
Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 1

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2003

CMPUT 391: Transactions & Concurrency Control

Chapters 16 and
17 of Textbook

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 22

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• XML
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases
• Other Advanced Database Topics

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 3

Objectives of Lecture 4

• Introduce some important notions related to
DBMSs such as transactions, scheduling,
locking mechanisms, committing and
aborting transactions, etc.

• Understand the issues related to concurrent
execution of transactions on a database.

• Present some typical anomalies with
interleaved executions.

Transactions and Concurrency Control

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 4

Transactions and
Concurrency Control

• Transactions in a Database

• Transaction Processing

• Schedules and Serializability

• Concurrency Control Techniques

• Locking Mechanisms and Timestamps

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 5

Transaction
• A transaction is the DBMS’s abstract view of a

user program: a sequence of reads and writes

• A transaction is a sequence of actions that make
consistent transformations of system states
while preserving system consistency

Begin
Transaction

End
Transaction

Database in a
Consistent State

Database in a
Consistent State

Execution of
Transaction

Database may be
Temporarily in an
Inconsistent state
During execution

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 6

Transaction Operations
• A user’s program may carry out many operations on the

data retrieved from DB but DBMS is only concerned
about Read/Write.

• A database transaction is the execution of a program that
include database access operations:

– Begin-transaction
– Read
– Write
– End-transaction
– Commit-transaction
– Abort-transaction
– Undo
– Redo

• Concurrent execution of user programs is essential for
good DBMS performance.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 7

State of Transactions
• Active: the transaction is executing.

• Partially Committed: the transaction ends after
execution of final statement.

• Committed: after successful completion checks.

• Failed: when the normal execution can no longer
proceed.

• Aborted: after the transaction has been rolled back.

Active
Partially
committed

CommittedBegin
transaction End

transaction

Commit

Abort
AbortedFailed

problem

problem

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 8

Concurrency in a DBMS
• Users submit transactions, and can think of each transaction

as executing by itself.
– Concurrency is achieved by the DBMS, which interleaves actions

(reads/writes of DB objects) of various transactions.

– Each transaction must leave the database in a consistent state if the
DB is consistent when the transaction begins.

• DBMS will enforce some ICs, depending on the ICs declared in CREATE
TABLE statements.

• Beyond this, the DBMS does not really understand the semantics of the
data. (e.g., it does not understand how the interest on a bank account is
computed).

• Issues:Effect of interleavingtransactions, andcrashes.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 9

Transactions and
Concurrency Control

• Transactions in a Database

• Transaction Processing

• Schedules and Serializability

• Concurrency Control Techniques

• Locking Mechanisms and Timestamps

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 10

Transaction Properties

• Atomicity (all or nothing)
– A transaction isatomic: transaction always executing all its

actions in one step, or not executing any actions at all.

• Consistency(no violation of integrity constraints)
– A transaction must preserve the consistency of a database

after execution. (responsibility of the user)

• Isolation(concurrent changes invisibleÿserializable)
– Transaction is protected from the effects of concurrently

scheduling other transactions.

• Durability (committed updates persist)
– The effect of a committed transaction should persist even

after a crash.

The acronym ACID is often used to refer to the four properties of DB transactions.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 11

Atomicity

• Either all or none of the transaction’s operations are
performed.

• Atomicity requires that if a transaction is interrupted
by a failure, its partial results must beundone.

• The activity of preserving the transaction’s atomicity
in presence of transaction’ aborts due to input errors,
system overloads, or deadlocks is calledtransaction
recovery.

• The activity of ensuring atomicity in the presence of
system crashes is calledcrash recovery.
(will be discussed in the next lecture)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 12

Consistency

• A transaction which executesaloneagainst
a consistent database leaves it in a
consistentstate.

• Transactions do not violate database
integrity constraints.

• Transactions arecorrectprograms

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 13

Isolation

• If several transactions are executed
concurrently, the results must be the same
as if they were executed serially in some
order (serializability).

• An incomplete transaction cannot reveal its
results to other transactions before its
commitment.

• Necessary to avoid cascading aborts.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 14

Durability

• Once a transaction commits, the system
must guarantee that the result of its
operations will never be lost, in spite of
subsequent failures.

• Database recovery(will be discussed in the
next lecture)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 15

Example
• Consider two transactions:

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

v Intuitively, the first transaction is transferring $100
from B’s account to A’s account. The second is
crediting both accounts with a 6% interest payment.

v There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together.

v However, the net effect must be equivalent to these
two transactions running serially in some order.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 16

Example (Contd.)
• Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

v This is OK. But what about:
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

v The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 17

T1
Read(A)
A=A+100

Write(A)

Read(B)
B=B-100

Write(B)

T2

Read(A)
A=A*1.06

Write(A)
Read(B)
B=B*1.06

Write(B)

T1
Read(A)
A=A+100

Write(A)

Read(B)
B=B-100

Write(B)

T2

Read(A)
A=A*1.06

Write(A)

Read(B)
B=B*1.06

Write(B)

T1

Read(A)
A=A+100

Write(A)

Read(B)
B=B-100

Write(B)

T2
Read(A)
A=A*1.06

Write(A)

Read(B)
B=B*1.06

Write(B)

T1

Read(A)
A=A+100

Write(A)
Read(B)
B=B-100

Write(B)

T2
Read(A)
A=A*1.06

Write(A)

Read(B)
B=B*1.06

Write(B)

The net effect of an interleaved execution of T1 and T2 must be equivalent to
the effect of running T1 and T2 in some serial order!

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 18

Transaction Execution

Transaction
Manager

Scheduler

Recovery
Manager

Transaction
Monitor

R,W,A,EOT

Application

BOT, R,W,A,EOT

Application Application

Scheduling
requests

Scheduled
operations

Execution Engine

Results and notifications

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 19

Transactions and
Concurrency Control

• Transactions in a Database

• Transaction Processing

• Schedules and Serializability

• Concurrency Control Techniques

• Locking Mechanisms and Timestamps

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 20

Scheduling Transactions
• A Scheduleis a sequential order of the instructions

(R / W / A / C) of n transactions such that the ordering of
the instructions of each transaction is preserved.
(execution sequence preserving the operation order of
individual transaction)

• Serial schedule:A schedule that does not interleave the
actions of different transactions.
(transactions executed consecutively)

• Non-serial schedule: A schedule where the operations from
a set of concurrent transactions are interleaved.

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: A=A+100, B=B-100
T2: A=1.06*A,B=1.06*B

S1

S2

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 21

Scheduling Transactions(continue)

• Equivalent schedules: For any database state, the effect (on
the set of objects in the database) of executing the first
schedule is identical to the effect of executing the second
schedule.

• Serializable schedule: A non-serial schedule that is
equivalent to some serial execution of the transactions.
(Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.)

• Two schedules are conflict equivalent if:
– Involve the same actions of the same transactions
– Every pair of conflicting actions is ordered the same way

• Schedule S is conflict serializable if S is conflict equivalent
to some serial schedule

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 22

Schedule Conventions

T1
R(A)
W(A)

R(C)
W(C)

T2

R(B)
W(B)

T1: R(A) W(A) R(C) W(C)
T2: R(B) W(B)

R(x): Read x from disk
W(x): Write x to disk
C: Commit
A: Abort

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 23

Conflicts of Operations

Read(x) Write(x)
Read(x) No Yes
Write(x) Yes Yes

WR conflict: T2 reads a data objects previously written by T1
RW conflict: T2 writes a data object previously read by T1
WW conflict: T2 writes a data object previously written by T1

• If two transactions only read a data object, they do not conflict
and the order is not important
• If two transactions either read or write completely separate
data objects, they do not conflict and the order is not important.
• If one transaction writes a data object and another either reads
or writes the same data object, the order of execution is
important.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 24

Anomalies with Interleaved
Execution

• Reading Uncommitted Data (WR Conflicts,
“dirty reads”: read an object modified by
uncommited transaction.):

• T1 transfers $100 from A to B

• T2 adds 6% to A and B

• Avoid cascading aborts
T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A),R(B),W(B), C

Aka:
Uncommitted Dependency
Dirty read problem

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 25

Anomalies (Continued)
• Unrepeatable Reads (RW Conflicts):

T1 tries to read a data object again after T2
modified it. The data object may have a
different value.

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

T1 reads A and add 1. T2 Reads A and subtracts 1. If A initially 5, result should be 5
However: T1: R(A) A+1 W(A)

T2: R(A) A-1 W(A)

Also,

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 26

Anomalies (Continued)

• Overwriting Uncommitted Data (WW
Conflicts) “blind write”:
– T1 sets salaries to $1000 and T2 sets salaries to

$2000

– Constraint: Salaries must be kept equal.

T1: W(A), W(B), C
T2: W(A), W(B), C

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 27

The Inconsistent Analysis Problem
• Occurs when a transaction reads several values

from a database while a second transaction
updates some of them.

T1
sum=0
R(A)
sum=sum+A
R(B)
sum=sum+B

R(C)
sum=sum+C

T2

R(A)
A=A-10
W(A)
R(C)
C=C+10
W(C)

A B C sum
$100 $50 $25 0
$100 $50 $25 0
$100 $50 $25 100
$90 $50 $25 100
$90 $50 $25 150
$90 $50 $25 150
$90 $50 $35 150
$90 $50 $35 150
$90 $50 $35 185

Should be
175

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 28

Serializability
• The objective ofserializability is to find non-serial

schedules that allow transactions to execute concurrently
without interfering with one another, and thereby
produce a database state that could be produced by a
serial execution.

• It is important to guarantee serializability of concurrent
transactions in order to prevent inconsistency from
transactions interfering with one another.

• In serializability, the ordering of read and write
operations is important (see conflict of operations).

• See the following schedules how the order of R/W
operations can be changed depending upon the data
objects they relate to.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 29

Schedules Example
T1 T2

R(A)
W(A)

R(A)
W(A)

R(B)
W(B)
Commit

R(B)
W(B)
Commit

T1 T2

R(A)
W(A)

R(A)
R(B)

W(A)
W(B)
Commit

R(B)
W(B)
Commit

T1 T2

R(A)
W(A)
R(B)
W(B)
Commit

R(A)
W(A)
R(B)
W(B)
Commit

S1 S2 S3

In S2: change the order of W(A)in T2 with W(B) in T1
In S2: change the order of R(A) in T2 with R(B) in T1 ÿ S3
In S2: change the order of ((A) in T2 with W(B) in T1

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 30

Dependency Graph

• Dependency graph(or precedence graph):
– One node per transaction;

– edge fromTi to Tj if Tj reads/writes an object
last written byTi.

• Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 31

Example

• A schedule that is not conflict serializable:

• The cycle in the graph reveals the problem. The
output of T1 depends on T2, and vice-versa.

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

T1 T2
A

B

Dependency graph

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 32

Algorithm for Testing Serializability
of a Schedule S

1. For each transaction Ti in S
create a node labeled Ti in the precedence graph.

2. For each case in S where Tj executes a Read(x) after a
Write(x) executed by Ti

create an edge (Ti,Tj) in the precedence graph

3. For each case in S where Tj executes a Write(x) after a
Read(x) executed by Ti

create an edge (Ti,Tj) in the precedence graph

4. For each case in S where Tj executes a Write(x) after a
Write(x) executed by Ti

create an edge (Ti,Tj) in the precedence graph

5. S is serializable iff the precedence graph has no cycles

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 33

Transactions and
Concurrency Control

• Transactions in a Database

• Transaction Processing

• Schedules and Serializability

• Concurrency Control Techniques

• Locking Mechanisms and Timestamps

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 34

Definitions

• Locking: A procedure used to control concurrent
access to data. When one transaction is accessing the
database, a lock may deny access to other transactions
to prevent incorrect results.

• Shared Lock (or read lock): If a transaction has a
shared lock on a data object, it can read the object but
not update it.

• Exclusive Lock (or write lock): if a transaction has
an exclusive lock on a data object, it can both read
and update the object.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 35

Serializability in Practice
• In practice, a DBMS does not test for

serializability of a given schedule. This would be
impractical since the interleaving of operations
from concurrent transactions could be dictated
by the OS and thus could be difficult to impose.

• The approach taken by the DBMS is to use
specific protocols that are known to produce
serializable schedules.

• These protocols could reduce the concurrency
but eliminate conflicting cases.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 36

Lock-Based Concurrency Control
• Strict Two-phase Locking (Strict 2PL) Protocol:

– Each transaction must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

– All locks held by a transaction are released when the
transaction completes

– If a transaction holds an X lock on an object, no other
transaction can get a lock (S or X) on that object.

• Strict 2PL allows only serializable schedules.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 37

Aborting a Transaction
• If a transactionTi is aborted, all its actions have to be

undone. Not only that, ifTj reads an object last written by
Ti, Tj must be aborted as well!

• Most systems avoid suchcascading abortsby releasing a
transaction’s locks only at commit time.
– If Ti writes an object,Tj can read this only afterTi commits.

• In order toundothe actions of an aborted transaction, the
DBMS maintains alog in which every write is recorded.
This mechanism is also used to recover from system
crashes: all active transactions at the time of the crash are
aborted when the system comes back up.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 38

The Log
• The following actions are recorded in the log:

– Ti writes an object: the old value and the new value.
• Log record must go to diskbeforethe changed page!

– Ti commits/aborts: a log record indicating this action.

• Log records are chained together by transaction id, so it’s
easy to undo a specific transaction.

• Log is oftenduplexedandarchivedon stable storage.

• All log related activities (and in fact, all CC related
activities such as lock/unlock, dealing with deadlocks etc.)
are handled transparently by the DBMS.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 39

Recovering From a Crash
• There are 3 phases in theAriesrecovery algorithm:

– Analysis: Scan the log forward (from the most recentcheckpoint)
to identify all transactions that were active, and all dirty pages in
the buffer pool at the time of the crash.

– Redo: Redoes all updates to dirty pages in the buffer pool, as
needed, to ensure that all logged updates are in fact carried out and
written to disk.

– Undo: The writes of all transactions that were active at the crash
are undone (by restoring thebefore valueof the update, which is
in the log record for the update), working backwards in the log.
(Some care must be taken to handle the case of a crash occurring
during the recovery process!)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 40

Transactions and
Concurrency Control

• Transactions in a Database

• Transaction Processing

• Schedules and Serializability

• Concurrency Control Techniques

• Locking Mechanisms and Timestamps

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 41

Concurrency Control Algorithms

• Pessimistic (or Conservative) Approach
Cause transactions to be delayed in case they
conflict with other transactions at some time in the
future
– Two-Phase Locking (2PL)
– Timestamp Ordering (TO)

• Optimistic Approach
Allow transactions to proceed unsynchronized and
only check conflicts at the end
(based on the premise that conflicts are rare)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 42

Pessimistic vs. Optimistic
• Pessimistic Execution

• Optimistic Execusion

• Optimistic CC Validation Test

Validate

Validate

Read

Read

Compute

Compute

Write

Write

Validation succeeds for all
transaction Tk and Ti where
ts(Tk)<ts(Ti) and Tk start
write before Ti start read.

VR C W

VR C WTi

Tk

Validation succeeds for all transaction
Tk and Ti where ts(Tk)<ts(Ti) and Tk

and Ti don’t access common data.
W(Tk) ∩ R(Ti) = ∅ and
W(Tk) ∩ W(Ti) = ∅

VR C W

VR C WTi

Tk

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 43

Locking-Based Algorithms
• Transactions indicate their intensions by requesting locks

from the scheduler (lock manager).

• Every transaction that needs to access a data object for
reading or writing must first lock the object.

• A transaction holds a lock until it explicitly releases it.

• Locks are either shared or exclusive.

• Shared and exclusive locks conflict

• Locks allow concurrent processing of transactions.

Shared Exclusive Compatibility
Shared Yes No
Exclusive No No

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 44

Two-Phase Locking

• A transaction follows the 2PL protocol if all
locking operations precede the first unlock
operation in the transaction.

Phase1 Phase2

• Phase 1 is the “growing phase” during which
all the locks are requested

• Phase 2 is the “shrinking phase” during which
all locks are released

1. A transaction locks an object before using it
2. When an object is already locked by another

transaction, the requesting transaction must
wait until the lock is released

3. When a transaction releases a lock, it may not
request another lock.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 45

Strict Two-Phase Locking

• Transaction holds locks until the end of
transaction (just before committing)

Phase1
Objects
Are used

a.k.a.
Conservative 2PL

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 46

Lock Management

• Lock and unlock requests are handled by the lock
manager

• Lock table entry:
– Number of transactions currently holding a lock

– Type of lock held (shared or exclusive)

– Pointer to queue of lock requests

• Locking and unlocking have to be atomic operations

• Lock upgrade: (for some DBMSs) transaction that
holds a shared lock can be upgraded to hold an
exclusive lock (also downgrade)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 47

Deadlocks
• Deadlock: Cycle of transactions waiting for

locks to be released by each other.
• A transaction is deadlocked if it is blocked

and will remain blocked until intervention.
• Locking-based Concurrency Control

algorithms may cause deadlocks.
• Two ways of dealing with deadlocks:

– Deadlock prevention(guaranteeing no deadlocks or
detecting deadlocks in advance before they occur)

– Deadlock detection(allowing deadlocks to form and
breaking them when they occur)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 48

Deadlock Example
T1 T2
begin-transaction
Write-lock(A) begin-transaction
Read(A) Write-lock(B)
A=A-100 Read(B)
Write(A) B=B*1.06
Write-lock(B) Write(B)
Wait write-lock(A)
Wait Wait
… Wait

…

T1 T2
Waiting for B

Waiting for A

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 49

Deadlock Prevention
• Assign priorities based on timestamps(i.e. The

oldest transaction has higher priority).

• Assume Ti wants a lock that Tj holds. Two
policies are possible:
– Wait-Die: If Ti has higher priority, Ti allowed to

wait for Tj; otherwise (Ti younger) Ti aborts

– Wound-wait: If Ti has higher priority, Tj aborts;
otherwise (Ti younger) Ti waits

• If a transaction re-starts, make sure it has its
original timestamp

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 50

Deadlock and Timeouts
• A simple approach to deadlock prevention

(and pseudo detection) is based on lock
timeouts

• After requesting a lock on a locked data object,
a transaction waits, but if the lock is not
granted within a period (timeout), a deadlock
is assumed and the waiting transaction is
aborted and re-started.

• Very simple practical solution adopted by
many DBMSs.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 51

Deadlock Detection

• Create a waits-for graph:
– Nodes are transactions

– There is an edge from Ti to Tj if T i is waiting for
Tj to release a lock

• Deadlock exists if there is a cycle in the graph.

• Periodically check for cycles in the waits-for
graph.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 52

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T3 T3

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 53

Recovery from Deadlock
• How to choose a deadlock victim to abort?

– How long the transaction has been running?

– How many data objects have been updated?

– How many data objects the transaction is still to
update?

• Do we need to rollback the whole aborted
transaction?

• Avoid starvation (when the same transaction
is always the victim)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 54

Timestamping

• Each transaction is assigned a globally unique timestamp
(starting time using a clock)

• Each data object is assigned
– a write timestamp wts (largest timestamp on any write on x)

– a read timestamp rts (largest timestamp on any read on x)
– a flag that indicates whether the transaction that last wrote x committed.

• Conflict operations are resolved by timestamp ordering.

• A concurrency control protocol that orders transactions
in such a way that older transactions get priority in the
event of conflict.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 55

Timestamp Ordering

• A Transaction Ti wants to read x: Ri(x)
– if ts(Ti) < wts(x) then reject Ri (x): rollback Ti (abort)

– else accept Ri(x); rts(x) � max(ts(Ti), rts(x))

If ts(Ti) < wts(x) => some other transaction Tk that
started after Ti wrote a new value to x.
Since the read(x) of Ti should return a value prior to
the write operation of Tk Ti is aboted (it is too old)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 56

Timestamp Ordering
• A Transaction Ti wants to write x: Wi (x)

– if ts(Ti)<rts(x) then reject Wi (x): rollback Ti (abort)

– if ts(Ti)<wts(x) then ignore after accept Wi(x) [Thomas write rule]

– else accept Wi(x); wts(x) � ts(Ti)

Make sure a transaction has a new larger timestamp if it is re-started
This protocol guarantees serializability and is deadlock-free

If ts(Ti) < rts(x) => some other transaction Tk that
started after Ti has read an earlier value of x.
If T i is allowed to commit, Tk should have read the
new value that Ti is attempting to write. Thus Ti is
too old to write.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 57

Summary
• Concurrency control and recovery are among the most

important functions provided by a DBMS.
• Users need not worry about concurrency.

– System automatically inserts lock/unlock requests and schedules
actions of different transactions in such a way as to ensure that the
resulting execution is equivalent to executing the transactions one
after the other in some order.

• Write-ahead logging (WAL) is used to undo the actions of
aborted transactions and to restore the system to a
consistent state after a crash.
– Consistent state: Only the effects of commited transactions seen.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 58

Summary (Contd.)
• There are several lock-based concurrency control

schemes (Strict 2PL, 2PL). Conflicts between
transactions can be detected in the dependency graph

• The lock manager keeps track of the locks issued.
Deadlocks can either be prevented or detected.

• Timestamp CC is another alternative to 2PL; allows
some serializable schedules that 2PL does not
(although converse is also true).

• Ensuring recoverability with Timestamp CC requires
ability to block transactions, which is similar to
locking (using the commit flag per addressable object).

