
Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 1

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2003

CMPUT 391: Object Oriented Databases

Chapter 23 of
Textbook

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 22

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• XML
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases
• Other Advanced Database Topics

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 3

Objectives of Lecture 6

• Discuss limitations of the relational data
model.

• Introduce object databases, databases that
handle complex data types.

• Understand the difference between object-
oriented databases and object-relational
databases.

• (By no means comprehensive)

Object-Oriented Databases

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 4

Object-Oriented Databases

• Shortcomings of Relational Databases

• The Concept of Object data Model

• Object-Oriented Database Systems

• Object-Relational Database Systems

• CORBA

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 5

The Need for a DBMS
• On one hand we have a tremendous increase

in the amount of data applications have to
handle, on the other hand we want a reduced
application development time.
– Object-Oriented programming

– DBMS features: query capability with
optimization, concurrency control, recovery,
indexing, etc.

• Can we merge these two to get an object
database management system since data is
getting more complex?

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 6

Manipulating New Kinds of Data
• A television channel needs to store video

sequences, radio interviews, multimedia
documents, geographical information, etc., and
retrieve them efficiently.

• A movie producing company needs to store
movies, frame sequences, data about actors and
theaters, etc. (textbook example)

• A biological lab needs to store complex data
about molecules, chromosomes, etc, and retrieve
parts of data as well as complete data.

• Think about NHL data and commercial needs.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 7

What are the Needs?
• Images
• Video
• Multimedia in general
• Spatial data (GIS)
• Biological data
• CAD data
• Virtual Worlds
• Games
• List of lists
• User defined data types

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 8

Shortcomings with RDBMS
• Supports only a small fixed collection of relatively

simple data types (integers, floating point numbers, date, strings)
• No set-valued attributes (sets, lists,…)
• No inheritance in the Is-a relationship
• No complex objects, apart from BLOB (binary

large object) and CLOB (character large object)
• Impedance mismatch between data access

language (declarative SQL) and host language
(procedural C or Java): programmer must
explicitly tell how things to be done.

ÿ Is there a different solution?

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 9

Existing Object Databases
• Object database is a persistent storage manager for

objects:
– Persistent storage for object-oriented programming

languages (C++, SmallTalk,etc.)

– Object-Database Systems:
• Object-Oriented Database Systems: alternative to relational

systems

• Object-Relational Database Systems: Extension to relational
systems

• Market:RDBMS ($8 billion), OODMS ($30 million) world-wide

• OODB Commercial Products:ObjectStore, GemStone, Orion, etc.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 10

Query

No Query
File System

Relational
DBMS

Object-Relational
DBMS

Object-Oriented
DBMS

Simple Data Complex Data

DBMS Classification Matrix

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 11

Object-Oriented Databases

• Shortcomings of Relational Databases

• The Concept of Object data Model

• Object-Oriented Database Systems

• Object-Relational Database Systems

• CORBA

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 12

Object Data Model
• The object data model is the basis of object-

oriented databases, like the relational data model
is the basis for the relational databases.

• The database contains a collection of Objects
(similar to the concept of entities)

• An object has a unique ID (OID) and a collection
of objects with similar properties is called a class.

• Properties of an object are specified using ODL
and objects are manipulated using OML.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 13

Properties of an Object

• Attributes : atomic or structured type (set,
bag, list, array)

• Relationships: reference to an object or set
of such objects.

• Methods: functions that can be applied to
objects of a class.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 14

Abstract Data Type
• One key feature of object database systems

is the possibility for the user to define
arbitrary new data types.

• A new data type should come with its
associated methods to manipulate it. The
new data type and its associated methods is
called abstract data type (ADT).

• DBMS has built-in types.

• How does the DBMS deal with new data
types that were never seen before.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 15

Encapsulation
• Encapsulation = data structure + operations

• It is the main characteristic of object-oriented
languages.

• The encapsulation hides the abstract data type
internals. ADT= opaque type.

• The DBMS does not need to know how the
ADT’s data is stored nor how the ADT’s
methods work. DBMS only needs to know the
available methods and how to call them
(input/output types of the methods)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 16

Inheritance
• Type (class) hierarchy

– System permits the definition of new types based on
other existing types

– A subtype inherits all properties of its supertype
• Class hierarchy

– A sub-class C’ of a class C is a collection of objects
such that each object in C’ is also an object in C.

– An object in C’ inherits all properties of C
• may change the behaviour of some methods (overloading/overriding

of methods)
• typically adds additional attributes and methods

• Multiple inheritance(inherits from more than just one
superclass)

• Selective inheritance(inherits only some of the
properties of a superclass)

•A value has a type
•An object belongs to a class

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 17

Common Structured Types
• Type constructors are used to combine atomic

types and user defined types to create more
complex structures:

• ROW(n1, t1, …nn,tn) : tuple of n fields
• listof(base): list of base-type items
• ARRAY(base): array of base-type items
• setof(base): set of base-type items without

duplicates
• bagof(base): multiset of base-type items
Not all collection types supported by all systems

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 18

Objects, OIDs, and Reference Types

• An object has an identity and the system
can generate an object identifier (OID) for
objects which is unique in the database
across time

• Reference types - REF(basetype) - have
object ids as values, i.e., an object of type
REF(basetype) is basically a “pointer” to an
object of typebasetype.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 19

Object-Oriented Databases

• Shortcomings of Relational Databases

• The Concept of Object data Model

• Object-Oriented Database Systems

• Object-Relational Database Systems

• CORBA

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 20

Object-Oriented Databases

• OODBMS aims to achieve seamless integration
with an object-oriented programming language
such as C++, Java or Smalltalk.

• OODBMS is aimed at applications when an
object-centric view point is appropriate.
(occasional fetch from object repository)

• No efficient implementations for DML. There
are no good optimizations for a query language
such as OQL in OODBMSs today.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 21

ODL in OODBMS
• ODL supports atomic types as well as set, bag, list

array and struct type

• Interface defines a class
interface Movie (extent Movies key movieName)

{ attribute date start;
attribute date end;
attribute string movieName;
relashionship Set<Theater> ShownAt inverse Theater::nowShowing;

}
interface Theater (extent Theaters key theaterName)

{ attribute string theaterName;
attribute string address;
attribute integer ticketPrice;
relationship Set <Movie> nowShowing inverse Movie::shownAt;
float numshowing() raises(errorCountingMovies);

}

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 22

OML in OODBMS

• The most poplar query language is OQL
which is designed to have a syntax similar
to SQL.

• OQL is an extension to SQL. It has select,
from and where clauses.

• The extensions are to accommodate the
properties of objects and the operators on
complex data types.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 23

OQL Examples

Find the movies and theaters such that the theaters show more than one movie.

SELECT mname: M.movieName, tname: T.theaterName
FROM Movies M, M.shownAt T
WHERE T.numshowing() >1 Use of path expression

T is bound to each theater
Related to movie M by
relationship shownAt

Find the different ticket prices and the average number of movies shown at
theaters with that ticket price.

SELECT T.ticketPrice,
avgNum:AVG(SELECT P.T.numshowing() FROM partition P)

FROM Theaters T
GROUP BY T.ticketPrice

Partitioning in OQL

Method of Objects can be called
everywhere in the query

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 24

Language Bindings

• Mapping of ODL object definitions to the native
syntax of the host language; allows to define and
implement database objects in the host language

• Allows accessing and querying database objects
from within the host language

• Allows to make objects of particular classes
persistent, e.g. in Java by explicitly calling the
method “persist(object)”, defined in the interface
Database, or implicitly if referenced by a another
persistent object.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 25

import org.odmg.*;
import java.util.Collection;

Implementation impl = new com.vendor.odmg.Implementation();
Database db = impl.newDatabase();
Transaction txn = impl.newTransaction();
try {

db.open(“movieDB", Database.OPEN_READ_WRITE);
txn.begin();
OQLQuery query = new OQLQuery(

"select t from Theaters t where t.ticketprice < $1");
query.bind(uInput1()); //bind $1 to a user specified value
Collection result = (Collection) query.execute();
Iterator iter = result.iterator();
while (iter.hasNext()) {

Theater theater = (Theater) iter.next();
theater.ticketprice = theater.ticketprice * 1.5;

}
txn.commit();
db.close();

}
//exception handling would go here ...

Java Binding Example

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 26

Object-Oriented Databases

• Shortcomings of Relational Databases

• The Concept of Object data Model

• Object-Oriented Database Systems

• Object-Relational Database Systems

• CORBA

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 27

ORDBMS: What’s new?(SQL 1999)

• Support for storage and manipulation of
large data types (BLOB and CLOB)

• Mechanisms to extend the database with
application specific types and methods
– User defined types

– User defined procedures

– Operators for structured types

– Operators for reference types

• Support for inheritance

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 28

User Defined ADT
• A user must define methods that enable the

DBMS to read in and to output objects for
each new atomic type defined.

• The following methods must be registered
with the DBMS:
– Size: returns the number of bytes of storage

– Import: creates a new object from textual input

– Export: maps item to a printable form
CREATE ABSTRACT DATA TYPEjpeg_image

(internallength =VARIABLE , input=jpeg_in,
output=jpeg_out);

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 29

Built-in Operators for Structured
Types

• Path expression

• Comparisons of sets (⊂⊆=⊇⊃ ∈∪∩−)

• Append and prepend for lists

• Postfix square bracket for arrays

• -> for reference type

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 30

Object-Relational Features of Oracle
Object table: table in which each row represents an object.

CREATE TYPE person AS OBJECT (
name VARCHAR2(30),
phone VARCHAR2(20));

CREATE TABLE person_table OF person;

INSERT INTO person_table VALUES

person("John Smith", "1-800-555-1212");

SELECT VALUE(p) FROM person_table p
WHERE p.name = "John Smith";

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 31

Object-Relational Features of Oracle
Methods

CREATE TYPE Rectangle_typ AS OBJECT (
len NUMBER,
wid NUMBER,
MEMBER FUNCTION area RETURN NUMBER,

);

CREATE TYPE BODY Rectangle_typ AS
MEMBER FUNCTION area RETURN NUMBER IS
BEGIN

RETURN len * wid;
END area;

END;

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 32

Object-Relational Features of Oracle
REF datatype: reference to other objects

CREATE TABLE people (
id NUMBER(4)
name_obj name_objtyp,
address_ref REF address_objtyp

SCOPE IS address_objtab);

De-referencing (assume X is an object of type people)
X.deref(address_ref).street
In Oracle also implicitly: X.address_ref.street

Obtaining references
SELECT REF(po) FROM purchase_order_table po
WHERE po.id = 1000376;

can be “scoped” for more efficient access

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 33

Object-Relational Features of Oracle
Collection types / nested tables

CREATE TYPE PointType AS OBJECT (
x NUMBER,
y NUMBER);

CREATE TYPE PolygonType AS TABLE OF PointType;

CREATE TABLE Polygons (
name VARCHAR2(20),
points PolygonType)
NESTED TABLE points STORE AS PointsTable;

The relations representing individual polygons
are not stored directly as values of the points
attribute; they are stored in a single table, PointsTable

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 34

Object-Relational Features of Oracle

Collection types / VARRAYS

• The VARRAYs of type PRICES have no more than ten
elements, each of datatype NUMBER(12,2).

• Creating an array type does not allocate space. It defines a
datatype, which you can use as:
– the datatype of a column of a relational table.
– an object type attribute.

CREATE TYPE prices AS VARRAY(10) OF NUMBER(12,2);

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 35

Object-Relational Features of Oracle
Type Inheritance / Subtyping

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,

name VARCHAR2(30),
address VARCHAR2(100)) NOT FINAL;

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER, major VARCHAR2(30)) NOT FINAL;

CREATE TYPE Employee_typ UNDER Person_t
(empid NUMBER, mgr VARCHAR2(30));

CREATE TYPE PartTimeStud_t UNDER Student_t
(numhours NUMBER);

To permit subtypes,
the object type must be defined as not final.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 36

Object-Relational Features of Oracle
Method Overloading and Overriding

CREATE TYPE MyType_typ AS OBJECT (...,
MEMBER PROCEDURE Print(),
MEMBER PROCEDURE foo(x NUMBER), ...)
NOT FINAL;

CREATE TYPE MySubType_typ UNDER MyType_typ
(...,

OVERRIDING MEMBER PROCEDURE Print(),
MEMBER PROCEDURE foo(x DATE), ...);

MySubType_typ contains two versions of foo(): one inherited version,
with a NUMBER parameter, and a new version with a DATE parameter

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 37

Object-Oriented Databases

• Shortcomings of Relational Databases

• The Concept of Object data Model

• Object-Oriented Database Systems

• Object-Relational Database Systems

• CORBA

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 38

Distributed Objects
• To integrate different applications running on the same or

different computers, we use a middleware for distributing
objects.

• There are many technologies: COM/DCOM(Distributed /
Component Object Model) from Microsoft, CORBA from
OMG, RMI with Java, SOAP with XML, etc.

• Heterogeneity is due to:
– Engineering tradeoffs: different solutions across the enterprise
– Cost effectiveness: best system at the lowest price in≠ times

– Legacy systems: systems too critical or too costly to replace

• Dealing with heterogeneity in distributed computing
enterprise & develop open applications is very challenging

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 39

Concepts of Middleware

• Objects are sent from one application to the
other via a middleware.

• The middleware wraps objects with a network
layer

• Some technologies rely on TCP/IP, other on
HTTP

Object wrapping

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 40

CORBA
• CORBA stands for Common Object Request

Broker Architecture.

• It is defined and managed by the Object
management Group (OMG)

• CORBA is known for Object Orientation,
Interoperability, Heterogeneity and Transparent-
Distribution.

• Not a product. It is a standard used to exchange
data in a heterogeneous environment, large scale
enterprise applications distributed on a network.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 41

CORBA con’t
• CORBA makes it easier to implement new

applications that must place components on
different hosts on the network or use different
programming languages.

• CORBA encourages the writing of open
applications, applications that can be used as
components of large systems, each application
is made up of components and integration is
supported by allowing other applications to
communicate directly with these components.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 42

CORBA con’t
• OO, Interoperability, and Distribution Out-of-

the-box
• Interoperability across languages (Java, C/C++,

Ada, Smalltalk, Common LISP, COBOL, etc.)
• Interoperability and Portability across

Operating-Systems and Networks (CORBA is
available on virtually every OS that you might
want to use)

• Distribution / Location Transparency are
Fundamental

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 43

The Notion of Client-Server

• With CORBA there is not rigid notion of a
client and a server; components communicate
with others on a peer-to-peer basis

• Client and server are roles filled on a per-
request basis

• A component can be a client and a server at the
same time: client for other services and server
for the services it provides

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 44

CORBA ORB Architecture
a CORBA programming
entity that consists of an
identity, aninterface, and
an implementation

the program entity that
invokes an operation on an
object implementation

S. Vinoski, CORBA:
Integrating Diverse
Applications Within
Distributed Heterogeneous
Environments,IEEE
Communications
Magazine, February, 1997.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 45

http://www.cs.wustl.edu/~schmidt/tutorials-corba.html

http://www.omg.org/

http://www.iona.com/

Steve Vinoski, CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments,IEEE
Communications Magazine, February, 1997.
http://www.cs.wustl.edu/~schmidt/PDF/vinoski.pdf

References for CORBA & OMG

