
Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 1

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2003

CMPUT 391: Query Processing & Optimization

Chapters 12, 13, 14
15 & 20 of Textbook

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 22

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• XML
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases
• Other Advanced Database Topics

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 3

Objectives of Lecture 3

• Get a glimpse on query processing and
evaluation.

• Introduce the issue of query planning and
plan selection.

• Understand the importance of good
database design for good performance.

Query Processing and Optimization

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 4

Query Processing and
Optimization

• Query Processing and Planning

• System Catalog

• Evaluation of Relational Operations

• Merge Sort

• Evaluation of Relational Operations (Continue)

• Cost Estimation and Plan Selection

• Physical Database Design Issues

• Database Tuning

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 5

Overview of Query Processing

• The aim is to transform a query in a high-level
declarative language (SQL) into a correct and
efficient execution strategy

• Query Decomposition
– Analysis

– Conjunctive and disjunctive normalization

– Semantic analysis

• Query Optimization

• Query Evaluation (Execution)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 6

The Need for Optimization

Consider:

SELECT name, address
FROM Customer, Account
WHERE Customer.name = Account.name

AND Balance > 2000

There are different possibilities for execution:
πC.name,C.address(σC.name=A.name∧ A.balance>2000(C×A))

πC.name,C.address(σC.name=A.name(C× σ A.balance>2000(A))

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 7

General Approaches to Optimization

• Heuristic-based query optimization
– Given a query expression, perform selections and

projections as early as possible.

– Eliminate duplicate computations.

• Cost-based query optimization
– Estimate the cost of different equivalent query

expressions (using the heuristics and algebra
manipulation) and choose the execution plan with
the lowest cost estimation.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 8

Architecture for DBMS Query
Processing

SQL Query

Relational Algebra Expression

Query Execution Plan

Query Result

SQL Parser

Query Plan
Generator

Cost
Estimator

Query Optimizer

Query Plan
Interpreter

System
Catalog

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 9

General Guidelines

• Perform Selections and projections as early as
possible
– Splitting selection formula if necessary

– Adding projections to eliminate unused columns

• Eliminating or reducing if possible repeated
computations

• Combine unary operators with binary operators

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 10

Heuristic Transformations
Selection and projection-based transformations

• Cascading Selection

σ cond1∧ cond2(R) ≡σ cond1(σ cond2(R))

• Commutativity of selection

σ cond1(σ cond2(R)) ≡ σ cond2(σ cond1(R))

• Cascading of Projection
πAttribs1(πAttribs2(…(πAttribsn(R)…)) ≡ πAttribs1(R)

• Commutativity of Selection and Projection

πAttribs(σ cond(R)) ≡ σ cond(πAttribs(R))

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 11

Heuristic Transformations
Pushing selections and projections through joins

σ cond(R × S) ≡ R condS
if conditionscondrelate to the attributes of both R and S

σ cond(R × S) ≡ σ cond(R) × S
if attributes incondall belong to R (idem with joins)

πAttribs1(R × S) ≡ πAttribs1(πAttribs2(R) × S)
Where attribs1⊆ attribs2⊆ (R)

πAttribs1(R condS) ≡ πAttribs1(πAttribs2(R) condS)
Attribs2 should contain all attributes incond

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 12

Query Trees
• A query tree is a tree structure that corresponds to a

relational algebra expression such that:
– Each leaf node represents an input relation;

– Each internal node represents a relation obtained by applying
one relational operator to its child nodes

– The root relation represents the answer to the query

• Two query trees are equivalent if their root relations are
the same (query result)

• A query tree may have different execution plans

• Some query trees and plans are more efficient to execute
than others.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 13

Example of Query Tree and
Query Plan

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

SELECT S.sname
FROM Reserves R. Sailors S
WHERE R.sid = S.sid AND

R.bid = 100 AND
S.rating > 5

πS.sname(σ R.sid=S.sid ^ R.bid = 100 ^ S.rating>5(R × S))

Query Tree

On the fly

On the fly

Simple Nested Loop Join

File Scan

File Scan

Query Plan

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 14

Overview of Query Optimization
• Query Plan: Tree of Relational Algebra operators with

choice of algorithms for each operation.
– Each operator typically implemented using a `pull’ interface:

when an operator is `pulled’ for the next output tuples, it `pulls’
on its inputs and computes them.

• Two main issues:
– For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?

• Ideally: Want to find best plan.
• Practically: Avoid worst plans!

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 15

Query Processing and
Optimization

• Query Processing and Planning

• System Catalog

• Evaluation of Relational Operations

• Merge Sort

• Evaluation of Relational Operations (Continue)

• Cost Estimation and Plan Selection

• Physical Database Design Issues

• Database Tuning

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 16

System Catalog

• A Database system maintains information
about every relation and view it contains.

• This information is stored in special
relations called catalog relations or data
dictionary

• The data in the data dictionary is
extensively used for query optimization

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 17

System Catalog Information

• For each relation
– Relation name, file name, file structure
– Attribute name and type for all attributes
– Index name for all indexes on the relation
– Integrity constrains on the relation

• For each index
– Index name and structure
– Search key attributes

• For each view
– View name and definition

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 18

Statistics Stored
• Cardinality(Ntuples(R)): number of tuples in each relation

• Size(Npages(R)):number of pages for each relation

• Index Cardinality(Nkeys(I)): number of distinct key values

• Index Size(INPages(I)): number of pages for each index

• Index Height (IHeight(I)): number of nonleaf levels for each tree
index

• Index Range: minimum(ILow(I)) and maximum(IHigh(I)) present
key values for each index

• Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of approximation

anyway, so slight inconsistency ok.

• More detailed information (e.g., histograms of the values in some
field, or attribute weight, etc.) are sometimes stored.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 19

Query Processing and
Optimization

• Query Processing and Planning

• System Catalog

• Evaluation of Relational Operations

• Merge Sort

• Evaluation of Relational Operations (Continue)

• Cost Estimation and Plan Selection

• Physical Database Design Issues

• Database Tuning

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 20

Estimating the Result Size
• Typical optimizers estimate the size of the

relation resulting from a relational operation.

• The result size estimation plays an important
role in cost estimation because the output of an
operation can be the input of another operation.

• In a SELECT-FROM-WHEREquery, the size of the
result is typically the product of the cardinality
of the relations in theFROM clause, adjusted by
the reduction effect by the conditions in the
WHERE clause.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 21

Reduction Factor

• Reduction effect depends upon the terms in the condition

• Column=Valueÿ reduction factor estimated by
r ≈ 1/Nkeys(I). A better estimate is possible if histograms
are available.

• Column1=Column2ÿ reduction factor estimated by
r ≈ 1/(MAX (Nkeys(I1),Nkeys(I2))

• Column > Valueÿ reduction factor is estimated by
r ≈ (High(I)-Value)/(High(I)-Low(I))

• ColumnIN (list of Values) reduction factor is estimated
by the factor for Column=Value for all values in the list.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 22

Evaluating Relational Operators

• Selection (σ)
• Projection (π)
• Join ()
• Is there more than one way to execute these

operations? Can we take advantage of some
factors such as indexes, ordering, etc.

• Other operators (difference, union, aggregation,
group by, etc.)See textbook p469 §14.6

ÿ�

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 23

Evaluating the Selection
• Size of result approximated assize of R * reduction

factor.

• With no index, unsorted: Must essentially scan the
whole relation; cost is M (#pages in R).

• With an index on selection attribute: Use index to find
qualifying data entries, then retrieve corresponding
data records. (Hash index useful only for equality
selections.)

• Retrieval cost depends also upon clustering

• Complex conditionsÿ conjunctive normal form

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 24

Evaluating the Projection

• Projections can generate duplicate tuples after removing
unnecessary attributes.

• Removing duplicates is difficultÿ different approaches

• Projection based on sorting
– Produce the set of tuples with desired attributes

– Sort tuples with all remaining attributes

– Scan sorted result comparing adjacent tuples

• Projection based on Hashing
– Partition result with hash function (if enough buffers)

– Eliminate duplicates in partitions

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 25

Evaluating the Join

• Simple Nested Loop Join

• Block Nested Loop Join

• Index Nested Loop Join

• Sort-Merge Join

• Hash Join

R S is very
Common ÿ Must be
carefully optimized.
R × S is large; so, R × S
followed by a selection
is inefficient

ÿ�

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 26

Schema for Examples

• Reserves:
– Each tuple is 40 bytes long,PR=100 tuples per page,M=1000

pages.

• Sailors:
– Each tuple is 50 bytes long,PS= 80 tuples per page,N=500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 27

Simple Nested Loops Join

• For each tuple in theouterrelation R, we scan the entire
inner relation S.
– Cost: M + pR * M * N = 1000+100*1000*500 I/Os.≈(50 *106)

• Page-oriented Nested Loops join: For eachpageof R, get
eachpageof S, and write out matching pairs of tuples
<r, s>, where r is in R-page and s is in S-page.

– Cost: M + M*N = 1000 + 1000*500 I/Os.≈(501 *103)

– If smaller relation (S) is outer, cost = 500 + 500*1000 I/Os.

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result pR tuples

M pages
for R

N pages
for S

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 28

Block Nested Loops Join

• Use one page as an input
buffer for scanning the
inner S, one page as the
output buffer, and use all
remaining pages to hold
``block’’ of outer R.
– For each matching tuple r

in R-blocks, s in S-page,
add <r, s> to result.
Then read next R-block,
scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

foreach block of B-2 of R do
foreach page of S do

forall matching in memory tuples
r in R-blocks and s in S-Page
add <r, s> to result

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 29

Examples of Block Nested Loops
• Cost: Scan of outer + #outer blocks * scan of inner

– #outer blocks =

• With Reserves (R) as outer, and 100 pages of R:
– Cost of scanning R is 1000 I/Os; a total of 10 (B-2)blocks.

– ÿ we scan Sailors (S); 10*500 I/Os.

– If space for just 90 pages of R, we would scan S 12 times(ÿ1000/90�).

• With 100-page block of Sailors as outer:
– Cost of scanning S is 500 I/Os; a total of 5 blocks.

– Per block of S, we scan Reserves; 5*1000 I/Os.

• With sequential readsconsidered, analysis changes: may
be best to divide buffers evenly between R and S.

ÿ �# /of pages of outer blocksize

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 30

Index Nested Loops Join

• If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.
– Cost: M + ((M*pR) * cost of finding matching S tuples)

• For each R tuple, cost of probing S index is about 1.2 for
hash index, 2-4 for B+ tree. Cost of then finding S tuples
that match depends on clustering.
– Clustered index: 1 I/O (typical since all matching tuples would

be together), unclustered: up to 1 I/O per matching S tuple since
they are scattered.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 31

Examples of Index Nested Loops
• Hash-index onsid of Sailors (as inner):

– Scan Reserves: 1000 page I/Os, 100*1000 tuples.

– For each Reserves tuple: 1.2 I/Os to get data entry in index, plus
1 I/O to get (the exactly one) matching Sailors tuple. Total:
100,000 * 1.2 + 100,000 = 220,000 I/Os.

• Hash-index onsid of Reserves (as inner):
– Scan Sailors: 500 page I/Os, 80*500 tuples.

– For each Sailors tuple: 1.2 I/Os to find index page with data
entries, plus cost of retrieving matching Reserves tuples.
Assuming uniform distribution, 2.5 reservations per sailor
(100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os
depending on whether the index is clustered.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 32

Query Processing and
Optimization

• Query Processing and Planning

• System Catalog

• Evaluation of Relational Operations

• Merge Sort

• Evaluation of Relational Operations (Continue)

• Cost Estimation and Plan Selection

• Physical Database Design Issues

• Database Tuning

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 33

The Need for Sorting External Files
• DBMS often needs to sort data, for instance when data is

requested in sorted order
– e.g., find students in increasinggpaorder

• Sorting is first step inbulk loadingB+ tree index.

• Sorting useful for eliminatingduplicate copiesin a
collection of records, for example after a projection.

• Sort-mergejoin algorithm involves sorting.
• Problem: sort 1Gb of data with 1Mb of RAM.

• We need specific algorithm to sort large data that doesn’t
fit in main memoryÿ External sorting

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 34

2-Way Sort: Requires 3 Buffers

• Pass 1: Read a data page at a time, sort it, write it.
– only one buffer page is used

• Pass 2, 3, …, etc.: (merge steps)
– three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

1 buffer for Input and Output

2 buffers for Input and 1 buffer for Output

Size of buffer is equal to the data page size.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 35

Simple Two-Way Merge Sort
• In practice there are more than 3 buffers available.

Illustration purpose.

• When sorting, several “subfiles” are generated in
intermediary steps. They are calledruns.

• Initially, read data in memory, sort it and create sorted
runs, each the size of available buffers.

• Iteratively merge runs (2 at a time for 2-way merge sort)
to create new longer sorted runs, until all file is one run.

Input 1

Input 2

OutputRun 1

Run 2
Runs of length L Run of length 2L

Read when
buffer empty

Write when output
buffer full

Select smallest
(or largest)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 36

Two-Way External Merge Sort

• Each pass we read + write
each page in file.

• N pages in the file => the
number of passes

• So total cost is:

• Idea: Divide and conquer:
sort subfiles and merge

ÿ �= +log2 1N

ÿ �()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7

8,9
1,3
5,6 2

2,3

4,4
6,7

8,9

1,2
3,5
6

1,2
2,3
3,4

4,5
6,6
7,8

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 37

General External Merge Sort

• To sort a file withN pages usingB buffer pages:
– Pass 0: useB buffer pages. ProduceÿN / B� sorted runs

of B pages each.

– Pass 2, …, etc.: mergeB-1 runs.

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

* More than 3 buffer pages. How can we utilize them?

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 38

Cost of External Merge Sort

• Number of passes: 1+ÿlogB-1 ÿN / B� �
• Cost = 2N * (# of passes)

• E.g., with 5 buffer pages, to sort 108 page file:
– Pass 0: ÿ108 / 5� = 22 sorted runs of 5 pages each

(last run is only 3 pages)

– Pass 1: ÿ22 / 4� = 6 sorted runs of 20 pages each
(last run is only 8 pages)

– Pass 2: 2 sorted runs, 80 pages and 28 pages

– Pass 3: Sorted file of 108 pages

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 39

Number of Passes of External Sort

N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 40

Query Processing and
Optimization

• Query Processing and Planning

• System Catalog

• Evaluation of Relational Operations

• Merge Sort

• Evaluation of Relational Operations (Continue)

• Cost Estimation and Plan Selection

• Physical Database Design Issues

• Database Tuning

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 41

Sort-Merge Join (R S)
• Sort R and S on the join column, then scan them to do a

``merge’’ (on join col.), and output result tuples.
– Advance scan of R until current R-tuple >= current S tuple, then

advance scan of S until current S-tuple >= current R tuple; do this
until current R tuple = current S tuple.

– At this point, all R tuples with same value in Ri (current R group)
and all S tuples with same value in Sj (current S group) match;
output <r, s> for all pairs of such tuples.

– Then resume scanning R and S.

• R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are likely
to find needed pages in buffer.)

ÿ�
i=j

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 42

Example of Sort-Merge Join

• Cost: M log M + N log N + (M+N)
– The cost of scanning, M+N, could be M*N (very unlikely!)

• With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500 I/Os.
However with BNL join could be less I/Os with 100 buffers

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 43

Hash-Join
• Partition both

relations using hash fn
h: R tuples in
partition i will only
match S tuples in
partition i.

• Read in a partition of R,
hash it using h2 (≠≠≠≠ h).
Scan matching partition
of S, search for matches.

• Cost: Partitioning R/W
once R and S= 2(M+N).
Phase 2: read partitions
onceÿ M+N. Total
3(M+N)

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 44

Query Processing and
Optimization

• Query Processing and Planning

• System Catalog

• Evaluation of Relational Operations

• Merge Sort

• Evaluation of Relational Operations (Continue)

• Cost Estimation and Plan Selection

• Physical Database Design Issues

• Database Tuning

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 45

Highlights of System R Optimizer
• Impact:

– Most widely used currently; works well for < 10 joins.

• Cost estimation: Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate cost of

operations and result sizes.

– Considers combination of CPU and I/O costs.

• Plan Space: Too large, must be pruned.
– Only the space ofleft-deep plansis considered.

• Left-deep plans allow output of each operator to bepipelinedinto the next
operator without storing it in a temporary relation.

– Cartesian products avoided.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 46

Schema for Examples

• Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

• Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 47

Motivating Example

• Cost: 500+500*1000 I/Os
• By no means the worst plan!
• Misses several opportunities:

selections could have been `pushed’
earlier, no use is made of any
available indexes, etc.

• Goal of optimization:Find more
efficient plans that compute the same
answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 48

Alternative Plans 1
(No Indexes)

• Main difference: push selects.

• With 5 buffers, cost of plan:
– Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats, uniform

distribution).

– Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).

– Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250)

– Total: 4060 page I/Os.

• If we used BNL join, join cost = 10+4*250, total cost = 2770.

• If we `push’ projections, T1 has onlysid, T2 onlysid andsname:
– T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 49

Alternative Plans 2
With Indexes

• With clustered index onbid of
Reserves, (100 boats) we get
100,000/100 = 1000 tuples on 1000/100
= 10 pages for each boat.

• INL with pipelining (outer is not
materialized).

v Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

v Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

v Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 50

Cost Estimation
• For each plan considered, must estimate cost:

– Must estimatecostof each operation in plan tree.
• Depends on input cardinalities.

• We’ve already discussed how to estimate the cost of operations
(sequential scan, index scan, joins, etc.)

– Must estimatesize of resultfor each operation in tree!
• Use information about the input relations.

• For selections and joins, assume independence of predicates.

• The System R cost estimation approach.
– Very inexact, but works OK in practice.

– More sophisticated techniques known now.

• Query plans estimated at run-time or estimated once and
elected plan stored and revisited for re-evaluation.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 51

Size Estimation and Reduction Factors

• Consider a query block:

• Maximum # tuples in result is the product of the
cardinalities of relations in theFROM clause.

• Reduction factor (RF)associated with eachtermreflects
the impact of theterm in reducing result size.Result
cardinality = Max # tuples * product of all RF’s.
– Implicit assumption thattermsare independent!

– Termcol=valuehas RF1/NKeys(I),given index I oncol

– Termcol1=col2has RF1/MAX(NKeys(I1), NKeys(I2))

– Termcol>valuehas RF(High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 52

Summary
• Query optimization is an important task in a relational

DBMS.

• Must understand optimization in order to understand the
performance impact of a given database design (relations,
indexes) on a workload (set of queries).

• Two parts to optimizing a query:
– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.

• Key issues: Statistics, indexes, operator implementations.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 53

Query Processing and
Optimization

• Query Processing and Planning

• System Catalog

• Evaluation of Relational Operations

• Merge Sort

• Evaluation of Relational Operations (Continue)

• Cost Estimation and Plan Selection

• Physical Database Design Issues

• Database Tuning

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 54

Overview

• After ER design, schema refinement, and the definition
of views, we have theconceptualandexternalschemas
for our database.

• The next step is to choose indexes, make clustering
decisions, and to refine the conceptual and external
schemas (if necessary) to meet performance goals.

• We must begin by understanding theworkload:
– The most important queries and how often they arise.

– The most important updates and how often they arise.

– The desired performance for these queries and updates.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 55

Understanding the Workload
• For each query in the workload:

– Which relations does it access?

– Which attributes are retrieved?

– Which attributes are involved in selection/join conditions? How
selective are these conditions likely to be?

• For each update in the workload:
– Which attributes are involved in selection/join conditions? How

selective are these conditions likely to be?

– The type of update (INSERT/DELETE/UPDATE), and the attributes
that are affected.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 56

Decisions to Make
• What indexes should we create?

– Which relations should have indexes? What field(s) should be
the search key? Should we build several indexes?

• For each index, what kind of an index should it be?
– Clustered? Hash/tree? Dynamic/static? Dense/sparse?

• Should we make changes to the conceptual schema?
– Consider alternative normalized schemas? (Remember, there are

many choices in decomposing into BCNF, etc.)

– Should we ``undo’’ some decomposition steps and settle for a
lower normal form? (Denormalization.)

– Horizontal partitioning, replication, views ...

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 57

Choice of Indexes
• One approach: consider the most important queries

in turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.

• Before creating an index, must also consider the
impact on updates in the workload!
– Trade-off: indexes can make queries go faster, updates

slower. Require disk space, too.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 58

Issues to Consider in Index
Selection

• Attributes mentioned in aWHEREclause are candidates for
index search keys.
– Exact match condition suggests hash index.

– Range query suggests tree index.
• Clustering is especially useful for range queries, although it can help on

equality queries as well in the presence of duplicates.

• Try to choose indexes that benefit as many queries as
possible. Since only one index can be clustered per
relation, choose it based on important queries that would
benefit the most from clustering.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 59

Issues in Index Selection (Contd.)
• Multi-attribute search keys should be considered when a

WHEREclause contains several conditions.
– If range selections are involved, order of attributes should be

carefully chosen to match the range ordering.

– Such indexes can sometimes enable index-only strategies for
important queries. (no need to access the relation)

• For index-only strategies, clustering is not important!

• When considering a join condition:
– Hash index on inner is very good for Index Nested Loops.

• Should be clustered if join column is not key for inner, and inner tuples
need to be retrieved.

– ClusteredB+ tree on join column(s) good for Sort-Merge.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 60

Example 1
• Hash index onD.dnamesupports ‘Toy’ selection.

– Given this, index on D.dno is not needed. Nothing is gained by an
index on D.dno since Dept tuples are retrieved with dname index

• Hash index onE.dnoallows us to get matching (inner) Emp
tuples for each selected (outer) Dept tuple.

• What if WHEREincluded: “ ...AND E.age=25” ?
– Could retrieve Emp tuples using index onE.age, then join with

Dept tuples satisfyingdnameselection. Comparable to strategy
that usedE.dnoindex.

– So, if E.ageindex is already created, this query provides much
less motivation for adding anE.dnoindex.

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 61

Example 2

• Clearly, Emp should be the outer relation.
– Suggests that we build a hash index onD.dno.

• What index should we build on Emp?
– B+ tree onE.salcould be used, OR an index onE.hobbycould be

used. Only one of these is needed, and which is better depends
upon the selectivity of the conditions.

• As a rule of thumb, equality selections more selective than range selections.

• As both examples indicate, our choice of indexes is guided
by the plan(s) that we expect an optimizer to consider for a
query. Have to understand optimizers!

SELECT E.ename, D.dname
FROM Emp E, Dept D
WHERE E.sal BETWEEN 10000 AND 20000

AND E.hobby=‘Stamps’ AND E.dno=D.dno

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 62

Examples of Clustering

• B+ tree index on E.age can be used to
get qualifying tuples.
– How selective is the condition?

– Is the index clustered?

• Consider theGROUP BYquery.
– If many tuples haveE.age> 10, using

E.ageindex and sorting the retrieved
tuples may be costly.

– ClusteredE.dnoindex may be better!

• Equality queries and duplicates:
– Clustering onE.hobbyhelps!

SELECT E.dno
FROM Emp E
WHERE E.age>40

SELECT E.dno, COUNT (*)
FROM Emp E
WHERE E.age>10
GROUP BY E.dno

SELECT E.dno
FROM Emp E
WHERE E.hobby=Stamps

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 63

Clustering and Joins

• Clustering is especially important when accessing inner
tuples in INL.
– Should make index onE.dnoclustered.

• Suppose that theWHEREclause is instead:
WHERE E.hobby=‘StampsAND E.dno=D.dno

– If many employees collect stamps, Sort-Merge join may be worth
considering. Aclusteredindex on D.dno would help.

• Summary: Clustering is useful whenever many tuples are
to be retrieved.

SELECT E.ename, D.mgr
FROM Emp E, Dept D
WHERE D.dname=‘Toy’ AND E.dno=D.dno

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 64

Multi-Attribute Index Keys
• To retrieve Emp records withage=30 AND sal=4000, an

index on <age,sal> would be better than an index onageor
an index onsal.
– Such indexes also calledcompositeor concatenatedindexes.

– Choice of index key orthogonal to clustering etc.

• If condition is: 20<age<30 AND 3000<sal<5000:
– Clustered tree index on <age,sal> or <sal,age> is best.

• If condition is: age=30 AND 3000<sal<5000:
– Clustered <age,sal> index much better than <sal,age> index!

• Composite indexes are larger, updated more often.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 65

Index-Only Plans

• A number of
queries can be
answered without
retrieving any
tuples from one
or more of the
relations
involved if a
suitable index is
available.

SELECT D.mgr
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT D.mgr, E.eid
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

SELECT AVG(E.sal)
FROM Emp E
WHERE E.age=25 AND
E.sal BETWEEN 3000 AND 5000

<E.dno>

<E.dno,E.eid>
Tree index!

<E.dno>

<E.dno,E.sal>
Tree index!

<E. age,E.sal>
or

<E.sal, E.age>

Tree!

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 66

Summary

• Database design consists of several tasks:requirements
analysis, conceptual design, schema refinement, physical
designandtuning.

– In general, have to go back and forth between these tasks to refine
a database design, and decisions in one task can influence the
choices in another task.

• Understanding the nature of theworkloadfor the
application, and the performance goals, is essential to
developing a good design.

– What are the important queries and updates? What
attributes/relations are involved?

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 67

Summary (Contd.)

• Indexes must be chosen to speed up important queries (and
perhaps some updates!).
– Index maintenance overhead on updates to key fields.

– Choose indexes that can help many queries, if possible.

– Build indexes to support index-only strategies.

– Clustering is an important decision; only one index on a given
relation can be clustered!

– Order of fields in composite index key can be important.

• Static indexes may have to be periodically re-built.

• Statistics have to be periodically updated.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 68

Query Processing and
Optimization

• Query Processing and Planning

• System Catalog

• Evaluation of Relational Operations

• Merge Sort

• Evaluation of Relational Operations (Continue)

• Cost Estimation and Plan Selection

• Physical Database Design Issues

• Database Tuning

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 69

Tuning the Conceptual Schema
• The choice of conceptual schema should be guided by the

workload, in addition to redundancy issues:
– We may settle for a 3NF schema rather than BCNF.

– Workload may influence the choice we make in decomposing a
relation into 3NF or BCNF.

– We may further decompose a BCNF schema!

– We mightdenormalize(i.e., undo a decomposition step), or we
might add fields to a relation.

– We might considerhorizontal decompositions.

• If such changes are made after a database is in use, called
schema evolution; might want to mask some of these
changes from applications by definingviews.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 70

Example Schemas

• We will concentrate on Contracts, denoted as CSJDPQV.
The following ICs are given to hold:JP C, SD P,
C is the primary key.
– What are the candidate keys for CSJDPQV?

– What normal form is this relation schema in?

→ →

Contracts (Cid, Sid, Jid, Did, Pid, Qty, Val)
Depts (Did, Budget, Report)
Suppliers (Sid, Address)
Parts (Pid, Cost)
Projects (Jid, Mgr)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 71

Settling for 3NF vs BCNF

• CSJDPQV can be decomposed into SDP and CSJDQV,
and both relations are in BCNF. (Which FD suggests that
we do this?)
– Lossless decomposition, but not dependency-preserving.

– Adding CJP makes it dependency-preserving as well.

• Suppose that this query is very important:
– Find the number of copies Q of part P ordered in contract C.

– Requires a join on the decomposed schema, but can be answered
by a scan of the original relation CSJDPQV.

– Could lead us to settle for the 3NF schema CSJDPQV.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 72

Denormalization

• Suppose that the following query is important:
– Is the value of a contract less than the budget of the department?

• To speed up this query, we might add a fieldbudgetB to
Contracts.
– This introduces the FD D B wrt Contracts.

– Thus, Contracts is no longer in 3NF.

• We might choose to modify Contracts thus if the query is
sufficiently important, and we cannot obtain adequate
performance otherwise (i.e., by adding indexes or by
choosing an alternative 3NF schema.)

→

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 73

Choice of Decompositions

• There are 2 ways to decompose CSJDPQV into BCNF:
– SDP and CSJDQV; lossless-join but not dep-preserving.

– SDP, CSJDQV and CJP; dep-preserving as well.

• The difference between these is really the cost of enforcing
the FD JP C.
– 2nd decomposition: Index on JP on relation CJP.

– 1st:

→

CREATE ASSERTION CheckDep
CHECK (NOT EXISTS (SELECT *
FROM PartInfo P, ContractInfo C
WHERE P.sid=C.sid AND P.did=C.did
GROUP BY C.jid, P.pid
HAVING COUNT (C.cid) > 1))

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 74

Choice of Decompositions (Contd.)
• The following ICs were given to hold:

JP C, SD P, C is the primary key.

• Suppose that, in addition, a given supplier always charges
the same price for a given part: SPQ V.

• If we decide that we want to decompose CSJDPQV into
BCNF, we now have a third choice:
– Begin by decomposing it into SPQV and CSJDPQ.

– Then, decompose CSJDPQ (not in 3NF) into SDP, CSJDQ.

– This gives us the lossless-join decomp: SPQV, SDP, CSJDQ.

– To preserve JP C, we can add CJP, as before.

• Choice: { SPQV, SDP, CSJDQ } or { SDP, CSJDQV } ?

→ →

→

→

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 75

Decomposition of a BCNF
Relation

• Suppose that we choose { SDP, CSJDQV }. This is in
BCNF, and there is no reason to decompose further
(assuming that all known ICs are FDs).

• However, suppose that these queries are important:
– Find the contracts held by supplier S.

– Find the contracts that department D is involved in.

• Decomposing CSJDQV further into CS, CD and CJQV
could speed up these queries. (Why?)

• On the other hand, the following query is slower:
– Find the total value of all contracts held by supplier S.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 76

Horizontal Decompositions
• Our definition of decomposition: Relation is

replaced by a collection of relations that are
projections. Most important case.

• Sometimes, might want to replace relation by a
collection of relations that areselections.
– Each new relation has same schema as the original, but a

subset of the rows.

– Collectively, new relations contain all rows of the
original. Typically, the new relations are disjoint.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 77

Horizontal Decompositions (Contd.)

• Suppose that contracts with value > 10000 are subject to
different rules. This means that queries on Contracts will
often contain the conditionval>10000.

• One way to deal with this is to build a clustered B+ tree
index on theval field of Contracts.

• A second approach is to replace contracts by two new
relations: LargeContracts and SmallContracts, with the
same attributes (CSJDPQV).
– Performs like index on such queries, but no index overhead.

– Can build clustered indexes on other attributes, in addition!

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 78

Masking Conceptual Schema Changes

• The replacement of Contracts by LargeContracts and
SmallContracts can be masked by the view.

• However, queries with the conditionval>10000must be
asked wrt LargeContracts for efficient execution: so users
concerned with performance have to be aware of the
change.

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS SELECT *
FROM LargeContracts
UNION
SELECT *
FROM SmallContracts

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 79

Tuning Queries and Views
• If a query runs slower than expected, check if an index

needs to be re-built, or if statistics are too old.

• Sometimes, the DBMS may not be executing the plan you
had in mind. Common areas of weakness:
– Selections involving null values.

– Selections involving arithmetic or string expressions.

– Selections involvingOR conditions.

– Lack of evaluation features like index-only strategies or certain
join methods or poor size estimation.

• Check the plan that is being used! Then adjust the choice
of indexes or rewrite the query/view.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 80

More Guidelines for Query Tuning

• Minimize the use ofDISTINCT: don’t need it if duplicates
are acceptable, or if answer contains a key.

• Minimize the use ofGROUP BYandHAVING:

SELECT MIN (E.age)
FROM Employee E
GROUP BY E.dno
HAVING E.dno=102

SELECT MIN (E.age)
FROM Employee E
WHERE E.dno=102

v Consider DBMS use of index when writing arithmetic
expressions: E.age=2*D.age will benefit from index on E.age,
but might not benefit from index on D.age!

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 81

Guidelines for Query Tuning (Contd.)

• Avoid using intermediate
relations:

SELECT * INTO Temp
FROM Emp E, Dept D
WHERE E.dno=D.dno

AND D.mgrname=‘Joe’

SELECT T.dno, AVG(T.sal)
FROM Temp T
GROUP BY T.dno

vs.

SELECT E.dno, AVG(E.sal)
FROM Emp E, Dept D
WHERE E.dno=D.dno

AND D.mgrname=‘Joe’
GROUP BY E.dno

and

v Does not materialize the intermediate reln Temp.
v If there is a dense B+ tree index on <dno, sal>, an index-only

plan can be used to avoid retrieving Emp tuples in the second
query!

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 82

Summary of Database Tuning
• The conceptual schema should be refined by considering

performance criteria and workload:
– May choose 3NF or lower normal form over BCNF.

– May choose among alternative decompositions into BCNF (or
3NF) based upon the workload.

– May denormalize, or undo some decompositions.

– May decompose a BCNF relation further!

– May choose ahorizontal decompositionof a relation.

– Importance of dependency-preservation based upon the
dependency to be preserved, and the cost of the IC check.

• Can add a relation to ensure dep-preservation (for 3NF, not BCNF!); or
else, can check dependency using a join.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001 83

Summary (Contd.)
• Over time, indexes have to be fine-tuned (dropped, created,

re-built, ...) for performance.
– Should determine the plan used by the system, and adjust the

choice of indexes appropriately.

• System may still not find a good plan:
– Only left-deep plans considered!

– Null values, arithmetic conditions, string expressions, the use of
ORs, etc. can confuse an optimizer.

• So, may have to rewrite the query/view:
– Avoid nested queries, temporary relations, complex conditions,

and operations likeDISTINCT andGROUP BY.

