
CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 1

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2004

CMPUT 391: XML and Querying XML

Chapter 17
of Textbook

Lecture 12

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 2

Overview
• Semi-Structured Data

• Introduction to XML

• Querying XML Documents

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 3

The Structure of Data
• In the real world data can be of any type

and not necessarily following any organized
format or sequence.

• Such data is said to be unstructured.
Unstructured data is chaotic because it
doesn’t follow any rule and is not
predictable.

• Text data is usually unstructured. Many data
on the Internet is unstructured (video
streams, sound streams, images, etc).

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 4

Structured Data
• For applications manipulating data, the structure of data is

very important to insure efficiency and effectiveness.
• The data is structured when:

– Data is organized in semantic chunks (entities).
– Similar entities are grouped together (relations or classes).
– Entities in a same group have the same descriptions

(attributes).
– Entity descriptions for all entities in a group have the same

defined format, a predefined length, are all present, and
follow the same order (schema).

• This structure is sometimes too rigid for some applications.
• For many application, data is neither completely

unstructured nor completely structured.

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 5

Semi-Structured Data
• Data is organized in semantic entities
• Similar entities are grouped together
• But

– Entities in the same group may not have the same
attributes

– The presence of some attributes may not always be
required

– The size of same attributes of entities in a same
group may not be the same

– The type of the same attributes of entities in a same
group may not be of the same type.

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 6

Semi-Structured Data (Cont.)
• To make it suitable for machine processing

it should have these characteristics
– Be object-like

– Be schemaless (doesn’t guarantee to
conform exactly to any schema, but
different objects have some commonality
among themselves)

– Be self-describing (some schema-like
information, like attribute names, is part of
data itself)

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 7

Non-Self-Describing Data
Relational or Object-Oriented:

Data part:
(#123, [“Students”, {[“John”, 111111111, [123,”Main St”]],

[“Joe”, 222222222, [321, “Pine St”]] }

])

Schema part:

PersonListPersonList[ListName: String,

Contents: [Name: String,

Id: String,

Address: [Number: Integer, Street: String]]

]

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 8

Self-Describing Data
• Attribute names embedded in the data itself

• Doesn’t need schema to figure out what is what

• (but schema might be useful nonetheless)

(#12345,
[ListName: “Students”,

Contents: { [Name: “John Doe”,
Id: “111111111”,
Address: [Number: 123, Street: “Main St.”]] ,

[Name: “Joe Public”,
Id: “222222222”,
Address: [Number: 321, Street: “Pine St.”]] }

])

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 9

Data Model for Semi-Structured Data

• Semi-structured data doesn’t have a schema.
• There are many data models to represent semi-

structured data. Most of them use the notion of
labeled graphs.
– Nodes in the graph correspond to compound

objects or atomic values.
– Edges in the graph correspond to attributes
– The graph is self describing (no need for a schema)
– Object Exchange Model (OEM): each object is

described by a triplet <label, type, value>
– Complex objects are decomposed hierarchically

into smaller objects

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 10

Example: Booklist Data in OEM

Milan Kundera

Identity 1998

BOOK

AUTHOR TITLE PUBLISHED AUTHOR FORMAT
TITLE

Richard Feynman

The
character
of phy-
sical law

Hard-
cover

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 11

Overview
• Semi-Structured Data

• Introduction to XML

• Querying XML Documents

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 12

Introduction to XML
• XML: eXtensible Markup Language

• Suitable for semistructured data
– Easy to describe object-like data

– Selfdescribing

– Doesn’t require a schema (but can be provided
optionally)

• Standard of the World-Wide Web Consortium for
data exchange

• All major database products have been extended
to store and construct XML documents

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 13

What is Special with XML
• It is a language to markup data

• There are no predefined tags like in HTML

• Extensible tags can be defined and
extended based on applications and needs
– Elements / Tags

– Attributes

– (Eg.: <BOOK page="453">…</BOOK>)

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 14

Example

<?xml version=“1.0” ?>

<PersonList Type=“Student” Date=“2002-02-02” >
<Title Value=“Student List” />

<Person>
… … …
</Person>
<Person>
… … …
</Person>

</PersonList>

• Elements are nested

• Root element contains all others

Element (or tag)
names

elem
ents

R
oot

R
ootelem

entEmpty
element

attributes

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 15

More Terminology

<Person Name = “John” Id = “111111111”>

John is a nice fellow

<Address>

<Number>21</Number>

<Street>Main St.</Street>

</Address>

… … …

</Person>

Opening tag

Closing tag

Nested element,
child of PersonPerson

Parent of AddressAddress,
Ancestor of numbernumber

“standalone” text,
not useful as data

Child of AddressAddress,
Descendant of PersonPerson

C
on

te
nt

 o
f

 P
er

so
n

Pe
rs

on

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 16

Rules for Creating XML Documents
• Rule 1: All terminating tags shall be closed

– Omitting a closing XML tag is an error.
Example: <FirstName>Joerg</FirstName>

• Rule 2: All non-terminating tags shall be closed
– Omitting a forward slash for non-terminating

(empty) tags is an error.
Example <Available answer="yes"/>

• Rule 3: XML shall be case sensitive
– Using the wrong case is an error.

Example: <FirstName>Osmar</firstname>
– It is OK in HTML <H1>my header</h1>

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 17

Rules for Creating XML Documents
• Rule 4: An XML document shall have one root

– Attempting to create more than one root element
would generate a syntax error

• Rule 5: Terminating tags shall be properly nested
– Closing a parent tag before closing a child’s tag is

an error. Example
<Author><name>Osmar</Author></name>

– It is OK in HTML <I>bold italic text</I>

• Rule 6: Attribute values shall be quoted
– Omitting quotes, either single or double, around

and XML attribute’s value is an error.
Example <Product ID="123">

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 18

What is needed?
• XML needs to be parsed to check whether

the documents are well formed

• XML needs to be printed

• XML needs to be interpreted for
information exchange or populating
database

• XML needs to be queried efficiently

Query LanguagesParsers

Representations
XSL/XSLT

SOAP
XML security

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 19

Introduction to DTDs
• DTD stands for Document Type Definition
• A DTD is a set of rules that specify how to

use an XML markup. It contains
specifications for each element, the
attributes of the elements, and the values the
attributes can take.

• A DTD also specifies how elements are
contained in each other

• A DTD ensures that XML documents
created by different programs are consistent

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 20

<?xml version = "1.0"?>
<LETTER> <Urgency level=“1”/>
<contact type = "from">

<name>John Doe</name>
<address>123 Main St.</address>

<city>Anytown</city>
<province>Somewhere</province>
<postalcode>A1B 2C3</postalcode>

</contact>
<contact type = "to">

<name>Joe Schmoe</name>
<address>123 Any Ave.</address>
<city>Othertown</city>

<province>Otherplace</province>
<postalcode>Z9Y 8X7</postalcode>

</contact>
<paragraph>Dear Sir,</paragraph>
<paragraph>It is our privilege to inform you about our new database managed with XML.
This new system will allow you to reduce the load of your inventory list server by having the
client machine perform the work of sorting and filtering the data.</paragraph>
<paragraph>Sincerely, Mr. Doe</paragraph>
</LETTER>

Example1: Business Letter

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 21

DTD Example for business letter

<?xml version=“1.0” encoding=“UTF-8” ?>
<!DOCTYPE LETTER [
<!ELEMENT LETTER (Urgency, contact+, paragraph+)>
<!ELEMENT Urgency (EMPTY)>
<!ATTLIST Urgency level CDATA #IMPLIED>
<!ELEMENT contact (name, address, city, province, postalcode,
phone?, email?)>
<!ATTLIST contact type CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
…
]>

Empty means no end tag

#PCDATA is parsed
character data, it means
that the element
contains text

CDATA means string
#IMPLIED means that
the attribute value can
be unspecified.

+ means one or more

? means optional

DTD Header
Unicode Transformation 8 bits

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 22

DTD Rules
<!ELEMENT elementName (components or content type)>

Examples:
<!ELEMENT name (#PCDATA)>

name is an element/tag for text data

<!ELEMENT Urgency (EMPTY)>
Urgency has no content

<!ELEMENT LETTER (Urgency, contact+, paragraph+)>
letter is an element that contains an Urgency
element followed by one or more contact elements
and one or more paragraph elements

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 23

Multiple Elements

<!ELEMENT LETTER (Urgency, contact+, paragraph+)>
<!ELEMENT contact (name, address, city, province, postalcode,
phone?, email?)>

Are called multiple elements (lists of elements). They require the rule
to specify their sequence and the number of times they can occur.

| Any element may occur
, Occur in specified sequence
? Optional, may occur 0 or once
+ Occurs at least once (1 or many)
* Occurs many times (0 or many)

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 24

Attributes in DTD
<!ATTLIST elementName attributeName Type Specification>

• elementName and attributeName associate the attribute with the
element
• The Type specifies if the attribute is free text (CDATA) or a list
of predefined values (value1 | value2 | value3)
• Example:
<!ATTLIST Urgency level CDATA #IMPLIED>
<!ATTLIST contact type CDATA #REQUIRED>
<!ATTLIST P align (center | right | left) #IMPLIED>

• Specification could be:
• #REQUIRED attribute must be specified
• #IMPLIED attributes can be unspecified
• #FIXED attribute is preset to a specific value
• “defaultvalue” default value for the attribute

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 25

Calling an External DTD
• A DTD can be referenced from XML documents

– <!DOCTYPE LETTER SYSTEM "letter.dtd">
– Any element, attribute not explicitly defined in the DTD

generates an error in the XML document.
– XML document conforming to a DTD is called valid and

well-formed.
– keyword SYSTEM/PUBLIC: intended for private/public use

• DTDs ensure consistency between XML documents
• Defining a DTD is equivalent to creating a customized

markup language.
• There are many domain specific markup languages: MML

(Mathematical Markup Language), CML (Chemical
Markup Language),…many other XML-based languages

document
document

document

DTD

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 26

Beyond DTDs: XML Schema

• DTD are limited
– very limited data types (just strings)
– can’t express strong consistency constraints
– can’t express unordered contents conveniently
– all element names are global

• can’t have one Name type for people and another for
companies:

– <!ELEMENT Name (Last, First)>
– <!ELEMENT Name (#PCDATA)>

• both can’t be in the same DTD

• XML Schema solves some of the problems with
DTDs, but is much more complex than DTDs

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 27

Overview
• Semi-Structured Data

• Introduction to XML

• Querying XML Documents

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 28

XML Query Languages
• Problems

– how will data be extracted from large documents?
– how will XML data be exchanged, e.g., by shipping XML

documents or by shipping queries?
– how will XML data be exchanged between user

communities using different DTDs?
– how will XML data from multiple XML sources be

integrated?

• Solution: An XML Query Language that allows to
– extract pieces of data from XML documents
– map XML data between DTDs (Schemas)
– integrate XML data from different sources

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 29

XQuery
• W3C standard query language for XML

• SQL-like FLWR Expressions
– FOR (LET)

– WHERE

– RETURN

• Integrates XPath for path expressions

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 30

XPath
• Core query language

– Simple selection operator for paths from a
XML document-tree

– Xpath expressions take a document tree and
return a set of nodes in the tree

– Used in XQuery and many other XML
standards

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 31

Example: XPath & XML Document Tree
<? Xml version=“1.0” ?>
<Students>

<Student SID=“123456”>
<Name><First>John</First><Last>Smith</Last></Name>
<Status>Full-UndG</Status>
<Course Code=“cmput101” Semester=“W1999” />
<Course Code=“cmput291” Semester=“F1999” />
<Course Code=“cmput391” Semester=“F2000” />

</Student>
<Student SID=“678123”>

<Name><First>Jane</First><Last>Doe</Last></Name>
<Status>Full-UndG</Status>
<Course Code=“cmput114” Semester=“F1999” />
<Course Code=“cmput304” Semester=“F2000” />

</Student>
</Students>

<!DOCTYPE students [
<!ELEMENT Students (Student*)>
<!ELEMENT Student (Name, Status, Course*)>
<!ELEMENT Name (First, Last)>
<!ELEMENT First (#PCDATA)>

…]>

Root

Students

Student Student
SID

Name

First Last

John Smith

Course Course

123456

Code

cmput101 W1999

Semester

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 32

XPath Expressions
• Absolute path expressions:

/Students/Student/Name
refers to the composite Name

//Name
refers to Name descendent of the root

/Students//First
refers to descendent First of Students

• Relative path expressions:
if current node corresponds to Name,
./First is first name of current
../Course a course of the current student
../..//First is the first name of siblings,

(// denotes arbitrary sub-path)

• @ is used for attributes: /Students/Student/@SID
• /Students/Student[1]/Course[3] for specific nodes

Root

Students

Student Student
SID

Name

First Last

John Smith

Course Course

123456

Code

cmput101 W1999

Semester

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 33

XPath with Selection Conditions

• Select all student who took a course in F2000
//Student[Course/@Semester="F2000"]

• Select undergrad students
//Student[Status="UndG"]

• Select last names of students
who took cmput391

//Student[Course/@Code="cmput391"]/Name/Last

• Select all students who
took cmput391 in F2001

//Student[Course/@Code="cmput391" AND Course/@Semester="F2001"]

Root

Students

Student Student
SID

Name

First Last

John Smith

Course Course

123456

Code

cmput101 W1999

Semester

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 34

Example
Consider a set of XML documents defined by the following DTD

<!DOCTYPE BOOKLIST> [

<!ELEMENT BOOLIST (BOOK)*>

<!ELEMENT BOOK (AUTHOR+, TITLE, PUBLISHED?)>

<!ELEMENT AUTHOR (FIRSTNAME,LASTNAME)>

<!ELEMENT FIRSTNAME(#PCDATA)>

<!ELEMENT LASTNAME(#PCDATA)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT PUBLISHED (#PCDATA) >

<!ATTLIST BOOK GENRE(Science|Fiction) #REQURIED>

<!ATTLIST BOOK FORMAT (Paperback|Hardcover) “Paperback”>

]>

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 35

<?XML VERSION=“1.0” ENCODING=“UTF-8” STANDALONE=“YES”>
<BOOKLIST>

<BOOK GENRE=“Science” FORMAT= “Hardcover”>
<AUTHOR> <FIRSTNAME> Richard</FIRSTNAME>

<LASTNAME>Feynman</LASTNAME>
</AUTHOR>
<TITLE> The Character of Physical Law</TITLE>
<PUBLISHED> 1980</PUBLISHE>

</BOOK>
<BOOK GENRE=“Fiction”>

<AUTHOR> <FIRSTNAME>R.K.</FIRSTNAME>
<LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE> Waiting for the Mahatma</TITLE>
<PUBLISHED> 1981</PUBLISHE>

</BOOK>
<BOOK GENRE=“Fiction”>

<AUTHOR> <FIRSTNAME>R.K.</FIRSTNAME>
<LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE> The English Teacher</TITLE>
<PUBLISHED> 1980</PUBLISHE>

</BOOK>
</BOOKLIST>

Example (Cont.)

Milan Kundera

Identity 1998

BOOK

AUTHOR TITLE PUBLISHED AUTHOR FORMAT

TITLE

Richard Feynman

The
character
of phy-
sical law

Hard-
cover

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 36

XQuery Basics
• General structure:

• [FOR | LET] variable declarations

• WHERE condition

• RETURN document

• variable declaration:
"$" VarName "in" Expression

• Variable binding
– FOR binds a variable to each element satisfying the

expression

– LET binds a variable to the whole collection of
elements that satisfy the expression

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 37

Example – FOR clause
• Assume the previous document is stored at www.outbookstore.com/books.xml

• QUERY: Find the last names of all authors

FOR
$l IN doc(www.ourbookstore.com/books.cml)//AUTHOR/LASTNAME

RETURN
<RESULT> $l </RESULT>

ANSWER

<RESULT><LASTNAME> Feynman</LASTNAME></RESULT>
<RESULT><LASTNAME> Narayan</LASTNAME></RESULT>

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 38

Example – LET clause

LET
$l IN doc(www.ourbookstore.com/books.cml)//AUTHOR/LASTNAME

RETURN
<RESULT> $l </RESULT>

ANSWER

<RESULT>

<LASTNAME> Feynman</LASTNAME>

<LASTNAME> Narayan</LASTNAME>

</RESULT>

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 39

Example: WHERE clause
FOR

$1 IN doc(www.ourbookstore.com/books.cml)/BOOKLIST/BOOK

WHERE $1/PUBLISHED = “1980”

RETURN
<RESULT> $1/AUTHOUR/FIRSTNAME, $1/AUTHOR/LASTNAME
</RESULT>

ANSWER

<RESULT>

<FIRSTNAME> Richard <.FIRSTNAME>

<LASTNAME>Feynman</LASTNAME>

</RESULT>

<RESULT>

<FIRSTNAME> R.K.<.FIRSTNAME>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 40

Example: Nested Queries & Grouping
FOR $l IN DISTINCT

doc(www.ourbookstore.com/books.cml)/BOOKLIST/BOOK/PUBLISHED

RETURN
<RESULT>

$1,
FOR $a IN DISTINCT doc(www.ourbookstore.com/books.cml)

/BOOKLIST/BOOK[PUBLISHED=$1]/AUTHOUR/LASTNAME

RETURN $a
</RESULT>

ANSWER

<RESULT>

<PUBLISHED> 1980 </PUBLISHED>

<LASTTNAME> Feynman<LASTNAME>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

<RESULT>

<PUBLISHED> 1981<PUBLISHED>

<LASTNAME>Narayan</LASTNAME>

</RESULT>

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 41

Example: Join & Aggregation
FOR $a IN DISTINCT

doc(www.ourbookstore.com/books.cml)/BOOKLIST/BOOK/AUTHOR

LET $t IN
doc(www.ourbookstore.com/books.cml)//BOOK/[AUTHOR=$a]/TITLE

RETURN
<RESULT>

$a/LASTNAME, <TotalBooks> count(distinct($t)) </TotalBooks>

</RESULT>
SORT BY (LASTNAME descending)

ANSWER (e.g.)

<RESULT>

<LASTTNAME>Narayan<LASTNAME>

<TotalBooks> 5 </TotalBooks>

</RESULT>

<RESULT>

<LASTNAME>Feynman</LASTNAME>

<TotalBooks> 2 </TotalBooks>

</RESULT>

CMPUT 391 – Database Management Systems University of AlbertaDr. Osmar Zaïane, 2001-2004 42

How to store and retrieve XML Data?

• Storing XML data in the file system

• Storing XML in BLOB/CLOB

• Native XML databases

• XML enabled databases

• Query Optimization

• Indexing XML Data
–Value Index (e.g. B+-tree)

–Structure Index (Path indexing)

Open Research Questions

