
Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 1

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2003

CMPUT 391: Revision

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 22

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• Spatial Data Management
• XML and Databases
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 3

The K-MeansClustering Method
• Givenk, thek-meansalgorithm is implemented in 4 steps:

1. Partition objects intok nonempty subsets

2. Compute seed points as the centroids of the clusters of the
current partition. The centroid is the center (mean point) of
the cluster.

3. Assign each object to the cluster with the nearest seed point.

4. Go back to Step 2, stop when no more new assignment.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 4

Example for Algorithm (ID3)
• All attributes are categorical

• Create a node N;
– if samples are all of the same class C, then return N as a leaf node labeled

with C.

– if attribute-list is empty then return N as a leaf node labeled with the most
common class.

• Select split-attribute with highest information gain
– label N with the split-attribute

– for each value Ai of split-attribute, grow a branch from Node N

– let Si be the branch in which all tuples have the value Ai for split- attribute
• if Si is empty then attach a leaf labeled with the most common class.

• Else recursively run the algorithm at Node Si

• Until all branches reach leaf nodes

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 5

The Apriori Algorithm
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated fromLk;
for each transactiont in databasedo

increment the count of all candidates in
Ck+1 that are contained int

Lk+1 = candidates inCk+1 with min_support
end

return ∪k Lk;

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 6

The KDD Process

Database
s

Data
Cleaning

Data Integration

Data Warehouse

Task-relevant
Data

Selection and
Transformation

Pattern
Evaluation

– Data mining: the core of
knowledge discovery
process.

KDD is an
Iterative Process

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 77

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• Spatial Data Management
• XML and Databases
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 8

Red Deer

Q1 Q2 Q4

Compact

Family

Minivan.

Mid-size

Time (Quarters)

Location
(city, AB)

Q3
Edmonton

Calgary
Lethbridge

Category Red Deer

Jul Sep

Compact

Family

Minivan.

Mid-size

Time (Months, Q3)

Location
(city, AB)

Category

Aug
Edmonton

Calgary
Lethbridge

Drill down on Q3

Roll-up on Location

Prairies

Q1 Q2 Q4

Compact

Family

Minivan.

Mid-size

Time (Quarters)

Location
(province,
Canada) Category

Q3
Maritimes

Quebec
Ontario

Western Pr

Data Warehouse OLAP Example

Red Deer

Q1 Q2 Q4

Mid-size

Time (Quarters)

Location
(city, AB)

Q3
Edmonton

Calgary
Lethbridge

Category

Slice on Category=mid-size

R
ed

D
eer

Q1
Q2

Q4
Mid-sizeTime (Quarters)

Location
(city, AB)

Q3

Edm
onton

C
algary

Lethbridge

Category

Pivot

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 9

Data Warehouses Design (con’t)

• Modeling data warehouses: dimensions & measurements

Star schema: A single object (fact table) in the middle connected

to a number of objects (dimension tables)

Each dimension is represented by one table
ÿUn-normalized (introduces redundancy).

Ex: (Edmonton, Alberta, Canada, North America)
(Calgary, Alberta, Canada, North America)

Normalize dimension tablesÿ Snowflake schema

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 10

Aggregation in Data Warehouses

Drama
Comedy
Horror

Category

Sum

Group By

Sum

Aggregate

Drama
Comedy
Horror

Q4Q1

By Time

By Category

Sum

Cross Tab
Q3Q2

Q1Q2
Red Deer

Edmonton

Drama
Comedy
Horror

By Category

By Time & Category

By Time & City

By Category & City

By Time
By City

Sum

The Data Cube and
The Sub-Space Aggregates

Lethbridge
Calgary

Q3Q4

Multidimensional view of data in the warehouse:
Stress on aggregation of measures by one or more
dimensions

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 11

Issues

• Scalability

• Sparseness

• Curse of dimensionality

• Materialization of the multidimensional
data cube (total, virtual, partial)

• Efficient computation of aggregations

• Indexing

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 1212

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• Spatial Data Management
• XML and Databases
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 13

Semi-Structured Data
• Structured data is rigidly organized & well definedÿ predictable
• Unstructured data is disordered and unrulyÿunpredictable
• Semi-structured data is organized enough to be predictable

– Data is organized in semantic entities
– Similar entities are grouped together
But
– Entities in the same group may not have the same attributes
– The order of the attributes is not necessarily important
– The presence of some attributes may not always be required
– The size of same attributes of entities in a same group may not be

the same
– The type of the same attributes of entities in a same group may

not be of the same type.
• An HTML document is an example of semi-structured data

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 14

Example: Booklist Data in OEM

Milan Kundera

Identity 1998

BOOK

AUTHOR TITLE PUBLISHED AUTHOR FORMAT
TITLE

Richard Feynman

The
character
of phy-
sical law

Hard-
cover

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 15

What is Special with XML

• It is a language to markup data

• There are no predefined tags like in HTML

• Extensibleÿ tags can be defined and
extended based on applications and needs
– Elements / tags

– Attributes

– Example: <BOOK page="453">…</BOOK>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 16

<?xml version = "1.0"?>
<LETTER> <Urgency level=“1”/>
<contact type= "from">

<name>John Doe</name>
<address>123 Main St.</address>

<city>Anytown</city>
<province>Somewhere</province>
<postalcode>A1B 2C3</postalcode>

</contact>
<contact type= "to">

<name>Joe Schmoe</name>
<address>123 Any Ave.</address>
<city>Othertown</city>

<province>Otherplace</province>
<postalcode>Z9Y 8X7</postalcode>

</contact>
<paragraph>Dear Sir,</paragraph>
<paragraph>It is our privilege to inform you about our new database managed with XML.
This new system will allow you to reduce the load of your inventory list server by having the
client machine perform the work of sorting and filtering the data.</paragraph>
<paragraph>Sincerely, Mr. Doe</paragraph>
</LETTER>

Example1: Business Letter

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 17

DTD Example for business letter
<?xml version=“1.0” encoding=“UTF-8” ?>
<!DOCTYPE LETTER [
<!ELEMENT LETTER (Urgency, contact+, paragraph+)>
<!ELEMENT Urgency (EMPTY)>
<!ATTLIST Urgency level CDATA #IMPLIED>
<!ELEMENT contact (name, address, city, province, postalcode,
phone?, email?)>
<!ATTLIST contact type CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
…
]>

Empty means no end tag

#PCDATA is parsed
character data, it means
that the element
contains text

CDATA means string
#IMPLIED means that
the attribute value is
unspecified.

+ means one or more

? means optional

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 18

Querying XML Data
• Goal: High-level, declarative language that allows

manipulation of XML documents.

• Manipulation means the retrieval of documents, sub-
documents and elements and attribute values, as well as
the generation of new XML documents.

• There are many languages proposed by researchers.
One standard emerged recently(X-Query adopted by W3C)

• Lorel (1997), XML-QL (1999), XQL (1999), Quilt(2000),
XQuery(2001), …

• Also XPath (lightweight XML query language) and
XSLT (transformation language for XML)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 19

XPath with Selection Conditions
(Xpath Queries)

• Select all student who took a course in F2000
//Student[Course/@Semester="F2000"]

• Select undergrad students with last name

starting with ‘B’
//Student[Status="UndG" AND

starts-with(.//Last, "B")]

• Select last names of students
who took cmput391

//Student[Course/@Code="cmput391"]/Name/Last

• Select all students who
took cmput391 in F2001

//Student[Course/@Code="cmput391" AND Course/@Semester="F2001"]

Root

Students

Student Student
SID

Name

First Last

John Smith

Course Course

123456

Code

cmput101 W1999

Semester

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 20

XQuery Basics

• General structure:
• [FOR | LET] variable declarations
• WHERE condition
• RETURN document
• variable declaration:

"$" VarName "in" Expression

• Variable binding
– FOR binds a variable to each element satisfying the

expression
– LET binds a variable to the whole collection of

elements that satisfy the expression

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 21

Example – FOR clause
• Assume the previous document is stored at www.outbookstore.com/books.xml

• QUERY: Find the last names of all authors

FOR
$l IN doc(www.ourbookstore.com/books.xml)//AUTHOR/LASTNAME

RETURN
<RESULT> $l </RESULT>

ANSWER

<RESULT><LASTNAME> Feynman</LASTNAME></RESULT>
<RESULT><LASTNAME> Narayan</LASTNAME></RESULT>
<RESULT><LASTNAME> Narayan</LASTNAME></RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 22

Example – LET clause
LET

$l IN doc(www.ourbookstore.com/books.xml)//AUTHOR/LASTNAME

RETURN
<RESULT> $l </RESULT>

ANSWER

<RESULT>

<LASTNAME> Feynman</LASTNAME>

<LASTNAME> Narayan</LASTNAME>

<LASTNAME> Narayan</LASTNAME>

</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 23

Example: WHERE clause
FOR

$1 IN doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK

WHERE $1/PUBLISHED = “1980”

RETURN
<RESULT> $1/AUTHOUR/FIRSTNAME, $1/AUTHOR/LASTNAME
</RESULT>

ANSWER

<RESULT>

<FIRSTNAME> Richard <.FIRSTNAME>

<LASTNAME>Feynman</LASTNAME>

</RESULT>

<RESULT>

<FIRSTNAME> R.K.<.FIRSTNAME>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 24

Example: Nested Queries & Grouping
FOR $l IN DISTINCT

doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK/PUBLISHED

RETURN
<RESULT>

$1,
FOR $a IN DISTINCT doc(www.ourbookstore.com/books.cml)

/BOOKLIST/BOOK[PUBLISHED=$1]/AUTHOUR/LASTNAME

RETURN $a
</RESULT>

ANSWER

<RESULT>

<PUBLISHED> 1980 </PUBLISHED>

<LASTTNAME> Feynman<LASTNAME>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

<RESULT>

<PUBLISHED> 1981<PUBLISHED>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 25

Example: Join & Aggregation
FOR $a IN DISTINCT

doc(www.ourbookstore.com/books.xml)/BOOKLIST/BOOK/AUTHOR

LET $t IN
doc(www.ourbookstore.com/books.xml)//BOOK/[AUTHOR=$a]/TITLE

RETURN
<RESULT>

$a/LASTNAME, <TotalBooks> count(distinct($t)) </TotalBooks>

</RESULT>
SORT BY (LASTNAME descending)

ANSWER (e.g.)

<RESULT>

<LASTTNAME>Narayan<LASTNAME>

<TotalBooks> 5 </TotalBooks>

</RESULT>

<RESULT>

<LASTNAME>Feynman</LASTNAME>

<TotalBooks> 2 </TotalBooks>

</RESULT>

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 2626

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• Spatial Data Management
• XML and Databases
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 27

Basic Spatial Queries

• Containment Query: Given a spatial
object R, find all objects that completely
contain R. If R is a Point:Point Query

• Region Query: Given a region R
(polygon or circle), find all spatial
objects that intersect with R. If R is a
rectangle:Window Query

• Enclosure Query: Given a polygon
region R, find all objects that are
completely contained in R

• K-Nearest Neighbor Query: Given an
object P, find the k objects that are
closest to P (typically for points)

Point Query

P

Region Query

R

Window Query

R

Enclosure Query

R

Containment Query

R

2-nn Query

P

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 28

Space Filling Curves
Lexicographic Order

Z-Order

1 7654320

9 1514131211108

17 23222120191816

25 31302928272624

33 39383736353432

41 47464544434240

49 55545352515048

57 63626160595856

2 424034321080

3 434135331191

6 4644383614124

7 4745393715135

18 58565048262416

19 59575149272517

22 62605452302820

23 63615553312921

Hilbert-Curve

1 2120191615140

2 2223181712133

7 252429301184

6 262728311095

57 37363532535458

56 38393433525559

61 41404546515060

62 42434447484963

• Z-Order preserves spatial proximity relatively good
• Z-Order is easy to compute

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 29

Z-Order – Z-Values
• Coding of Cells

– Partition the data space
recursively into two halves

– Alternate X and Y dimension

– Left/bottom� 0

– Right/top� 1

–Z-Value: (c, l)
c = decimal value of the bit string
l = level (number of bits)

if all cells are on the same level,
thenl can be omitted

0 1

0

1
0

1

1

0

0 1
0 1

10 � 2

010000 � 16

0111 � 7

X

Y

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 30

Z-Order – Mapping to a B+-Tree

• Linear Order for Z-values to store them in a B+-tree:

Let (c1, l1) and (c2, l2) be two Z-Values and letl = min{ l1, l2}.

The order relation≤Z (that defines a linear order on Z-values)
is then defined by

(c1, l1) ≤Z (c2, l2) iff (c1 div 2) ≤ (c2 div 2)

Examples:

(1,2)≤Z (3,2),

(3,4)≤Z (3,2),

(1,2)≤Z (10,4)

(l1- l) (l2- l)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 31

Mapping to a B+-Tree - Example

(0,2)
(2,3)

(7,4)

(6,3)
(7,3)

(7,4)
(4,3)

(21,5)
(11,4)

(6,3)

(6,3)

(20,5)(6,4)

(0,2) ≤ (7,4) ≤ (7,4) ≤ (6,3)

(2,3) ≤ (7,4) ≤ (4,3) ≤ (6,3)

(6,4) ≤ (7,4) ≤ (20,5) ≤ (6,3)

. . .

Exact representations stored in a different location

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 32

Mapping to a B+-Tree – Window Query

• Window Query� Range Query in the B+-tree
– find all entries (Z-Values) in the range [l, u] where

• l = smallest Z-Value of the window (bottom left corner)
• u = largest Z-Value of the window (top right corner)
• l andu are computed with respect to the maximum

resolution/length of the Z-values in the tree (here: 6)

Window: Min = (0,6), Max = (10,6)

(0,2)
(2,3)

(7,4)

(6,3)(7,4)
(4,3)

(21,5)
(11,4)

(6,3)

(6,3)

(20,5)(6,4)
(7,3)

Result: (0,2)

(10,6) ≤ (2,3)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 33

The R-Tree – Properties
• Balanced Tree designed to organize rectangles [Gut 84].

• Each page contains betweenm andM entries.

• Data page entries are of the form (MBR, PointerToExactRepr).
– MBR is a minimum bounding rectangle of a spatial object, which

PointerToExactRepr is pointing to

• Directory page entries are of the form (MBR, PointerToSubtree).
– MBR is the minimum bounding rectangle of all entries in the subtree, which

PointerToSubtreeis pointing to.

• Rectangles can overlap

• The heighth of an R-Tree
for N spatial objects:

Directory

Data

Level 1

Directory
Level 2

Pages

. . .
Exact
Representations

ÿ � 1log +≤ Nh m

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 34

The R-Tree – Queries

A5A1A4A3A6A2

RST

Point Query

X

Y

A2

A3

A4A5

A6

A1

R S

T Answer Set:

Paths that the query has to follow

[]

A5A1A4A3A6A2

RST
Window Query

X

Y

A2

A3

A4A5

A6

A1

R
S

T Answer Set:
[A2, A3]

.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 35

R-Tree Construction – Optimization Goals
• Overlap between the MBRs

� spatial queries have to follow several paths
� try to minimize overlap

• Empty space in MBR
� spatial queries may have to follow irrelevant paths
� try to minimize area and empty space in MBRs

X

Y

A3

A4A5

A1

Start: empty data page (= root)

Insert: A5, A1, A3, A4 �

M = 3, m = 2

A5, A1, A3, A4
* (overflow)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 36

R-Tree Construction – Important Issues
• Split Strategy

• Insertion Strategy

X

Y

A3

A4A5

A1
A5A1A4A3

RS

? Split into 2 pages

How to divide a set of rectangles into 2 sets?

R S

X

Y

A3

A4A5

A1
A5A1A4A3

RS

? Insert A2

Where to insert a new rectangle?

R S

A2
?

A2

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 37

R-Tree Construction – Insertion Strategies
• Dynamic construction by insertion of rectanglesR

– Searching for the data page into whichR will be inserted, traverses
the tree from the root to a data page.

– When considering entries of a directory pageP, 3 cases can occur:
1. Rfalls into exactly oneEntry.MBR

� follow Entry.Subtree
2. Rfalls into the MBR of more than one entrye1 , ... , en

� follow Ei.Subtreefor entryei with the smallest area ofei.MBR.
3. Rdoes not fall into anEntry.MBRof the current page

� check the increase in area of theMBRfor each entry when
enlarging theMBR to encloseR.ChooseEntry with the minimum
increase in area (if this entry is not unique, choose the one with the
smallest area); enlargeEntry.MBRand followEntry.Subtree

• Construction by “bulk-loading” the rectangles
– Sort the rectangles, e.g., using Z-Order
– Create the R-tree “bottom-up”

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 38

R-Tree Construction – Split
• Insertion will eventually lead to an overflow of a data page

– The parent entry for that page is deleted.

– The page is split into 2 new pages - according to asplit strategy

– 2 new entries pointing to the newly created pages are inserted into the
parent page.

– A now possible overflow in the parent page is handled recursively in a
similar way; if the root has to be split, a new root is created to contain the
entries pointing to the newly created pages.

X

Y

A3

A4A5

A1 A2A1A4A3

RSR S

A2
A5

A6
A6 *

M = 3, m = 2

X

Y

A3

A4A5

A1 A5A1A4A3

USU S

A2
A2

A6
A6

V

V

Overlow � split node

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 39

R-Tree Construction – Splitting Strategies
• Overflow of nodeK with |K| = M+1 entries� Distribution of the

entries into two new nodesK1 andK2 such that |K1| ≥ m and |K2| ≥ m
• Exhaustive algorithm:

– Searching for the “best” split in the set of all possible splits is too
expensive (O(2M) possibilities!)

• Quadratic algorithm:
– Choose the pair of rectanglesR1 andR2 that have the largest value

d(R1, R2) for empty space in an MBR, which covers bothR1 undR2.
d (R1, R2) := Area(MBR(R1∪R2)) – (Area(R1) + Area(R2))

– SetK1 := { R1} and K2 := { R2}
– Repeat until STOP

• if all Ri are assigned: STOP
• if all remainingRi are needed to fill the smaller node to guarantee minimal

occupancym: assign them to the smaller node and STOP
• else: choose the nextRi and assign it to the node that will have the smallest

increase in area of the MBR by the assignment. If not unique: choose theKi
that covers the smaller area (if still not unique: the one with less entries).

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 40

R-Tree Construction – Splitting Strategies
• Linear algorithm:

– Same as the quadratic algorithm, except for the choice of the initial pair:
Choose the pair with the largest distance.
• For each dimension determine the rectangle with the largest minimal value

and the rectangle with the smallest maximal value (the difference is the
maximal distance/separation).

• Normalize the maximal distance of each dimension by dividing by the sum of
the extensions of the rectangles in this dimension

• Choose the pair of rectangles that has the greatest normalized distance.
SetK1 := { R1} and K2 := { R2}.

Smallest maximal value
in X dimension

Largest minimal value
in X dimension

max. distance for X

X

Y

Smallest maximal
value in Y dimension max. distance for Y

Largest minimal
value in Y dimension

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 4141

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• Spatial Data Management
• XML and Databases
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 42

Creating an Index

documents index Document Di

Di: wa, wb, wc…

For each document

D1: wa, wb, wc…
D2: wa, wd, we…
D3: wa, wb, wd…
…
Dn: wx, wy, wz…documents

wa: D1, D2, D3 …
wb: D1 , D3 …
wc: D1, …
wd: D2, D3, …
…

Inverted Index

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 43

Querying

wa: D1, D2, D3 …
wb: D1 , D3 …
wc: D1, …
wd: D2, D3, …
…

Inverted Index

wa: D1, D2, D3 …
wb: D1 , D3 …
wc: D1, …
wd: D2, D3, …
…

Which document
contains Waand Wb ?

D1, D2, D3 …
∩∩∩∩
D1 , D3 …

Which document
contains Waor Wb ?

D1, D2, D3 …
∪∪∪∪
D1 , D3 …

Inverted Index

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 44

Signature Files

• Index structure (the signature file) with one
data entry for each document

• Hash function hashes words to bit-vector.
• Data entry for a document (the signature of

the document) is the OR of all hashed
words.

• Signature S1 matches signature S2 if
S2&S1=S2

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 45

Signature Files: Query Evaluation
• Boolean query consisting of conjunction of words:

– Generate query signature Sq
– Scan signatures of all documents.
– If signature S matches Sq, then retrieve document and

check for false positives.

• Boolean query consisting of disjunction of k
words:
– Generate k query signatures S1, …, Sk
– Scan signature file to find documents whose signature

matches any of S1, …, Sk
– Check for false positives

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 46

Signature Files: Example

Mobile agent

Agent James

Document

0112

1101

SignatureRID

001Mobile

100James

010Agent

HashWord

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 47

Search Engine General
Architecture

Crawler

LTV

LV

LNV

Parser and
indexer

Index

Search
Engine

Page

Page

1

2

3

4

3

4

5

6

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 48

• Starting from a user supplied query, HITS
assembles an initial set S of pages:

The initial set of pages is called root set.
These pages are then expanded to a larger root set
T by adding any pages that are linked to or from
any page in the initial set S.

Steps of HITS Algorithm

S

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 49

Set S
Set T

• HITS then associates with each page p a hub
weight h(p) and an authority weight a(p), all
initialized to one.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 50

• HITS then iteratively updates the hub and
authority weights of each page.
Let p → q denote “page p has an hyperlink to
page q”. HITS updates the hubs and authorities as
follows:

a(p) =Σ h(q)
q→p

h(p) =Σ a(q)
p→q

Good authorities are
linked by good hubs

Good hubs link to good
authorities

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 51

Idealized PageRank Calculation

100 53

9 50

50

50

3

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 52

Each Pagep has a number of links coming out of it
C(p) (C for citation), and number of pages pointing
at pagep1, p2 ….., pn.

PageRank of P is obtained by

��
�

�
��
�

�
+−= � =

n

k
k

k

pC

pPR
dpPR

1)(

)(
)1()(

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 5353

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• XML
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases
• Other Advanced Database Topics

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 54

Query

No Query
File System

Relational
DBMS

Object-Relational
DBMS

Object-Oriented
DBMS

Simple Data Complex Data

DBMS Classification Matrix

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 55

ODL in OODBMS
• ODL supports atomic types as well as set, bag, list

array and struct type
• Interface defines a class

interface Movie (extent Movies key movieName)
{ attribute date start;

attribute date end;
attribute string movieName;
relashionship Set<Theater> ShownAt inverse Theater::nowShowing;

}
interface Theater (extent Theaters key theaterName)

{ attribute string theaterName;
attribute string address;
attribute integer ticketPrice;
relationship Set <Movie> nowShowing inverse Movie::shownAt;
float numshowing() raises(errorCountingMovies);

}

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 56

OQL Examples

Find the movies and theaters such that the theaters show more than one movie.

SELECT mname: M.movieName, tname: T.theaterName
FROM Movies M, M.shownAt T
WHERE T.numshowing() >1 Use of path expression

T is bound to each theater
Related to movie M by
relationship shownAt

Find the different ticket prices and the average number of movies shown at
theaters with that ticket price.

SELECT T.ticketPrice,
avgNum:AVG(SELECT P.T.numshowing() FROM partition P)

FROM Theaters T
GROUP BY T.ticketPrice

Partitioning in OQL

Method of Objects can be called
everywhere in the query

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 57

import org.odmg.*;
import java.util.Collection;

Implementation impl = new com.vendor.odmg.Implementation();
Database db = impl.newDatabase();
Transaction txn = impl.newTransaction();
try {

db.open(“movieDB", Database.OPEN_READ_WRITE);
txn.begin();
OQLQuery query = new OQLQuery(

"select t from Theaters t where t.ticketprice < $1");
query.bind(uInput1()); //bind $1 to a user specified value
Collection result = (Collection) query.execute();
Iterator iter = result.iterator();
while (iter.hasNext()) {

Theater theater = (Theater) iter.next();
theater.ticketprice = theater.ticketprice * 1.5;

}
txn.commit();
db.close();

}
//exception handling would go here ...

Java Binding Example

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 58

Common Structured Types
• Type constructors are used to combine atomic

types and user defined types to create more
complex structures:

• ROW(n1, t1, …nn,tn) : tuple of n fields
• listof(base): list of base-type items
• ARRAY(base): array of base-type items
• setof(base): set of base-type items without

duplicates
• bagof(base): multiset of base-type items
Not all collection types supported by all systems

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 59

Built-in Operators for Structured
Types

• Path expression

• Comparisons of sets (⊂⊆=⊇⊃ ∈∪∩−)

• Append and prepend for lists

• Postfix square bracket for arrays

• -> for reference type

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 60

Object-Relational Features of Oracle
Object table: table in which each row represents an object.

CREATE TYPE person AS OBJECT (
name VARCHAR2(30),
phone VARCHAR2(20));

CREATE TABLE person_table OF person;

INSERT INTO person_table VALUES

person("John Smith", "1-800-555-1212");

SELECT VALUE(p) FROM person_table p
WHERE p.name = "John Smith";

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 61

Object-Relational Features of Oracle
Methods

CREATE TYPE Rectangle_typ AS OBJECT (
len NUMBER,
wid NUMBER,
MEMBER FUNCTION area RETURN NUMBER,

);

CREATE TYPE BODY Rectangle_typ AS
MEMBER FUNCTION area RETURN NUMBER IS
BEGIN

RETURN len * wid;
END area;

END;

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 62

Object-Relational Features of Oracle
REF datatype: reference to other objects

CREATE TABLE people (
id NUMBER(4)
name_obj name_objtyp,
address_ref REF address_objtyp

SCOPE IS address_objtab);

De-referencing (assume X is an object of type people)
X.deref(address_ref).street
In Oracle also implicitly: X.address_ref.street

Obtaining references
SELECT REF(po) FROM purchase_order_table po
WHERE po.id = 1000376;

can be “scoped” for more efficient access

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 63

Object-Relational Features of Oracle
Collection types / nested tables

CREATE TYPE PointType AS OBJECT (
x NUMBER,
y NUMBER);

CREATE TYPE PolygonType AS TABLE OF PointType;

CREATE TABLE Polygons (
name VARCHAR2(20),
points PolygonType)
NESTED TABLE points STORE AS PointsTable;

The relations representing individual polygons
are not stored directly as values of the points
attribute; they are stored in a single table, PointsTable

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 64

Object-Relational Features of Oracle

Collection types / VARRAYS

• The VARRAYs of type PRICES have no more than ten
elements, each of datatype NUMBER(12,2).

• Creating an array type does not allocate space. It defines a
datatype, which you can use as:
– the datatype of a column of a relational table.
– an object type attribute.

CREATE TYPE prices AS VARRAY(10) OF NUMBER(12,2);

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 65

Object-Relational Features of Oracle
Type Inheritance / Subtyping

CREATE TYPE Person_t AS OBJECT
(ssn NUMBER,

name VARCHAR2(30),
address VARCHAR2(100)) NOT FINAL;

CREATE TYPE Student_t UNDER Person_t
(deptid NUMBER, major VARCHAR2(30)) NOT FINAL;

CREATE TYPE Employee_typ UNDER Person_t
(empid NUMBER, mgr VARCHAR2(30));

CREATE TYPE PartTimeStud_t UNDER Student_t
(numhours NUMBER);

To permit subtypes,
the object type must be defined as not final.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 66

Object-Relational Features of Oracle
Method Overloading and Overriding

CREATE TYPE MyType_typ AS OBJECT (...,
MEMBER PROCEDURE Print(),
MEMBER PROCEDURE foo(x NUMBER), ...)
NOT FINAL;

CREATE TYPE MySubType_typ UNDER MyType_typ
(...,

OVERRIDING MEMBER PROCEDURE Print(),
MEMBER PROCEDURE foo(x DATE), ...);

MySubType_typ contains two versions offoo(): one inherited version,
with a NUMBER parameter, and a new version with aDATE parameter

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 6767

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• XML
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases
• Other Advanced Database Topics

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 68

Recovery and theACID properties
Atomicity: All actions in the transaction happen, or none happen.

Consistency:If each transaction is consistent, and the DB starts consistent, it
ends up consistent.

Isolation: Execution of one transaction is isolated from that of other transactions.

Durability: If a transaction commits, its effects persist.

• TheRecovery Manageris responsible for ensuring two important
properties of transactions:Atomicity andDurability.

• Atomicity is guaranteed by undoing the actions of the transactions
that did not commit (rollback aborted transaction).

• Durability is guaranteed by making sure that all actions of
committed transactions survive crashes and failures.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 69

Write-Ahead Log
• The update record must always be appended to

the log before the database is updated. The log is
referred to as awrite-ahead log.

• The Write-Ahead Logging Protocol:
� Must force the log record for an updatebeforethe

corresponding data page gets to disk.
� Must write all log records for a transactionbefore

commit.
• #1 guarantees Atomicity.
• #2 guarantees Durability.

• Exactly how is logging (and recovery!) done?
We’ll study the ARIES algorithms.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 70

Checkpoints

• The system periodically appends a
checkpoint record to the log that lists the
current active transactions.

• The recovery process must scan backward
at least as far as the most recent checkpoint.

• If T is named in the checkpoint, then T was
still active during crashÿ continue scan
backward untilbegin-transactionT.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 71

Possible Execution Strategies

• Steal / No-force
BM may have written some of the updated pages

into disk. RM writes a commit

• Steal / force
BM may have written some of the updated pages

into disk. RM issues aflushand writes a
commit

• No-steal / no-force
None of the updated pages have been written.

RM writes a commit and sends unpin to BM
for all pinned pages.

• No-steal / force
None of the updated pages have been written.

RM issues aflushand writes a commit

• Force every write to disk?
– Poor response time.

– But provides durability.

• Steal buffer-pool frames from
uncommitted transaction?
– If not, poor throughput.

– If so, how can we ensure
atomicity?

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 72

Recovering From a Crash
• There are 3 phases in theAriesrecovery algorithm:

– Analysis: Scan the log forward (from the most recentcheckpoint)
to identify all transactions that were active, and all dirty pages in
the buffer pool at the time of the crash.

– Redo: Redoes all updates to dirty pages in the buffer pool, as
needed, to ensure that all logged updates are in fact carried out and
written to disk.

– Undo: The writes of all transactions that were active at the crash
are undone (by restoring thebefore valueof the update, which is
in the log record for the update), working backwards in the log.
(Some care must be taken to handle the case of a crash occurring
during the recovery process!)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 73

Access Controls

• A security policy specifies who is
authorized to do what.

• A security mechanism allows us to enforce
a chosen security policy.

• Two main mechanisms at the DBMS level:
– Discretionary access control
– Mandatory access control
– Role-based access control

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 74

GRANT Command

� The following privileges can be specified:
� SELECT: Can read all columns (including those added later viaALTER

TABLE command).
� INSERT(col-name): Can insert tuples with non-null or non-default values in

this column.
� INSERT means same right with respect to all columns.

� DELETE: Can delete tuples.
� UPDATE: Can update tuples.
� REFERENCES(col-name): Can define foreign keys (in other tables) that refer

to this column.

� If a user has a privilege with theGRANT OPTION,can pass privilege
on to other users (with or without passing on theGRANT OPTION).

� Only owner can executeCREATE, ALTER,andDROP.

GRANT privilegesON objectTO users[WITH GRANT OPTION]

•GRANT UPDATE(rating) ON Sailors TO Dustin
–Dustin can update (only) therating field of Sailors tuples.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 75

Typical Security Classes

• Objects (e.g., tables, views, tuples)
• Subjects (e.g., users, user programs)
• Security classes:

– Top secret (TS), secret (S), confidential (C), unclassified
(U): TS > S> C > U

• Each object and subject is assigned a class.
– Subject S canreadobject O only if class(S) >=

class(O) (no reads in higher security)
– Subject S canwrite object O only if class(S) <=

class(O) (no writes in lower security)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 7676

Course Content
• Introduction
• Database Design Theory
• Query Processing and Optimisation
• Concurrency Control
• Data Base Recovery and Security
• Object-Oriented Databases
• Inverted Index for IR
• XML
• Data Warehousing
• Data Mining
• Parallel and Distributed Databases
• Other Advanced Database Topics

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 77

Transaction Properties

• Atomicity (all or nothing)
– A transaction isatomic: transaction always executing all its

actions in one step, or not executing any actions at all.

• Consistency(no violation of integrity constraints)
– A transaction must preserve the consistency of a database

after execution. (responsibility of the user)

• Isolation(concurrent changes invisibleÿserializable)
– Transaction is protected from the effects of concurrently

scheduling other transactions.

• Durability (committed updates persist)
– The effect of a committed transaction should persist even

after a crash.

The acronym ACID is often used to refer to the four properties of DB transactions.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 78

Scheduling Transactions
• A Scheduleis a sequential order of the instructions

(R / W / A / C) of n transactions such that the ordering of
the instructions of each transaction is preserved.
(execution sequence preserving the operation order of
individual transaction)

• Serial schedule:A schedule that does not interleave the
actions of different transactions.
(transactions executed consecutively)

• Non-serial schedule: A schedule where the operations from
a set of concurrent transactions are interleaved.

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

T1: A=A+100, B=B-100
T2: A=1.06*A,B=1.06*B

S1

S2

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 79

Scheduling Transactions(continue)

• Equivalent schedules: For any database state, the effect (on
the set of objects in the database) of executing the first
schedule is identical to the effect of executing the second
schedule.

• Serializable schedule: A non-serial schedule that is
equivalent to some serial execution of the transactions.
(Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.)

• Two schedules are conflict equivalent if:
– Involve the same actions of the same transactions
– Every pair of conflicting actions is ordered the same way

• Schedule S is conflict serializable if S is conflict equivalent
to some serial schedule

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 80

Anomalies with Interleaved
Execution

• Reading Uncommitted Data (WR Conflicts,
“dirty reads”: read an object modified by
uncommited transaction.):

• T1 transfers $100 from A to B

• T2 adds 6% to A and B

• Avoid cascading aborts
T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A),R(B),W(B), C

Aka:
Uncommitted Dependency
Dirty read problem

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 81

Serializability
• The objective ofserializability is to find non-serial

schedules that allow transactions to execute concurrently
without interfering with one another, and thereby
produce a database state that could be produced by a
serial execution.

• It is important to guarantee serializability of concurrent
transactions in order to prevent inconsistency from
transactions interfering with one another.

• In serializability, the ordering of read and write
operations is important (see conflict of operations).

• See the following schedules how the order of R/W
operations can be changed depending upon the data
objects they relate to.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 82

Dependency Graph

• Dependency graph(or precedence graph):
– One node per transaction;

– edge fromTi to Tj if Tj reads/writes an object
last written byTi.

• Theorem: Schedule is conflict serializable if
and only if its dependency graph is acyclic

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 83

Lock-Based Concurrency Control
• Strict Two-phase Locking (Strict 2PL) Protocol:

– Each transaction must obtain a S (shared) lock on object
before reading, and an X (exclusive) lock on object
before writing.

– All locks held by a transaction are released when the
transaction completes

– If a transaction holds an X lock on an object, no other
transaction can get a lock (S or X) on that object.

• Strict 2PL allows only serializable schedules.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 84

Strict Two-Phase Locking

• Transaction holds locks until the end of
transaction (just before committing)

Phase1
Objects
Are used

a.k.a.
Conservative 2PL

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 85

Deadlock Prevention
• Assign priorities based on timestamps(i.e. The oldest

transaction has higher priority).
• Assume Ti wants a lock that Tj holds. Two policies

are possible:
– Wait-Die: If Ti has higher priority, Ti allowed to wait for

Tj; otherwise (Ti younger) Ti aborts
– Wound-wait: If Ti has higher priority, Tj aborts; otherwise

(Ti younger) Ti waits

• If a transaction re-starts, make sure it has its original
timestamp

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 86

Timestamping

• Each transaction is assigned a globally unique timestamp
(starting time using a clock)

• Each data object is assigned
– a write timestamp wts (largest timestamp on any write on x)

– a read timestamp rts (largest timestamp on any read on x)
– a flag that indicates whether the transaction that last wrote x committed.

• Conflict operations are resolved by timestamp ordering.

• A concurrency control protocol that orders transactions
in such a way that older transactions get priority in the
event of conflict.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 87

Timestamp Ordering

• A Transaction Ti wants to read x: Ri(x)
– if ts(Ti) < wts(x) then reject Ri (x): rollback Ti (abort)

– else accept Ri(x); rts(x) � max(ts(Ti), rts(x))

If ts(Ti) < wts(x) => some other transaction Tk that
started after Ti wrote a new value to x.
Since the read(x) of Ti should return a value prior to
the write operation of Tk Ti is aboted (it is too old)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2003 88

Timestamp Ordering
• A Transaction Ti wants to write x: Wi (x)

– if ts(Ti)<rts(x) then reject Wi (x): rollback Ti (abort)

– if ts(Ti)<wts(x) then ignore after accept Wi(x) [Thomas write rule]

– else accept Wi(x); wts(x) � ts(Ti)

Make sure a transaction has a new larger timestamp if it is re-started
This protocol guarantees serializability and is deadlock-free

If ts(Ti) < rts(x) => some other transaction Tk that
started after Ti has read an earlier value of x.
If T i is allowed to commit, Tk should have read the
new value that Ti is attempting to write. Thus Ti is
too old to write.

