Database Management	Course Content			
Systems	 Introduction Database Design Theory Overy Processing and Optimisation 			
Winter 2003	Concurrency Control			
CMPUT 391: Spatial Data Management	 Data Base Recovery and Security Object-Oriented Databases 			
Dr. Osmar R. Zaïane	Inverted Index for IR Spatial Data Management			
	XML Data Warehousing			
University of Alberta Chapter 28 of Textbook	 Data Mining Parallel and Distributed Databases 			
r. Osmar R. Zaïane 2002-2003 CMPUT 391 – Database Management Systems University of Alberta 💓 1	Dr. Osmar R. Zaĭane 2002-2003 CMPUT 391 – Database Management Systems University of Alberta 💽 2			

Objectives of Lecture 8

Spatial Data Management

- This lecture will give you a basic understanding of spatial data management
 - What is special about spatial data
 - What are spatial queries
 - How do typical spatial index structures work

Spatial Data Management

- Modeling Spatial Data
- Spatial Queries
- Space-Filling Curves + B-Trees
- R-trees

Relational Representation of Spatial Data

• Example: Representation of geometric objects (here: parcels/fields of land) in normalized relations

		<i>,</i>	
F ₂		F	5
	/ _	<u> </u>	
F_1	F.	/	
	14		F_7
		L	
F ₃	γ	F ₆	
	/		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parcels		E	Borders			Points		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FNr	BNr	BNr	PNr ₁	PNr ₂	ſ	PNr	X-Coord	Y-Coord
	F_1 F_1 F_1 F_1 F_4 F_4 F_4 F_4 F_4 F_4 F_4 F_7	$\begin{array}{c} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_2 \\ B_5 \\ B_6 \\ B_7 \\ B_8 \\ B_9 \\ B_7 \\ B_{10} \\ B_{11} \\ B_{12} \\ \cdots \end{array}$	$\begin{array}{c} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \\ B_6 \\ B_7 \\ B_8 \\ B_9 \\ B_{10} \\ B_{11} \\ B_{12} \end{array}$	$\begin{array}{c} P_1 \\ P_2 \\ P_3 \\ P_4 \\ P_2 \\ P_5 \\ P_6 \\ P_7 \\ P_8 \\ P_6 \\ P_9 \\ P_{10} \end{array}$	$\begin{array}{c} P_2 \\ P_3 \\ P_4 \\ P_1 \\ P_5 \\ P_6 \\ P_7 \\ P_8 \\ P_3 \\ P_9 \\ P_{10} \\ P_7 \end{array}$		$\begin{array}{c} P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \\ P_{5} \\ P_{6} \\ P_{7} \\ P_{8} \\ P_{9} \\ P_{10} \end{array}$	X P1 X P2 X P3 X P4 X P5 X P6 X P7 X P8 X P9 X P10	Y P1 Y P2 Y P3 Y P4 Y P5 Y P6 Y P7 Y P8 Y P9 Y P10

Redundancy free representation requires distribution of the information over 3 tables: Parcels, Borders, Points

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 - Database Management Systems

University of Alberta

Relational Representation of Spatial Data

- For (spatial) queries involving parcels it is necessary to reconstruct the spatial information from the different tables
 - E.g.: if we want to determine if a given point P is inside parcel F_2 , we have to find all corner-points of parcel F2 first

SELECT Points. PNr. X-Coord, Y-Coord FROM Parcels, Border, Points WHERE $FNr = F_2$ ' AND Parcel.BNr = Borders.BNr AND (Borders.PNr₁ = Points.PNr ORBorders.PNr₂ = Points.PNr)

- Even this simple query requires expensive joins of three tables
- Querying the geometry (e.g., P in F₂?) is not directly supported.

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 - Database Management Systems

University of Alberta

Extension of the Relational Model to Support Spatial Data

- Integration of spatial data types and operations into the core of a DBMS (\rightarrow object-oriented and object-relational databases)
 - Data types such as Point, Line, Polygon
 - Operations such as *ObjectIntersect*, *RangeQuery*, etc.
- Advantages
 - Natural extension of the relational model and query languages
 - Facilitates design and querying of spatial databases
 - Spatial data types and operations can be supported by spatial index structures and efficient algorithms, implemented in the core of a DBMS
- All major database vendors today implement support for spatial data and operations in their database systems via object-relational extensions

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 - Database Management Systems

Extension of the Relational Model to Support Spatial Data – Example

Relation: ForestZones(Zone: Polygon, ForestOfficial: String, Area: Cardinal)

ForestZones				
Zone	Area (m ²)			
$\begin{matrix} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \\ R_6 \end{matrix}$	Stevens Behrens Lee Goebel Jones Kent	3900 4250 6700 5400 1900 4600		

The province decides that a reforestation is necessary in an area described by a polygon S. Find all forest officials affected by this decsion.

FROM ForestZones

WHERE ObjectIntersects (S, Zone)

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 - Database Management Systems

Data Types for Spatial Objects

- Spatial objects are described by
 - Spatial Extent
 - *location* and/or *boundary* with respect to a reference point in a coordinate system, which is at least 2-dimensional.
 - Basic object types: Point, Lines, Polygon
 - Other Non-Spatial Attributes
 - Thematic attributes such as height, area, name, land-use, etc.

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 – Database Management Systems Univ

University of Alberta . 9

Spatial Data Management

- Modeling Spatial Data
- Spatial Queries
- Space-Filling Curves + B-Trees
- R-trees

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 - Database Management Systems

University of Alberta

Spatial Query Processing

- DBMS has to support two types of operations
 - Operations to retrieve certain subsets of spatial object from the database
 - "Spatial Queries/Selections", e.g., window query, point query, etc.
 - Operations that perform basic geometric computations and tests
 - E.g., point in polygon test, intersection of two polygons etc.
- Spatial selections, e.g. in geographic information systems, are often supported by an interactive graphical user interface

Basic Spatial Queries

- *Containment Query*: Given a spatial object R, find all objects that completely contain R. If R is a Point: *Point Query*
- *Region Query*: Given a region R (polygon or circle), find all spatial objects that intersect with R. If R is a rectangle: *Window Query*
- *Enclosure Query*: Given a polygon region R, find all objects that are completely contained in R
- *K-Nearest Neighbor Query*: Given an object P, find the k objects that are closest to P (typically for points)

Containment Query

Region Query Window Query

2-nn Query

....

University of Alberta

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 – Database Management Systems

Basic Spatial Queries – Spatial Join

• Given two sets of spatial objects (typically minimum bounding rectangles)

 $- S_1 = \{R_1, R_2, ..., R_m\} \text{ and } S_2 = \{R'_1, R'_2, ..., R'_n\}$

- Spatial Join: Compute all pairs of objects (R, R') such that
 - $R \in S_1, R' \in S_2,$
 - and R intersects R' $(R \cap R' \neq \emptyset)$
 - Spatial predicates other that intersection are also possible, e.g. all pairs of objects that are within a certain distance from each other

Index Support for Spatial Queries

- Conventional index structures such as B-trees are not designed to support spatial queries
 - Group objects only along one dimension
 - Do not preserve spatial proximity
 - E.g. nearest neighbor query: Nearest neighbor of Q is typically not the nearest neighbor in any single dimension

Dr. Osmar R. Zaïane 2002-2003

13

CMPUT 391 - Database Management Systems

University of Alberta

Index Support for Spatial Queries

- Spatial index structures try to preserve spatial proximity
 - Group objects that are close to each other on the same data page
 - Problem: the number of bytes to store extended spatial objects (lines, polygons) varies
 - Solution:
 - Store *Approximations* of spatial objects in the index structure, typically axis-parallel minimum bounding rectangles (MBR)
 - Exact object representation (ER) stored separately; pointers to ER in the index

Query Processing Using Approximations

Two-Step Procedure

- 1. Filter Step:
 - Use the index to find all approximations that satisfy the query
 - Some objects already satisfy the query based on the approximation, others have to be checked in the refinement step \rightarrow Candidate Set
- 2. Refinement Step:
 - Load the exact object representations for candidates left after the filter step and test whether they satisfies the query

Spatial Data Management

- Modeling Spatial Data
- Spatial Queries
- Space-Filling Curves + B-Trees
- R-trees

Embedding of the 2-dimensional space into a 1 dimensional space

- Basic Idea:
 - The data space is partitioned into rectangular cells.
 - Use a space filling curve to assign cell numbers to the cells (define a linear order on the cells)
 - The curve should preserve spatial proximity as good as possible
 - Cell numbers should be easy to compute
 - Objects are approximated by cells.
 - Store the cell numbers for objects in a conventional index structure with respect to the linear order

Z-Order – Representation of Spatial Objects

С

R

Coding of R

by one cell

For Points

- Use a fixed a resolution of the space in both dimensions, i.e., each cell has the same size
- Each point is then approximated by one cell
- For extended spatial object
 - minimum enclosing cell • Problems with cells that intersect the first partitions already
 - improvement: use several cells
 - ٠ Better approximation of the objects
 - Redundant storage
 - Redundant retrieval in spatial queries

Dr. Osmar R. Zaïane 2002-2003

Ouerv returns the same answer several times CMPUT 391 - Database Management Systems University of Alberta

Coding of R

by several cells

Ouerv

Window

Mapping to a B⁺-Tree - Example

Z-Order – Mapping to a B⁺-Tree

Linear Order for Z-values to store them in a B⁺-tree: • Let (c_1, l_1) and (c_2, l_2) be two Z-Values and let $l = \min\{l_1, l_2\}$.

The order relation \leq_7 (that defines a linear order on Z-values) is then defined by

 $(c_1, l_1) \leq_{\mathbf{T}} (c_2, l_2)$ iff $(c_1 \operatorname{div} 2^{(l_1 - l)}) \leq (c_2 \operatorname{div} 2^{(l_2 - l)})$

Examples:

 $(1,2) \leq_7 (3,2),$ $(3,4) \leq_{\mathbb{Z}} (3,2),$ $(1,2) \leq_7 (10,4)$

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 - Database Management Systems

University of Alberta

Mapping to a B⁺-Tree – Window Query

Spatial Data Management

- Modeling Spatial Data
- Spatial Queries
- Space-Filling Curves + B-Trees
- **R**-trees

The R-Tree – Properties

- Balanced Tree designed to organize rectangles [Gut 84]. ٠
- Each page contains between *m* and *M* entries.
- Data page entries are of the form (*MBR*, *PointerToExactRepr*). ٠
 - MBR is a minimum bounding rectangle of a spatial object, which PointerToExactRepr is pointing to
- Directory page entries are of the form (*MBR*, *PointerToSubtree*).
 - *MBR* is the minimum bounding rectangle of all entries in the subtree, which PointerToSubtree is pointing to.
- Rectangles can overlap
- The height *h* of an R-Tree for N spatial objects:

 $h \leq \lceil \log_m N \rightarrow 1 \rceil$

R-Tree Construction – Optimization Goals

- Overlap between the MBRs
 - \Rightarrow spatial queries have to follow several paths
 - \Rightarrow try to minimize overlap
- Empty space in MBR
 - \Rightarrow spatial queries may have to follow irrelevant paths
 - \Rightarrow try to minimize area and empty space in MBRs

R-Tree Construction – Important Issues

• Split Strategy

R-Tree Construction – Insertion Strategies

- Dynamic construction by insertion of rectangles *R*
 - Searching for the data page into which *R* will be inserted, traverses the tree from the root to a data page.
 - When considering entries of a directory page *P*, 3 cases can occur:
 - 1. *R* falls into exactly one *Entry.MBR* \rightarrow follow *Entry.Subtree*
 - 2. *R* falls into the MBR of more than one entry $e_1, ..., e_n$ \rightarrow follow E_i Subtree for entry e_i with the smallest area of e_i MBR.
 - 3. *R* does not fall into an *Entry.MBR* of the current page \rightarrow check the increase in area of the *MBR* for each entry when enlarging the *MBR* to enclose *R*. Choose *Entry* with the minimum increase in area (if this entry is not unique, choose the one with the smallest area); enlarge *Entry.MBR* and follow *Entry.Subtree*
- Construction by "bulk-loading" the rectangles
 - Sort the rectangles, e.g., using Z-Order
 - Create the R-tree "bottom-up"

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 - Database Management Systems

R-Tree Construction – Split

- Insertion will eventually lead to an overflow of a data page
 - The parent entry for that page is deleted.
 - The page is split into 2 new pages according to a *split strategy*
 - 2 new entries pointing to the newly created pages are inserted into the parent page.
 - A now possible overflow in the parent page is handled recursively in a similar way; if the root has to be split, a new root is created to contain the entries pointing to the newly created pages.

R-Tree Construction – Splitting Strategies

- Overflow of node K with |K| = M+1 entries \rightarrow Distribution of the entries into two new nodes K_1 and K_2 such that $|K_1| \ge m$ and $|K_2| \ge m$
- Exhaustive algorithm:
 - Searching for the "best" split in the set of all possible splits is too expensive (O(2^M) possibilities!)
- *Quadratic algorithm*:
 - Choose the pair of rectangles R_1 and R_2 that have the largest value $d(R_1, R_2)$ for empty space in an MBR, which covers both R_1 und R_2 . $d(R_1, R_2) := \text{Area}(\text{MBR}(R_1 \cup R_2)) - (\text{Area}(R_1) + \text{Area}(R_2))$
 - Set $K_1 := \{R_1\}$ and $K_2 := \{R_2\}$
 - Repeat until STOP
 - if all R_i are assigned: STOP
 - if all remaining R_i are needed to fill the smaller node to guarantee minimal occupancy *m*: assign them to the smaller node and STOP
 - else: choose the next R_i and assign it to the node that will have the smallest increase in area of the MBR by the assignment. If not unique: choose the K_i that covers the smaller area (if still not unique: the one with less entries).

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 - Database Management Systems

R-Tree Construction – Splitting Strategies

- Linear algorithm:
 - Same as the quadratic algorithm, except for the choice of the initial pair: Choose the pair with the largest distance.
 - For each dimension determine the rectangle with the largest minimal value and the rectangle with the smallest maximal value (the difference is the *maximal distance/separation*).
 - Normalize the maximal distance of each dimension by dividing by the sum of the extensions of the rectangles in this dimension
 - Choose the pair of rectangles that has the greatest normalized distance. Set K₁ := {R₁} and K₂ := {R₂}.

R-Trees – Variants

- Many variants of R-trees exist,
 - e.g., the R*-tree, X-tree for higher dimensional point data, ...
 - For further information see <u>http://www.cs.umd.edu/~hjs/rtrees/index.html</u> (includes an interactive demo)
- R-trees are also efficient index structures for point data since points can be modeled as "degenerated" rectangles
 - Multi-dimensional points, where a distance function between the points is defined play an important role for similarity search in so-called "feature" or "multi-media" databases.

University of Alberta

Examples of Feature Databases

• Measurements for celestial objects (e.g., intensity of emission in different wavelengths) • Color histograms of images $\overbrace{(01, 01_2, ..., 01_d)}_{(02_1, 02_2, ..., 02_d)}$ • Documents, shape descriptors, ... $\overbrace{(01, 01_2, ..., 01_d)}_{(02_1, 02_2, ..., 02_d)}$ $(01_1, 01_2, ..., 01_d)_{(02_1, 02_2, ..., 02_d)}$ $(01_1, 01_2, ..., 01_d)_{(02_1, 02_2, ..., 02_d)}$

Feature Databases and Similarity Queries

- Objects + Metric Distance Function
 - The distance function measures (dis)similarity between objects
- Basic types of similarity queries
 - range queries with range $\boldsymbol{\epsilon}$
 - Retrieves all objects which are similar to the query object up to a certain degree ε
 - *k*-nearest neighbor queries
 - Retrieves *k* most similar objects to the query

Dr. Osmar R. Zaïane 2002-2003

CMPUT 391 - Database Management Systems

University of Alberta 🚑: 37