
Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 1

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 20023

CMPUT 391: XML and Databases

Chapter 27 of
Textbook

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 22

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• Spatial Data Management
• XML and Databases
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 3

Objectives of Lecture 8

• Discuss semi-structured data and collections
(databases) of semi-structured data.

• Introduce the Extensible Markup Language
XML and discuss its use.

• Introduce query languages for querying and
manipulating XML documents and XML
document collections.

XML and Databases

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 4

eXtensible Markup Language
• Semi-Structured Data

• Data Model for XML

• Introduction to XML

• Syntax and Document Type Definition

• Querying XML Documents

• XML and Security Access

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 5

The Structure of Data
• In the real world data can be of any type

and not necessarily following any organized
format or sequence.

• Such data is said to be unstructured.
Unstructured data is chaotic because it
doesn’t follow any rule and is not
predictable.

• Text data is usually unstructured. Many data
on the Internet is unstructured (video
streams, sound streams, images, etc).

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 6

Structured Data
• For applications manipulating data, the structure of data is

very important to insure efficiency and effectiveness.

• The data is structured when:
– Data is organized in semantic chunks (entities).

– Similar entities are grouped together (relations or classes).

– Entities in a same group have the same descriptions (attributes).

– Entity descriptions for all entities in a group have the same
defined format, a predefined length, are all present, and follow
the same order (schema).

• This structure is sometimes too rigid for some applications.

• What is the alternative? Many data is neither completely
unstructured nor completely structured.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 7

Semi-Structured Data
• Structured data is rigidly organized & well definedÿ predictable
• Unstructured data is disordered and unrulyÿunpredictable
• Semi-structured data is organized enough to be predictable

– Data is organized in semantic entities
– Similar entities are grouped together
But
– Entities in the same group may not have the same attributes
– The order of the attributes is not necessarily important
– The presence of some attributes may not always be required
– The size of same attributes of entities in a same group may not be

the same
– The type of the same attributes of entities in a same group may

not be of the same type.
• An HTML document is an example of semi-structured data

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 8

eXtensible Markup Language
• Semi-Structured Data

• Data Model for XML

• Introduction to XML

• Syntax and Document Type Definition

• Querying XML Documents

• XML and Security Access

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 9

Data Model for Semi-Structured
Data

• Semi-structured data doesn’t have a schema since
some data might be implicit, some might be
hidden, unknown, or simply ignored (not entered).

• How do we query the data without knowledge of
the schema?

• There are many data models proposed to represent
semi-structured data. Most of them use the notion
of labeled graphs.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 10

Labeled Graphs

• Nodes in the graph correspond to compound
objects or atomic values.

• Edges in the graph correspond to attributes

• The graph is self describing (no need for a
schema)

• Object Exchange Model (OEM): each object is
described by a triplet <label, type, value>

• Complex objects are decomposed hierarchically
into smaller objects

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 11

Example: Booklist Data in OEM

Milan Kundera

Identity 1998

BOOK

AUTHOR TITLE PUBLISHED AUTHOR FORMAT
TITLE

Richard Feynman

The
character
of phy-
sical law

Hard-
cover

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 12

eXtensible Markup Language
• Semi-Structured Data

• Data Model for XML

• Introduction to XML

• Syntax and Document Type Definition

• Querying XML Documents

• XML and Security Access

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 13

Introduction to XML
• XML the eXtensible Markup Language is a

standard of the World-Wide Web Consortium
• The official current version is 1.0 and was

originally recommended in 1998
• The official specification from the W3C are:

http://www.w3.org/TR/1998/REC-xml-19980210

• More info can be found at:
http://www.w3.org/XML/

• Many working groups and advisory boards are
currently enhancing XML

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 14

Introduction to XML (con’t)

• XML: eXtensible Markup Language

• Suitable for semistructured data
– Easy to describe object-like data

– Selfdescribing

– Doesn’t require a schema (but can be provided
optionally)

• All major database products have been extended
to store and construct XML documents

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 15

What is Special with XML

• It is a language to markup data

• There are no predefined tags like in HTML

• Extensibleÿ tags can be defined and
extended based on applications and needs
– Elements / tags

– Attributes

– Example: <BOOK page="453">…</BOOK>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 16

Example
<?xml version=“1.0” ?>

<PersonListType=“Student” Date=“2002-02-02” >
<Title Value=“Student List” />

<Person>
… … …
</Person>
<Person>
… … …
</Person>

</PersonList>

• Elements are nested

• Root element contains all others

Element (or tag)
names

e
le

m
e

n
ts

R
o

o
te

le
m

en
t

Empty
element

attributes

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 17

More Terminology

<Person Name = “John” Id = “111111111”>

John is a nice fellow

<Address>

<Number>21</Number>

<Street>Main St.</Street>

</Address>

… … …

</Person>

Opening tag

Closing tag

Nested element,
child of Person

Parent of Address,
Ancestor ofnumber

“standalone” text,
not useful as data

Child of Address,
Descendant ofPerson

C
o

n
te

n
to

f
P

er
so

n

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 18

Rules for Creating XML Documents

• Rule 1: All terminating tags shall be closed
– Omitting a closing XML tag is an error. Example:

<FirstName>Osmar</FirstName>

• Rule 2: All non-terminating tags shall be closed
– Omitting a forward slash for non-terminating tags is an error.

Example<Available answer="yes"/>

• Rule 3: XML shall be case sensitive
– Using the wrong case is an error. Example:

<FirstName>Osmar</firstname>
– It is OK in HTML <H1>my header</h1>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 19

More Rules for Creating XML

• Rule 4: An XML document shall have one root
– Attempting to create more than one root element would

generate a syntax error

• Rule 5: Terminating tags shall be properly nested
– Closing a parent tag before closing a child’s tag is an error.

Example<Author><name>Osmar</Author></name>
– It is OK in HTML <I>bold italic text</I>

• Rule 6: Attribute values shall be quoted
– Omitting quotes, either single or double, around and XML

attribute’s value is an error. Example<Product ID="123">

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 20

What is needed?

• XML needs to be parsed to check whether the
documents are well formed

• XML needs to be printed

• XML needs to be interpreted for information
exchange or populating database

• XML needs to be queried efficiently

Query LanguagesParsers

Representations
XSL/XSLT

SOAP
XML security

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 21

eXtensible Markup Language
• Semi-Structured Data

• Data Model for XML

• Introduction to XML

• Syntax and Document Type Definition

• Querying XML Documents

• XML and Security Access

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 22

Introduction to DTDs
• DTD stands for Document Type Definition
• A DTD is a set of rules that specify how to

use an XML markup. It contains
specifications for each element, the
attributes of the elements, and the values the
attributes can take.

• A DTD also specifies how elements are
contained in each other

• A DTD ensures that XML documents
created by different programs are consistent

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 23

<?xml version = "1.0"?>
<letter> <Urgency level=“1”\>
<contact type= "from">

<name>John Doe</name>
<address>123 Main St.</address>

<city>Anytown</city>
<province>Somewhere</province>
<postalcode>A1B 2C3</postalcode>

</contact>
<contact type= "to">

<name>Joe Schmoe</name>
<address>123 Any Ave.</address>
<city>Othertown</city>

<province>Otherplace</province>
<postalcode>Z9Y 8X7</postalcode>

</contact>
<paragraph>Dear Sir,</paragraph>
<paragraph>It is our privilege to inform you about our new database managed with XML.
This new system will allow you to reduce the load of your inventory list server by having the
client machine perform the work of sorting and filtering the data.</paragraph>
<paragraph>Sincerely, Mr. Doe</paragraph>
</letter>

Example1: Business Letter

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 24

DTD Example for business letter
<?xml version=“1.0” encoding=“UTF-8” ?>
<!DOCTYPE LETTER [
<!ELEMENT LETTER (Urgency, contact+, paragraph+)>
<!ELEMENT Urgency (EMPTY)>
<!ATTLIST Urgency level CDATA #IMPLIED>
<!ELEMENT contact (name, address, city, province, postalcode,
phone?, email?)>
<!ATTLIST contact type CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
…
]>

Empty means no end tag

#PCDATA is parsed
character data, it means
that the element
contains text

CDATA means string
#IMPLIED means that
the attribute value is
unspecified.

+ means one or more

? means optional

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 25

DTD Header

<?xml version=“1.0” encoding=“UTF-8” ?>

Version of the xml
Currently 1.0

Encoding specifies the
character set used:
•UTF-8 Unicode
Transformation 8 bits
•UTF-16 Unicode
Transformation 16 bits
•Etc.

Enables use of different character setsÿ Internationalization

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 26

DTD Rules

<!ELEMENT elementName (components or content type)>

Examples: <!ELEMENT name (#PCDATA)>
name is an element/tag for text data

<!ELEMENT Urgency (EMPTY)>
Urgency has no content

<!ELEMENT letter (Urgency, contact+, paragraph+)>
letter is an element that contains and Urgency
element followed by one or more contact elements
and one or more paragraph elements

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 27

Multiple Elements

<!ELEMENT letter (Urgency, contact+, paragraph+)>
<!ELEMENT contact (name, address, city, province, postalcode,
phone?, email?)>

Are called multiple elements (lists of elements). They require the rule
to specify their sequence and the number of times they can occur.

| Any element may occur
, Occur in specified sequence
? Optional, may occur 0 or once
+ Occurs ate least once (1 or many)
* Occurs many times (0 or many)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 28

Attributes in DTD
<!ATTLIST elementName attributeName Type Specification>

• elementName and attributeName associate the attribute with the
element
• The Type specifies if the attribute is free text (CDATA) or a list
of predefined values (value1 | value2 | value3)
• Example:
<!ATTLIST Urgency level CDATA #IMPLIED>
<!ATTLIST contact type CDATA #REQUIRED>
<!ATTLIST P align (center | right | left) #IMPLIED>

• Specification could be:
• #REQUIRED attribute must be specified
• #IMPLIED attributes can be unspecified
• #FIXED attribute is preset to a specific value
• “defaultvalue” default value for the attribute

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 29

Calling an External DTD
• A DTD can be referenced from XML documents

– <!DOCTYPE letter SYSTEM "letter.dtd">

– Any element, attribute not explicitly defined in the DTD generates an error
in the XML document.

– An XML document that conforms to a DTD is called valid and well-
formed.

– There is a need to parse XML documents and validate them vis-à-vis a
DTD.

• The keywordSYSTEM indicates that the DTD is intended for
private use.PUBLIC references a public DTD.

• <!DOCTYPE rss PUBLIC “-//Netscape Communications//DTD RSS 0.91//EN”
“http://my.netscape.com/publish/formats/rss-0.91.dtd”>

Rich Site Summary (RSS) is a lightweight XML format designed for sharing headlines
and other Web content. Originally developed by Netscape to fill channels for Netcenter.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 30

Portability of XML
• Adherence to DTDs ensure consistency between

XML documents

• Defining a DTD is equivalent to creating a
customized markup language.

• There are many domain specific markup
languages based on XML: MML (Mathematical
Markup Language), CML (Chemical Markup
Language),…many other XML-based languages

• This is one of the main reasons why XML is so
successful for data exchange between applications

document
document

document

DTD

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 31

Beyond DTDs: XML Schema

• DTD are limited
– very limited data types (just strings)
– can’t express strong consistency constraints
– can’t express unordered contents conveniently
– all element names are global

• can’t have one Name type for people and another for
companies:

– <!ELEMENT Name (Last, First)>
– <!ELEMENT Name (#PCDATA)>

• both can’t be in the same DTD

• XML Schema solves some of the problems with
DTDs, but is much more complex than DTDs

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 32

eXtensible Markup Language
• Semi-Structured Data

• Data Model for XML

• Introduction to XML

• Syntax and Document Type Definition

• Querying XML Documents

• XML and Security Access

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 33

Why do we need to Query XML?
• Methods exist for efficient storage and retrieval

of tree-structured objects, includingXML
documents

• Methods exist for mappingXML elements into
relational or Object-Oriented databases.

• Methods exist for indexing semi-structured data.
• Many DBMS vendors are already providing tools

for generatingXML and even “importing”XML .
• Very large collections ofXML documents are

prominent and inevitable.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 34

Querying XML Data
• Goal: High-level, declarative language that allows

manipulation of XML documents.

• Manipulation means the retrieval of documents, sub-
documents and elements and attribute values, as well as
the generation of new XML documents.

• There are many languages proposed by researchers.
One standard emerged recently(X-Query adopted by W3C)

• Lorel (1997), XML-QL (1999), XQL (1999), Quilt(2000),
XQuery(2001), …

• Also XPath (lightweight XML query language) and
XSLT (transformation language for XML)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 35

Comparison of Languages
Some languages follow a database perspective other a

document processing perspective.
In most XML query languages
• Typically, queries consist of 3 parts: a pattern clause, a

filter clause and constructor clause.(also sorting, grouping…)

• Use of external functions such as aggregation functions,
string related functions, etc.

• Use of constructs to impose nesting and order
• Use of join operator to combine data from different

portions of documents.
• Use of tag variables or path expressions
• Use of constructs to test absence of data
Not all are available with all languages

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 36

XPath: XML Pointer Language

• http://www.w3.org/TR/xpathor
http://www.w3.org/TR/1999/REC-xpath-19991116

• A core query language used in X-Query and many
other XML standards

• Simple selection operator for paths from XML-tree
• XML documents are modeled as trees
• In XPath document tree nodes are either elements,

attributes, or text values (also comments). There is also
an extra root.

• Xpath expressions take a document tree and return a set
of nodes in the tree.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 37

XPath Document Tree
<? Xml version=“1.0” ?>
<Students>

<Student SID=“123456”>
<Name><First>John</First><Last>Smith</Last></Name>
<Status>Full-UndG</Status>
<Course Code=“cmput101” Semester=“W1999” />
<Course Code=“cmput291” Semester=“F1999” />
<Course Code=“cmput391” Semester=“F2000” />

</Student>
<Student SID=“678123”>

<Name><First>Jane</First><Last>Doe</Last></Name>
<Status>Full-UndG</Status>
<Course Code=“cmput114” Semester=“F1999” />
<Course Code=“cmput304” Semester=“F2000” />

</Student>
</Students>

<!DOCTYPE students [
<!ELEMENT Students (Student*)>
<!ELEMENT Student (Name, Status, Course*)>
<!ELEMENT Name (First, Last)>
<!ELEMENT First (#PCDATA)>

…]>

Root

Students

Student Student
SID

Name

First Last

John Smith

Course Course

123456

Code

cmput101 W1999

Semester

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 38

XPath Expressions
• Absolute path expressions:

/Students/Student/Name
refers to the compositeName

//Name
refers toNamedescendent of the root

/Students//First
refers to descendentFirst of Students

• Relative path expressions:
if current node corresponds to Name,
./First is first name of current
../Coursea course of the current student
../..//First is the first name of siblings,

(// denotes arbitrary sub-path)

• @ is used for attributes:/Students/Student/@SID
• /Students/Student[1]/Course[3]for specific nodes

Root

Students

Student Student
SID

Name

First Last

John Smith

Course Course

123456

Code

cmput101 W1999

Semester

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 39

XPath with Selection Conditions
(Xpath Queries)

• Select all student who took a course in F2000
//Student[Course/@Semester="F2000"]

• Select undergrad students with last name

starting with ‘B’
//Student[Status="UndG" AND

starts-with(.//Last, "B")]

• Select last names of students
who took cmput391

//Student[Course/@Code="cmput391"]/Name/Last

• Select all students who
took cmput391 in F2001

//Student[Course/@Code="cmput391" AND Course/@Semester="F2001"]

Root

Students

Student Student
SID

Name

First Last

John Smith

Course Course

123456

Code

cmput101 W1999

Semester

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 40

XML-QL as defined in Textbook(2nd ed)

• Takes advantage of the structure in XML
• Has aWHEREclause to define selectivity and a

CONSTRUCTclause to define the results. Used also
for restructuring XML documents.

• Find the last name of all book authors published by
McGrawHill: (selections are expressed by placing
text in content of elements.

WHERE
<BOOK>

<NAME><LAST>$1</LAST></NAME>
<PUBLISHER>McGrawHill</PUBLISHER>

</BOOK> in “www.booklist.com/books.xml
CONSTRUCT <RESULT> $1 </RESULT>

<RESULT> Smith</RESULT>
<RESULT>Amberger</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 41

XML-QL (Contd.)
Find the last names of authors of each book:

WHERE <BOOK> $b </BOOK> IN
“www.booklist.com/books.xml”,

<AUTHOR> $n </AUTHOR>
<TITLE> $t </TITLE> in $b

CONSTRUCT
<RESULT>

<TITLE> $t </TITLE>
WHERE <LAST> $l </LAST> IN $n
CONSTRUCT <LAST> $l </LAST>

</RESULT>

<RESULT>
<TITLE>my first book</TITLE>

<LAST>Smith</LAST>
<LAST>Jaup</LAST>

</RESULT>
<RESULT>

<TITLE>DB How to program</TITLE>
<LAST>Amberger</LAST>

</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 42

Comparing XML-QL and Lorel
• Based on paper: “XML Query Languages: Experiences and Examples” by Mary

Fernandez, Jerome Simeon and Philip Wadler
• DTD example:

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

ÿþþýüûúùøúùþúù÷ú
��������þ���ü��ù���ü�

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 43

Simple Selection Example
• Select all titles of books published by Addison-Wesley after 1998.

In XML-QL
CONSTRUCT <bib> {

WHERE

<bib>

<book year=$y>

<title>$t</title>

<publisher>Addison-Wesley</publisher>

</book>

</bib> IN "www.books.com/bib.xml",

$y > 1998

CONSTRUCT <book year=$y><title>$t</title></book>

} </bib>

In Lorel
Selectxml(bib:{

(Selectxml(book:{@year:y, title:t})

From bib.book b, b.title t, b.year y

Where b.publisher = "Addison-Wesley" and y > 1998)})

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 44

Sorting Example
• Select all titles of books published by Addison-Wesley after 1998 ordered

alphabetically.

In XML-QL
CONSTRUCT <bib> {

WHERE

<bib>

<book year=$y>

<title>$t</title>

<publisher>Addison-Wesley</publisher>

</book>

</bib> IN "www.books.com/bib.xml",

$y > 1998

ORDER-BY $t

CONSTRUCT <book year=$y><title>$t</title></book>

} </bib>

In Lorel
Selectxml(bib:{

(Selectxml(book:{@year:y, title:t})

From bib.book b, b.title t, b.year y

Where b.publisher = "Addison-Wesley" and y > 1998

Order by t)})

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 45

Selection Preserving Structure
• Return all titles and their author list.

In XML-QL
CONSTRUCT <results> {

WHERE
<bib><book> <title>$t</title></book>

CONTENT_AS $b

</bib> IN "www.books.com/bib.xml"

CONSTRUCT

<result> <title>$t</title>

{ WHERE <author>$a</author>IN $b

CONSTRUCT <author>$a</author>}

</result>

} </results>

In Lorel

Selectxml(results:

Selectxml(result:{b.title, b.author})

From bib.book b)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 46

Selection Flattening Structure
• Return all title-author pairs.

In XML-QL
CONSTRUCT <results> {

WHERE
<bib> <book>

<title>$t</title><author>$a</author>

</book>

</bib> IN "www.books.com/bib.xml"

CONSTRUCT

<result> <title>$t</title>

<author>$a</author>

</result>

} </results>

In Lorel

Selectxml(results:

(Selectxml(result:{title: t,

author: a})

From bib.book b, b.title t, b.author a))

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 47

Selection Creating New Structure
• Return all titles by author.

• Creates a structure different from original XML document

• Requires a join on author’s name

In Lorel

Selectxml(results:

(Selectxml(result:{author: a,

(Selectxml(title: t)

From bib.book b, b.title t

Where
b.author.first = a.first and

b.author.last = a.last)})

From bib.book.author a))

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 48

Selection Creating New Structure
• Return all titles

by author.

In XML-QL
CONSTRUCT <results> {

WHERE

<bib><book>

<author><last>$l</last><first>$f</first></author>

</book> </bib>IN "www.books.com/bib.xml"

CONSTRUCT

<result> <author><last>$l</last><first>$f</first></author>

{

WHERE

<bib> <book>

<title>$t</title> // join on $l and $f

<author><last>$l</last><first>$f</first></author>

</book> </bib>IN "www.books.com/bib.xml"

CONSTRUCT <title>$t</title>

}

</result>

} </results>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 49

Combining Data Sources

• How do we combine different fragments of documents
from different XML documents?

• Suppose we have another XML document at
www.anotherbook.com/reviews.xml with the following
DTD:

<!ELEMENT reviews (entry*)>
<!ELEMENT entry (title, price, review)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT review (#PCDATA)>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 50

Selection From Multiple Sources
• Return all book tiles with their prices in both sources.

In Lorel

Selectxml(books-with-prices:

(Selectxml(book-with-prices: { title: ta,

price-anotherbook: pa,

price-books: pb }

From bib.book b, b.title tb, b.price pb,

reviews.entry e, e.title ta, e.price pa

Where tb = ta)))

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 51

Selection From Multiple Sources
• Return all book tiles with their prices in both sources.

In XML-QL
CONSTRUCT <books-with-prices> {

WHERE
<bib> <book> <title>$t</title> <price>$pb</price> </book>

</bib> IN "www.books.com/bib.xml“

<reviews> <entry> <title>$t</title> <price>$pa</price> </entry>

</reviews>IN "www.anotherbook.com/reviews.xml"

CONSTRUCT
<book-with-prices> <title>$t</title>

<price-anotherbook>$pa</price-anotherbook>

<price-books>$pb</price-books>

</book-with-prices>

} </books-with-prices>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 52

Example for X-Query
Consider a set of XML documents defined by the following DTD

<!DOCTYPE BOOKLIST> [

<!ELEMENT BOOLIST (BOOK)*>

<!ELEMENT BOOK (AUTHOR+, TITLE, PUBLISHED?)>

<!ELEMENT AUTHOR (FIRSTNAME,LASTNAME)>

<!ELEMENT FIRSTNAME(#PCDATA)>

<!ELEMENT LASTNAME(#PCDATA)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT PUBLISHED (#PCDATA) >

<!ATTLIST BOOK GENRE(Science|Fiction) #REQURIED>

<!ATTLIST BOOK FORMAT (Paperback|Hardcover) “Paperback”>

]>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 53

<?XML VERSION=“1.0” ENCODING=“UTF-8” STANDALONE=“YES”>
<BOOKLIST>

<BOOK GENRE=“Science” FORMAT= “Hardcover”>
<AUTHOR> <FIRSTNAME> Richard</FIRSTNAME>

<LASTNAME>Feynman</LASTNAME>
</AUTHOR>
<TITLE> The Character of Physical Law</TITLE>
<PUBLISHED> 1980</PUBLISHE>

</BOOK>
<BOOK GENRE=“Fiction”>

<AUTHOR> <FIRSTNAME>R.K.</FIRSTNAME>
<LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE> Waiting for the Mahatma</TITLE>
<PUBLISHED> 1981</PUBLISHE>

</BOOK>
<BOOK GENRE=“Fiction”>

<AUTHOR> <FIRSTNAME>R.K.</FIRSTNAME>
<LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE> The English Teacher</TITLE>
<PUBLISHED> 1980</PUBLISHE>

</BOOK>
</BOOKLIST>

Example (Cont.)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 54

XQuery Basics

• General structure:
• [FOR | LET] variable declarations
• WHERE condition
• RETURN document
• variable declaration:

"$" VarName "in" Expression

• Variable binding
– FOR binds a variable to each element satisfying the

expression
– LET binds a variable to the whole collection of

elements that satisfy the expression

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 55

Example – FOR clause
• Assume the previous document is stored at www.outbookstore.com/books.xml

• QUERY: Find the last names of all authors

FOR
$l IN doc(www.ourbookstore.com/books.xml)//AUTHOR/LASTNAME

RETURN
<RESULT> $l </RESULT>

ANSWER

<RESULT><LASTNAME> Feynman</LASTNAME></RESULT>
<RESULT><LASTNAME> Narayan</LASTNAME></RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 56

Example – LET clause
LET

$l IN doc(www.ourbookstore.com/books.xml)//AUTHOR/LASTNAME

RETURN
<RESULT> $l </RESULT>

ANSWER

<RESULT>

<LASTNAME> Feynman</LASTNAME>

<LASTNAME> Narayan</LASTNAME>

</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 57

Example: WHERE clause
FOR

$1 IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK

WHERE $1/PUBLISHED = “1980”

RETURN
<RESULT> $1/AUTHOUR/FIRSTNAME, $1/AUTHOR/LASTNAME
</RESULT>

ANSWER

<RESULT>

<FIRSTNAME> Richard <.FIRSTNAME>

<LASTNAME>Feynman</LASTNAME>

</RESULT>

<RESULT>

<FIRSTNAME> R.K.<.FIRSTNAME>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 58

Example: Nested Queries & Grouping
FOR $l IN DISTINCT

doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK/PUBLISHED

RETURN
<RESULT>

$1,
FOR $a IN DISTINCT doc(www.ourbookstore.com/books.cml)

/BOOKLIST/BOOK[PUBLISHED=$1]/AUTHOUR/LASTNAME

RETURN $a
</RESULT>

ANSWER

<RESULT>

<PUBLISHED> 1980 </PUBLISHED>

<LASTTNAME> Feynman<LASTNAME>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

<RESULT>

<PUBLISHED> 1981<PUBLISHED>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 59

Example: Join & Aggregation
FOR $a IN DISTINCT

doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK/AUTHOR

LET $t IN
doc(www.ourbookstore.com/books.xml)//BOOK/[AUTHOR=$a]/TITLE

RETURN
<RESULT>

$a/LASTNAME, <TotalBooks> count(distinct($t)) </TotalBooks>

</RESULT>
SORT BY (LASTNAME descending)

ANSWER (e.g.)

<RESULT>

<LASTTNAME>Narayan<LASTNAME>

<TotalBooks> 5 </TotalBooks>

</RESULT>

<RESULT>

<LASTNAME>Feynman</LASTNAME>

<TotalBooks> 2 </TotalBooks>

</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 60

How to store and retrieve XML Data?

• Storing XML data in the file system

• Storing XML in BLOB/CLOB

• Native XML databases

• XML enabled databases

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 61

Native XML databases

• Database designed especially to store XML
documents
– data model is based on XML
– XML query languages

• Why ?
– large collections of semi-structured data
– retrieval speed

• Why not?
– development cost
– market
– not all data are XML data

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 62

XML Enabled Databases

• Store and query XML data in a relational database
– convert XML data into a set of tuples and store them

into tables

– a query to XML will be converted to SQL queries to the
database

• Problems with this approach:
– the translation process requires a schema for the data

– the query evaluation is very inefficient

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 63

Open Research Questions

• Query Optimization

• Security and Access Control for XML documents

• Indexing XML Data
– Value Index (e.g. B+-tree)

– Structure Index (Path indexing)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 64

eXtensible Markup Language
• Semi-Structured Data

• Data Model for XML

• Introduction to XML

• Syntax and Document Type Definition

• Querying XML Documents

• XML and Security Access

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 65

Access Control and XML

Milan Kundera

Identity1998

BOOK

AUTHORTITLE PUBLISHEDAUTHOR FORMAT
TITLE

RichardFeynman

The
character
of phy-
sical law

Hard-
cover

Authentication Access Control

Who can get in? Who can access what
And to do what?

Some people may
see or modify some
nodes or branches of
the XML document
while other don’t.

Different “views”
on the XML
document

User

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 66

Subjects and Objects

• State authorizations on elements/attributes or sub-trees.

• Subjects and objects are defined against these
authorizations.

• Subject is a pair <user, address> where the user is
either a user ID or a group ID, address is an IP address
or a symbolic Internet address.

• Objects are XML elements defined using XPath.

• A hierarchy on the addresses can be created using wild
cards.

• Authorization are read/write/update, + or -

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 67

Access Control and Views
• When a user requests access to an XML

document the XML tree is labelled with the
authorizations allowed to the user accessing from
the given host, and only the trees with label “+”
are seenÿ view

• Example of authorizations:

<<Admin, *.lab.org>, LabReports.xml:project[./@type=“internal”],read,+>

<<Public,*>,LabReports.xml:/laboratory//reviews[.@category=“private”],read,->

<<Osmar,*.ualberta.ca>,LabReports.xml:/Projects,read,+>

