
CMPUT 391 Midterm Exam (O.R. Zaïane) February 14th, 2003 Page 2 of 8 ID#________________

Section 1: Redundancy Anomalies [13 points]

1- (9 points) Consider the following table. Give an example of update anomaly, an
example of deletion anomaly and an example of insertion anomaly knowing that
different salesmen can sell the same car but each salesman has a different
commission. The commission for one salesman is always the same. The discount
depends upon the date.
Car # Date-sold Salesman Commission Discount
123 2003-02-13 35 3% 10%
321 2003-01-31 45 5% 15%
123 2003-02-13 20 2.5% 10%
918 2003-01-18 45 5% 5%
789 2003-02-10 19 3% 5%

Update Anomaly:

- Changing the commission of a salesman requires changing all
tuples related to the salesman

- Changing the discount for a day requires updating all records
of that particular day

Deletion Anomaly:

- By deleting the only sale by a salesman we loose the
information about the commission for that salesman

- By deleting the only sale of the day we loose the information
about the discount given that day

Insertion Anomaly:

- We can’t add a salesman until a sale is done

- We can’t add a discount information until a sale is done that
day

2- (4 points) Give a schema of a decomposition that avoids such anomalies.

Sales(Car#, Date-sold, Salesman)
Salesmen(Salesman, Commission)
Discounts(Date, Discount)

CMPUT 391 Midterm Exam (O.R. Zaïane) February 14th, 2003 Page 3 of 8 ID#________________

Section 2: Concurrency Control [21 points]

[5 points] Briefly explain what is Atomicity and enumerate the other remaining
ACID properties. You don’t have to explain C and I, but explain the term
associated with D.

Atomicity: All or nothing: All operations of a transactions are
executed or none. (2 points)

C stands for Consistency (0.75 point)
I stands for Isolation (0.75 point)

D stands for Durability : The effect of a committed
transaction should persist even after a crash. (1.5 point)

1- [4 points] Given the following schedule S:
T1: R(Y); W(X);
T2: R(Y); R(X); W(Y);

Is S a serial schedule? Explain why.
Give a serial schedule equivalent to S.

No, it is a non-serial schedule since transactions are
interleaved. (2 points)

There is no serial schedule equivalent to S. S is not
serializable. There is a cycle in the dependency graph.
(2 points)

2- [12 points] Assume the following actions listed in the order they are scheduled
and prefixed with the transaction name. Assume that the timestamp of a
transactionTi is i. T1:R(Y), T2:R(X), T3:R(Y), T1:R(X), T1:W(Y), T2:W(X),
T3:R(X)
Add lock and unlock requests and describe how the following concurrency
control mechanism A, B and C handle the sequence by giving the schedule with
waiting time between actions. The DBMS should process the actions in the order
shown. If a transaction is blocked it waits and its actions are queued until it
resumes. When a transaction waits, the DBMS continues with the next action of
an unblocked transaction in the sequence.

A- Strict 2PL with deadlock detection
B- Strict 2PL with timestamps used for deadlock prevention with Wait-Die

policy
C- Strict 2PL with timestamps used for deadlock prevention with Wound-

Wait policy.

CMPUT 391 Midterm Exam (O.R. Zaïane) February 14th, 2003 Page 4 of 8 ID#________________

T1:R(Y), T2:R(X), T3:R(Y), T1:R(X), T1:W(Y), T2:W(X), T3:R(X)

A B C
(Strict 2PL) |Strict 2PL + Wait-Die | Strict 2Pl+Wound-Wait

| |
T1 T2 T3 | T1 T2 T3 | T1 T2 T3

| |
X(Y) | X(Y) | X(Y)
R(Y) | R(Y) | R(Y)

X(X) | X(X) | X(X)
R(X) | R(X) | R(X)

S(Y) | S(Y) | S(Y)
Wait | Abort | wait

S(X) | S(X) | S(X)
Wait | wait | Abort

W(X) | S(Y) | R(X)
UL(X) | Abort | X(X)

R(X) | W(X) | wait
W(Y) | UL(X) | W(Y)
UL(Y) | S(Y) | UL(Y)
UL(X) | Abort | UL(X)

R(Y) | R(X) | R(Y)
S(X) | S(Y) | R(X)
R(X) | Abort | S(X)
UL(Y) | W(Y) | wait
UL(X) | UL(Y) | W(X)

| UL(X) | UL(X)
| R(Y) | R(X)
| S(X) | UL(Y)
| R(X) | UL(X)

(4 points) | UL(Y) |
| UL(X) |
| |
| |
| |
| (4 points) | (4 points)
| |
| |
| |
| |

R(X) means read X
W(X) means write X
X(X) means request an exclusive lock on X
S(X) means request a shared lock on X
UL(X) means release the lock (unlock) X

CMPUT 391 Midterm Exam (O.R. Zaïane) February 14th, 2003 Page 5 of 8 ID#________________

Section 3: Query Optimization [40 points]

Given the following relations for the entities Professor and Course and the
relationship Teaching:

Professor (P_ID, Name, Dept_ID)
Course(Code, Dept_ID, CName, syllabus)
Teaching(P_ID, Code, Semester)

1- [8 points] Given the following SQL query Q, draw the query plan with an early
selection and an index nested loops join strategy knowing that the relation Professor
is indexed on P_ID. How relevant is it that the index on Professor is clustered or not?

SELECT P.Name, T.Semester
FROM Professor P, Teaching T
WHERE P.P_ID = T.P_IDAND

T.Code = “CMPUT391”

(4 points for the query tree)
(2 points for the plan)

Clustered or not is irrelevant since for each tuple in the outer
relation we would need to access a tuple in the inner relation
using the index . (2 points)

Teaching T

σT.Code = “CMPUT391”

P.P_ID = T.P_ID

Professor P

ΠP.Name, T.Semester

On the fly

INL with pipeline

CMPUT 391 Midterm Exam (O.R. Zaïane) February 14th, 2003 Page 6 of 8 ID#________________

2- [32 points] Would it be better to do a bloc nested loops join or a join that takes
into account the index for Professor? Suppose we have 4 buffer pages (blocs) in main
memory, and assuming a uniform distribution for all the values in the database,
estimate the query execution I/O cost for these two plans. There are 1000 courses.
The relation Course is contained in 200 pages of disk, each page with 5 tuples of
Course. There are 50000 teaching records. The relation Teaching is contained in 5000
pages, each page with 10 tuples of Teaching. There are 105 professors. The relation
Professor is contained in 14 pages, each page with up to 8 tuples. There is no index
on attribute Code for the relation Teaching and the relation is neither clustered nor
sorted on this attribute. Professor is indexed on P_ID using a hash index.

INL (16 points)
Selection needs 5000 I/O
The size of the result is 50000/1000 = 50 teaching for

CMPUT391 = 5 pages

Cost of join is 50 * 1.2 = 60 I/O
Total = 5060 I/O

BNL (16 points)
Selection needs 5000 I/O
Join = ÿÿÿÿ5/3 �� �� * 14 = 28 I/O
Total 5028 I/O

CMPUT 391 Midterm Exam (O.R. Zaïane) February 14th, 2003 Page 7 of 8 ID#________________

Section 4: Functional Dependencies [26 points]

1- [4 points] Consider the following set F of functional dependencies, find the projection
of F onto AFE. Aÿ BC, CÿFG, EÿHG, GÿA.

F+ : F
AFE

AÿÿÿÿA AÿÿÿÿA
BÿÿÿÿB FÿÿÿÿF (1 point)
CÿÿÿÿC EÿÿÿÿE
FÿÿÿÿF AÿÿÿÿF
GÿÿÿÿG EÿÿÿÿA (2.5 points)
EÿÿÿÿE EÿÿÿÿF
HÿÿÿÿH EÿÿÿÿAF (0.5 point)
AÿÿÿÿB
AÿÿÿÿC
CÿÿÿÿF => AÿÿÿÿF
CÿÿÿÿG
AÿÿÿÿFG
EÿÿÿÿHG
EÿÿÿÿH, EÿÿÿÿG
GÿÿÿÿA => EÿÿÿÿA

…

2- [6 points] Consider a relation with attributes A, B, C, D, and E and the functional
dependencies BÿEC, CÿA, AÿD and DÿE. Show that the decomposition of the
schema into AB, BCD and ADE is lossless. Is this decomposition dependency
preserving?

AÿÿÿÿD and DÿÿÿÿE => AÿÿÿÿDE => A is key in ADE
(ADE) ∩∩∩∩ (AB) = A w hich is key in ADE
=> ADE and AB is loss-less join decomposition
(2 points)

BÿÿÿÿEC, since C->A and A ÿÿÿÿD then B ÿÿÿÿA and BÿÿÿÿD
=> BÿÿÿÿABCDE B is key

(BCD) ∩∩∩∩ (AB) = B w hich is key
�� �� BCD and AB is lossless join decomposition
(2 points)
This is not dependency preserving since B ÿÿÿÿEC and Cÿÿÿÿ A are

not preserved. (2 points)

Can also be verified with (F
AB

∪∪∪∪ F
ADE

∪∪∪∪ F
BCD

)+

CMPUT 391 Midterm Exam (O.R. Zaïane) February 14th, 2003 Page 8 of 8 ID#________________

3- [10 points] Consider the relation R(A, B, C, D, E) with the following dependencies:
ABÿC, CDÿE, DEÿB
Could AB be a key for this relation? Explain, and if AB is not a key, is ABD a candidate
key? Explain. Could we justify the use of ADE as a key? Show it using inference rules.

AB+ = {A,B,C} => not a key since we don’t have all
attributes. (3 points)

ABD+ = {A,B,C,D,E} => ABD is a candidate key ABD ÿÿÿÿABCDE
(3 points)

1- DEÿÿÿÿB
2- ADEÿÿÿÿAB (augmentation)
3- AB ÿÿÿÿC
4- ADEÿÿÿÿC (transitivity from 2 and 3)
5- ADEÿÿÿÿADE (trivial)
6- ADEÿÿÿÿ ABCDE (from 2, 4, and 5)
yes ADE could be used as a key. (4 points)

4- [6 points] Decompose in 3NF the relation in question 3 above using the same
functional dependencies and ADE as a key.

DEÿÿÿÿB
violates 2NF since part of a key (DE) determines a non key (B)

(BDE) (A CDE) is in 3NF but not in BCNF

