsets: create a new child node under the current parent node and recursively apply the method to the new child nodes.

© Dr. Osmar R. Zaïane, 2001-2003

University of Alberta

Example for Algorithm (ID3)

- All attributes are categorical
- Create a node N;
 - if samples are all of the same class C, then return N as a leaf node labeled with C.
 - if attribute-list is empty then return N as a leaf node labeled with the most common class.
- Select split-attribute with highest information gain
 - label N with the split-attribute
 - $-\,$ for each value A_i of split-attribute, grow a branch from Node N
 - let \boldsymbol{S}_i be the branch in which all tuples have the value \boldsymbol{A}_i for split- attribute
 - if \mathbf{S}_{i} is empty then attach a leaf labeled with the most common class.
 - + Else recursively run the algorithm at Node ${\rm S_i}$
- Until all branches reach leaf nodes

How to use a tree?

• Directly

- test the attribute values of an unknown sample against the tree.
- A path is traced from root to a leaf which holds the label.
- Indirectly

© Dr. Osmar R. Zaïane, 2001-2003

- decision tree is converted to classification rules.

Database Management Systems

- one rule is created for each path from the root to a leaf.
- IF-THEN rules are easier for humans to understand.

Data Mining

- Needing More than just Information Retrieval
- Elementary Concepts
- Patterns and Rules to be Discovered
- Requirements and Challenges
- Association Rule Mining
- Classification
- Clustering

© Dr. Osmar R. Zaïane, 2001-2003

© Dr. Osmar R. Zaïane, 2001-2003

Database Management Systems

University of Alberta

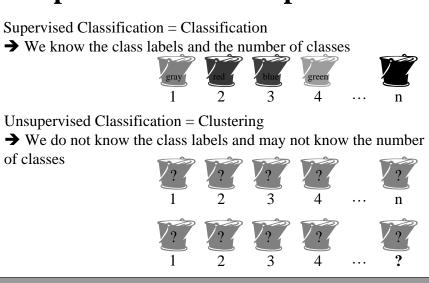
University of Alberta

What is Clustering in Data Mining?

Clustering is a process of partitioning a set of data (or objects) in a set of meaningful sub-classes, called **clusters**.

- Helps users understand the natural grouping or structure in a data set.
- <u>Cluster</u>: a collection of data objects that are "similar" to one another and thus can be treated collectively as one group.
- Clustering: <u>unsupervised classification</u>: no predefined classes.

Supervised and Unsupervised



Database Management Systems

© Dr. Osmar R. Zaïane, 2001-2003

University of Alberta 🔅 63

University of Alberta

What Is Good Clustering?

- A good clustering method will produce high quality clusters in which:
 - the **intra-class** similarity (that is within a cluster) is high.
 - the **inter-class** similarity (that is between clusters) is low.
- The **quality** of a clustering result also depends on both the similarity measure used by the method and its implementation.
- The **quality** of a clustering method is also measured by its ability to discover some or all of the **hidden** patterns.
- The quality of a clustering result also depends on the definition and representation of cluster chosen.

© Dr. Osmar R. Zaïane, 2001-2003	Databa
----------------------------------	--------

ase Management Systems

Major Clustering Techniques

- **Partitioning algorithms**: Construct various partitions and then evaluate them by some criterion.
- **Hierarchy algorithms**: Create a hierarchical decomposition of the set of data (or objects) using some criterion. There is an agglomerative approach and a divisive approach.
- Density-based: based on connectivity and density functions.
- Grid-based: based on a multiple-level granularity structure.
- **Model-based**: A model is hypothesized for each of the clusters and the idea is to find the best fit of that model to each other.

University of Alberta

Requirements of Clustering in Data Mining

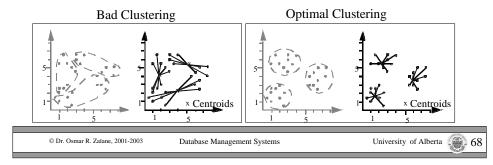
- Scalability
- Dealing with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- High dimensionality
- Interpretability and usability.

© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems

University of Alberta

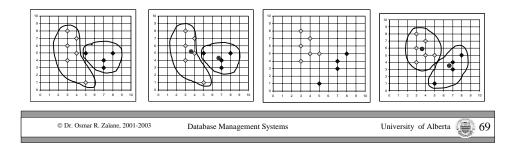
Partitioning Algorithms: Basic Concept

- Partitioning method: Given a number k, partition a database D of n objects into a set of k clusters so that a chosen objective function is minimized (e.g., sum of distances to the center of the clusters).
 - Global optimum: exhaustively enumerate all partitions too expensive!
 - Heuristic methods based on iterative refinement of an initial parition



The K-Means Clustering Method

- Given *k*, the *k*-means algorithm is implemented in 4 steps:
 - 1. Partition objects into k nonempty subsets
 - 2. Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 - 3. Assign each object to the cluster with the nearest seed point.
 - 4. Go back to Step 2, stop when no more new assignment.



The K-Medoids Clustering Method

- Find *representative* objects, called <u>medoids</u>, in clusters
 - To achieve this goal, only the definition of distance from any two objects is needed.
- PAM (Partitioning Around Medoids, 1987)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering.
 - *PAM* works effectively for small data sets, but does not scale well for large data sets.
- CLARA (Kaufmann & Rousseeuw, 1990)
- CLARANS (Ng & Han, 1994): Randomized sampling.
- Focusing + spatial data structure (Ester et al., 1995).

Comments on the K-Means Method

- <u>Strength</u> of the *k-means*:
 - *Relatively efficient*: O(tkn), where n is # of objects, k is # of clusters, and t is # of iterations. Normally, k, t << n.
 - Often terminates at a *local optimum*.
- <u>Weakness</u> of the *k*-means:
 - Applicable only when *mean* is defined, then what about categorical data?
 - Need to specify k, the *number* of clusters, in advance.

Database Management System

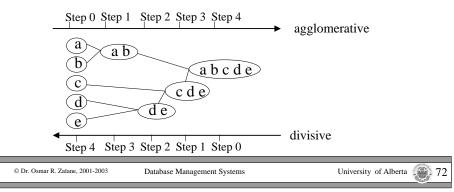
- Unable to handle noisy data and *outliers*.
- Not suitable to discover clusters with non-convex shapes.

© Dr. Osmar R. Zaïane, 2001-2003

University of Alberta

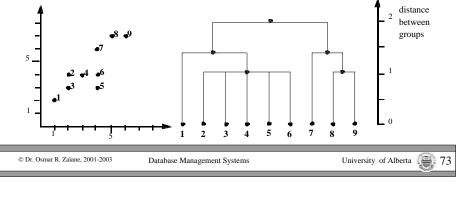
Hierarchical Clustering

- Hierarchical decomposition of the data set (with respect to a given similarity measure) into a set of nested clusters
- Result represented by a so called *dendrogram*
 - Nodes in the dendrogram represent possible clusters
 - can be constructed bottom-up (agglomerative approach) or top down (divisive approach)



Hierarchical Clustering: Example

- Interpretation of the dendrogram
 - The root represents the whole data set
 - A leaf represents a single objects in the data set
 - An internal node represent the union of all objects in its sub-tree
 - The height of an internal node represents the distance/similarity between its two child nodes



Agglomerative Hierarchical Clustering

• Single-Link Method and Variants:

© Dr. Osmar R. Zaïane, 2001-2003

- start by placing each object in its own cluster.

Database Management Systems

- keep merging "closest pairs" (most similar pairs) of clusters into larger clusters
- until all objects are in a single cluster.
- Most hierarchical methods belong to this category. They differ mainly in their definition of *between-cluster similarity*.

University of Alberta