Database Management	Course Content
Systems	 Introduction Database Design Theory Query Processing and Optimisation
Winter 20023 CMPUT 391: XML and Databases	 Concurrency Control Data Base Recovery and Security Object-Oriented Databases
Dr. Osmar R. Zaïane	Inverted Index for IR Spatial Data Management XML and Databases
University of Alberta Chapter 27 of Textbook	 Data Warehousing Data Mining Parallel and Distributed Databases
© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta	© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 2

Objectives of Lecture 8 XML and Databases

- Discuss semi-structured data and collections (databases) of semi-structured data.
- Introduce the Extensible Markup Language XML and discuss its use.
- Introduce query languages for querying and manipulating XML documents and XML document collections.

eXtensible Markup Language

- Semi-Structured Data
- Data Model for XML
- Introduction to XML
- Syntax and Document Type Definition
- Querying XML Documents
- XML and Security Access

The Structure of Data

- In the real world data can be of any type and not necessarily following any organized format or sequence.
- Such data is said to be unstructured. Unstructured data is chaotic because it doesn't follow any rule and is not predictable.
- Text data is usually unstructured. Many data on the Internet is unstructured (video streams, sound streams, images, etc).

University of Alberta

Structured Data

- For applications manipulating data, the structure of data is very important to insure efficiency and effectiveness.
- The data is structured when:
 - Data is organized in semantic chunks (entities).
 - Similar entities are grouped together (relations or classes).
 - Entities in a same group have the same descriptions (attributes).
 - Entity descriptions for all entities in a group have the same defined format, a predefined length, are all present, and follow the same order (schema).
- This structure is sometimes too rigid for some applications.
- What is the alternative? Many data is neither completely unstructured nor completely structured.

© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems

University of Alberta

Semi-Structured Data

- Structured data is rigidly organized & well defined \rightarrow predictable
- Unstructured data is disordered and unruly \rightarrow unpredictable
- Semi-structured data is organized enough to be predictable
 - Data is organized in semantic entities
 - Similar entities are grouped together

But

- Entities in the same group may not have the same attributes
- The order of the attributes is not necessarily important
- The presence of some attributes may not always be required
- The size of same attributes of entities in a same group may not be the same
- The type of the same attributes of entities in a same group may not be of the same type.
- An HTML document is an example of semi-structured data

eXtensible Markup Language

- Semi-Structured Data
- Data Model for XML
- Introduction to XML
- Syntax and Document Type Definition
- Querying XML Documents
- XML and Security Access

Data Model for Semi-Structured Data

- Semi-structured data doesn't have a schema since some data might be implicit, some might be hidden, unknown, or simply ignored (not entered).
- How do we query the data without knowledge of the schema?
- There are many data models proposed to represent semi-structured data. Most of them use the notion of labeled graphs.

Labeled Graphs

- Nodes in the graph correspond to compound objects or atomic values.
- Edges in the graph correspond to attributes
- The graph is self describing (no need for a schema)
- Object Exchange Model (OEM): each object is described by a triplet <label, type, value>
- Complex objects are decomposed hierarchically into smaller objects

© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 9	© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 10
Example: Booklist Data in OEM BOOK AUTHOR TITLE RUBLISHED AUTHOR TITLE Identity 1998 Milan Kundera Richard Feynman	 eXtensible Markup Language Semi-Structured Data Data Model for XML Introduction to XML Syntax and Document Type Definition Querying XML Documents XML and Security Access
© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 💓 11	© Dr. Osmar R. Zaĭane, 2001-2003 Database Management Systems University of Alberta 💽 12

Introduction to XML

- XML the eXtensible Markup Language is a standard of the World-Wide Web Consortium
- The official current version is 1.0 and was originally recommended in 1998
- The official specification from the W3C are: <u>http://www.w3.org/TR/1998/REC-xml-19980210</u>
- More info can be found at: <u>http://www.w3.org/XML/</u>
- Many working groups and advisory boards are currently enhancing XML

Introduction to XML (con't)

- XML: eXtensible Markup Language
- Suitable for semistructured data
 - Easy to describe object-like data
 - Selfdescribing
 - Doesn't require a schema (but can be provided optionally)
- All major database products have been extended to store and construct XML documents

© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 13	© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 14
What is Special with XML	<pre>example attributes </pre>
 It is a language to markup data There are no predefined tags like in HTML Extensible → tags can be defined and extended based on applications and needs Elements / tags Attributes Example: <book page="453"></book> 	<pre><personlist date="2002-02-02" type="Student"></personlist></pre>
© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 💓 15	© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta

eXtensible Markup Language

- Semi-Structured Data
- Data Model for XML
- Introduction to XML
- Syntax and Document Type Definition
- Querying XML Documents
- XML and Security Access

Introduction to DTDs

- DTD stands for Document Type Definition
- A DTD is a set of rules that specify how to use an XML markup. It contains specifications for each element, the attributes of the elements, and the values the attributes can take.
- A DTD also specifies how elements are contained in each other
- A DTD ensures that XML documents created by different programs are consistent

© Dr. Osmar R. Zalane, 2001-2003 Database Management Systems University of Alberta 21	© Dr. Osmar R. Zaĭane, 2001-2003 Database Management Systems University of Alberta 22
rml version = "1.0"? <letter> <urgency level="1"> <contact type="from"> <name>John Doe</name> <address>123 Main St.</address> <city>Anytown</city> <province>Somewhere</province> <postalcode>A1B 2C3</postalcode> </contact> <contact type="to"> <name>Joe Schmoe</name> <address>123 Any Ave.</address> <city>Othertown</city> <province>Somewhere</province> <postalcode>Z9Y 8X7</postalcode> </contact> <province>Somewhere</province> <province>Contact> <province>Contact> <province>Contact> <province>Contact> <province>Contact> <pragraph>Dear Sir,</pragraph> <pragraph>It is our privilege to inform you about our new database managed with XML. This new system will allow you to reduce the load of your inventory list server by having the client machine perform the work of sorting and filtering the data.</pragraph> <pragraph>Sincerely, Mr. Doe</pragraph> Sincerely, Mr. Doe</province></province></province></province></province></urgency></letter>	<pre>Support of the sector of</pre>
© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 💓 23	© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 💓 24

DTD Header

DTD Rules

<!ELEMENT elementName (components or content type)>

Examples: <!ELEMENT name (#PCDATA)> name is an element/tag for text data

> <!ELEMENT Urgency (EMPTY)> Urgency has no content

<!ELEMENT letter (Urgency, contact+, paragraph+)> letter is an element that contains and Urgency element followed by one or more contact elements and one or more paragraph elements

© Dr. Osmar R. Zaïane, 2001-2003	Database Management Systems	University of Alberta 💓 25	© Dr. Osmar R. Zaïane, 2001-2003	Database Management Systems	University of Alberta 🛞 26

Multiple Elements

<!ELEMENT letter (Urgency, contact+, paragraph+)> <!ELEMENT contact (name, address, city, province, postalcode, phone?, email?)>

Are called multiple elements (lists of elements). They require the rule to specify their sequence and the number of times they can occur.

- Any element may occur
- , Occur in specified sequence
- ? Optional, may occur 0 or once
- + Occurs ate least once (1 or many)
- * Occurs many times (0 or many)

Attributes in DTD

<!ATTLIST elementName attributeName Type Specification>

- elementName and attributeName associate the attribute with the element
- The Type specifies if the attribute is free text (CDATA) or a list of predefined values (value1 | value2 | value3)
- Example:
- <!ATTLIST Urgency level CDATA #IMPLIED>
- <!ATTLIST contact type CDATA #REQUIRED>
- <!ATTLIST P align (center | right | left) #IMPLIED>
- Specification could be:
 - #REQUIRED • #IMPLIED
- attribute must be specified attributes can be unspecified
 - #FIXED
- attribute is preset to a specific value
- "defaultvalue" default value for the attribute

Calling an External DTD

- A DTD can be referenced from XML documents
 - <!DOCTYPE letter SYSTEM "letter.dtd">
 - Any element, attribute not explicitly defined in the DTD generates an error in the XML document.
 - An XML document that conforms to a DTD is called valid and wellformed.
 - There is a need to parse XML documents and validate them vis-à-vis a DTD.
- The keyword **SYSTEM** indicates that the DTD is intended for private use. **PUBLIC** references a public DTD.
- <!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN" "http://my.netscape.com/publish/formats/rss-0.91.dtd">

Rich Site Summary (RSS) is a lightweight XML format designed for sharing headlines and other Web content. Originally developed by Netscape to fill channels for Netcenter.

© Dr. Osmar R. Zaïane, 2001-2003

Database Management Systems

Portability of XML

- Adherence to DTDs ensure consistency between XML documents
- Defining a DTD is equivalent to creating a customized markup language.
- de de document DTD
- There are many domain specific markup languages based on XML: MML (Mathematical Markup Language), CML (Chemical Markup Language),...many other XML-based languages
- This is one of the main reasons why XML is so successful for data exchange between applications

© Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems

University of Alberta 🚑 3

Beyond DTDs: XML Schema

- DTD are limited
 - very limited data types (just strings)
 - can't express strong consistency constraints
 - can't express unordered contents conveniently
 - all element names are global
 - can't have one Name type for people and another for companies:
 - <!ELEMENT Name (Last, First)>
 - <!ELEMENT Name (#PCDATA)>
 - both can't be in the same DTD
- XML Schema solves some of the problems with DTDs, but is much more complex than DTDs

University of Alberta

eXtensible Markup Language

- Semi-Structured Data
- Data Model for XML
- Introduction to XML

© Dr. Osmar R. Zaïane, 2001-2003

• Syntax and Document Type Definition

Database Management Systems

- Querying XML Documents
- XML and Security Access

Why do we need to Query XML?

- Methods exist for efficient storage and retrieval of tree-structured objects, including XML documents
- Methods exist for mapping XML elements into relational or Object-Oriented databases.
- Methods exist for indexing semi-structured data.
- Many DBMS vendors are already providing tools for generating XML and even "importing" XML.
- Very large collections of XML documents are prominent and inevitable.

Querying XML Data

- Goal: High-level, declarative language that allows manipulation of XML documents.
- Manipulation means the retrieval of documents, subdocuments and elements and attribute values, as well as the generation of new XML documents.
- There are many languages proposed by researchers. One standard emerged recently (X-Query adopted by W3C)
- Lorel (1997), XML-QL (1999), XQL (1999), Quilt(2000), XQuery (2001), ...
- Also XPath (lightweight XML query language) and XSLT (transformation language for XML)

 © Dr. Osmar R. Zaïane, 2001-2003
 Database Management Systems
 University of Alberta
 33

 © Dr. Osmar R. Zaïane, 2001-2003
 Database Management Systems
 University of Alberta
 34

Comparison of Languages

Some languages follow a database perspective other a document processing perspective.

In most XML query languages

- Typically, queries consist of 3 parts: a pattern clause, a filter clause and constructor clause. (also sorting, grouping...)
- Use of external functions such as aggregation functions, string related functions, etc.
- Use of constructs to impose nesting and order
- Use of join operator to combine data from different portions of documents.
- Use of tag variables or path expressions
- Use of constructs to test absence of data

Not all are available with all languages

University of Alberta 35

XPath: XML Pointer Language

- http://www.w3.org/TR/xpath OT http://www.w3.org/TR/1999/REC-xpath-19991116
- A core query language used in X-Query and many other XML standards
- Simple selection operator for paths from XML-tree
- XML documents are modeled as trees
- In XPath document tree nodes are either elements, attributes, or text values (also comments). There is also an extra root.
- Xpath expressions take a document tree and return a set of nodes in the tree.

Selection Preserving Structure

• Return all titles and their author list.

In XML-QL CONSTRUCT <results> { WHERE</results>	In Lorel Select xm Select xr From bi	l(results: nl(result:{b.title, b.author}) b.book b)	
 <bib><book> <title>\$t</title>\$t\$t\$t\$t</book></bib> IN "www.books.com CONSTRUCT <result> <title>\$t</title>\$t</result>	e> n/bib.xml"		
{ WHERE <author>\$aCONSTRUCT <author> } </author></author>	author> IN \$b >\$a}		
© Dr. Osmar R. Zaïane, 2001-2003 D;	atabase Management S	ystems University of Alberta	<u>(e</u>

Selection Flattening Structure

• Return all title-author pairs.

	In Lorel			
	Select xml(results:			
In XML-QL	(Selec	t xml(result:{title: t,		
CONSTRUCT <results> { WHERE</results>		author: a})		
 <bib> <book></book></bib>	Fron	n bib.book b, b.title t, b.author a))		
<title>\$t</title> <author>\$a</author>	a			
IN "www.books.com	/bib.xml"			
CONSTRUCT				
<result> <title>\$t</title></result>				
<author>\$a</author>	>			
}				
© Dr. Osmar R. Zaïane, 2001-2003 Da	atabase Managem	ent Systems University of Alberta		

Selection Creating New Structure

• Return all titles by author.

© Dr. Osmar R

- Creates a structure different from original XML document
- Requires a join on author's name

	In Lorel	
	Select xml(results:	
	(Select xml(result:{author: a,	
	(Select xml(title: t)	
	From bib.book b, b.title t	
	Where	
	b.author.first = a.first and	
	b.author.last = a.last)	
	From bib.book.author a))	
. Za	Tane, 2001-2003 Database Management Systems	University

Selection Creating New Structure

• Return all titles by author.

In XML-QL

CONSTRUCT <results> { WHERE <bib><book> <author><last>\$l</last><first>\$f</first></author> </book> </bib> IN "www.books.com/bib.xml" CONSTRUCT <result> <author><last>\$l</last><first>\$f</first></author> WHERE <bib> <book> <title>\$t</title> // join on \$l and \$f <author><last>\$l</last><first>\$f</first></author> </book> </bib> IN "www.books.com/bib.xml" CONSTRUCT <title>\$t</title> 3 </result> </results>

© Dr. Osmar R. Zaïane, 2001-2003

of Alberta

Database Management Systems

University of Alberta

Combining Data Sources

- How do we combine different fragments of documents from different XML documents?
- Suppose we have another XML document at www.anotherbook.com/reviews.xml with the following DTD:

<!ELEMENT reviews (entry*)>

<!ELEMENT entry (title, price, review)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT review (#PCDATA)>

Selection From Multiple Sources	I
• Return all book tiles with their prices in both sources.	Consider a set
<u>In XML-QL</u> CONSTRUCT <books-with-prices> {</books-with-prices>	DOCTY</td

WHERE

<bib> <book> <title>\$t</title> <price>\$pb</price> </book>

</bib> IN "www.books.com/bib.xml"

<reviews> <entry> <title>\$t</title> <price>\$pa</price> </entry>

 $<\!\!/reviews\!\!>\!I\!N"www.anotherbook.com/reviews.xml"$

CONSTRUCT

<book-with-prices> <title>\$t</title>

<price-anotherbook>\$pa</price-anotherbook>

<price-books>\$pb</price-books>

</book-with-prices>

</books-with-prices>

© Dr. Osmar R. Zaïane, 2001-2003

Cond.

Selection From Multiple Sources

• Return all book tiles with their prices in both sources.

<u>In Lorel</u>

Osmar R. Zaïane, 2001-2003

University of Alberta

Example for X-Query

Database Management System

Consider a set of XML documents defined by the following DTD

<!DOCTYPE BOOKLIST> [<!ELEMENT BOOLIST (BOOK)*> <!ELEMENT BOOK (AUTHOR+, TITLE, PUBLISHED?)> <!ELEMENT AUTHOR (FIRSTNAME,LASTNAME)> <!ELEMENT FIRSTNAME(#PCDATA)> <!ELEMENT FIRSTNAME(#PCDATA)> <!ELEMENT TITLE (#PCDATA)> <!ELEMENT TITLE (#PCDATA)> <!ELEMENT PUBLISHED (#PCDATA) > <!ATTLIST BOOK GENRE(Science|Fiction) #REQURIED> <!ATTLIST BOOK FORMAT (Paperback|Hardcover) "Paperback">

Example: Nested Queries & Grouping Example: WHERE clause FOR \$1 IN DISTINCT FOR doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK/PUBLISHED \$1 IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK RETURN WHERE \$1/PUBLISHED = "1980" <RESULT> RETURN \$1, <RESULT> \$1/AUTHOUR/FIRSTNAME, \$1/AUTHOR/LASTNAME FOR \$a IN DISTINCT doc(www.ourbookstore.com/books.cml) </RESULT> /BOOKLIST/BOOK[PUBLISHED=\$1]/AUTHOUR/LASTNAME <RESULT> **RETURN \$a** <RESULT> <PUBLISHED> 1980 </PUBLISHED> </RESULT> <FIRSTNAME> Richard <.FIRSTNAME> <LASTTNAME> Feynman<LASTNAME> <LASTNAME>Feynman</LASTNAME> <LASTNAME>Narayan</LASTNAME> ANSWER ANSWER </RESULT> </RESULT> <RESULT> <RESULT> <FIRSTNAME> R.K.<.FIRSTNAME> <PUBLISHED> 1981<PUBLISHED> <LASTNAME>Narayan</LASTNAME> <LASTNAME>Narayan</LASTNAME> </RESULT> </RESULT> © Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 57 © Dr. Osmar R. Zaïane, 2001-2003 Database Management Systems University of Alberta 58 Example: Join & Aggregation FOR \$a IN DISTINCT How to store and retrieve XML Data? doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK/AUTHOR LET St IN doc(www.ourbookstore.com/books.xml)//BOOK/[AUTHOR=\$a]/TITLE • Storing XML data in the file system RETURN <RESULT> • Storing XML in BLOB/CLOB \$a/LASTNAME, <TotalBooks> count(distinct(\$t)) </TotalBooks> </RESULT> • Native XML databases <RESULT> **SORT BY** (LASTNAME descending) <LASTTNAME>Narayan<LASTNAME> • XML enabled databases <TotalBooks> 5 </TotalBooks> </RESULT> ANSWER (e.g.) <RESULT> <LASTNAME>Feynman</LASTNAME> <TotalBooks> 2 </TotalBooks> </RESULT>

© Dr. Osmar R. Zaïane, 2001-2003

Database Management Systems

University of Alberta

© Dr. Osmar R. Zaïane, 2001-2003

Database Management Systems

University of Alberta

59

Native XML databases

- Database designed especially to store XML documents
 - data model is based on XML
 - XML query languages
- Why ?
 - large collections of semi-structured data

Database Management Systems

- retrieval speed
- Why not?
 - development cost
 - market

© Dr. Osmar R. Zaïane, 2001-2003

– not all data are XML data

```
• Store and query XML data in a relational database
```

convert XML data into a set of tuples and store them into tables

XML Enabled Databases

- a query to XML will be converted to SQL queries to the database
- Problems with this approach:
 - the translation process requires a schema for the data
 - the query evaluation is very inefficient

© Dr. Osmar R. Zaïane, 2001-2003

Database Management Systems

University of Alberta

Open Research Questions

- Query Optimization
- Security and Access Control for XML documents
- Indexing XML Data
 - Value Index (e.g. B⁺-tree)
 - Structure Index (Path indexing)

eXtensible Markup Language

- Semi-Structured Data
- Data Model for XML
- Introduction to XML
- Syntax and Document Type Definition
- Querying XML Documents
- XML and Security Access

University of Alberta

Access Control and XML

Subjects and Objects

- State authorizations on elements/attributes or sub-trees.
- Subjects and objects are defined against these authorizations.
- Subject is a pair <user, address> where the user is either a user ID or a group ID, address is an IP address or a symbolic Internet address.
- Objects are XML elements defined using XPath.
- A hierarchy on the addresses can be created using wild cards.
- Authorization are read/write/update, + or -

© Dr. Osmar R. Zaïane, 2001-2003	Database Management Systems	University of Alberta 65	© Dr. Osmar R. Zaïane, 2001-2003	Database Management Systems	University of Alberta 66

Access Control and Views

- When a user requests access to an XML document the XML tree is labelled with the authorizations allowed to the user accessing from the given host, and only the trees with label "+" are seen → view
- Example of authorizations:

<<Admin, *.lab.org>, LabReports.xml:project[./@type="internal"],read,+> <<Public,*>,LabReports.xml:/laboratory//reviews[.@category="private"],read,-> <<Osmar,*.ualberta.ca>,LabReports.xml:/Projects,read,+>

