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Limitations of Relational Database Designs

• Provides a set of guidelines, does not result in a 
unique database schema

• Does not provide a way of evaluating alternative 
schemas

• Pitfalls:
– Repetition of information
– Inability to represent certain information
– Loss of information

¾Normalization theory provides a mechanism for 
analyzing and refining the schema produced by an 
E-R design
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Redundancy

• Dependencies between attributes cause 
redundancy
– Ex. All addresses in the same town have the 

same zip code

SSN Name Town Zip
1234     Joe       Stony Brook     11790
4321     Mary    Stony Brook     11790
5454     Tom     Stony Brook     11790

………………….

Redundancy
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Redundancy and Other Problems

• Set valued attributes in the E-R diagram result in 
multiple rows in corresponding table

• Example: PersonPerson (SSN, Name, Address, Hobbies)

– A person entity with multiple hobbies yields multiple 
rows in table PersonPerson

• Hence, the association between Nameand Address for the 
same person is stored redundantly

– SSNis key of entity set, but (SSN, Hobby) is key of 
corresponding relation

• The relationPersonPerson can’t describe people without hobbies
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Example

SSN      Name          Address          Hobby

1111    Joe        123 Main     biking
1111    Joe        123 Main     hiking

…………….

SSN     Name          Address              Hobby
1111    Joe        123 Main    {biking, hiking}

ER Model

Relational Model

Redundancy

Person

SIN AddressName

Hobbies
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Anomalies
• Redundancy leads to anomalies:

– Update anomaly: A change in Addressmust be 
made in several places

– Deletion anomaly: Suppose a person gives up 
all hobbies.  Do we:

• Set Hobby attribute to null?  No, since Hobbyis part 
of key

• Delete the entire row?  No, since we lose other 
information in the row

– Insertion anomaly: Hobbyvalue must be 
supplied for any inserted row since Hobbyis 
part of key
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Decomposition
• Solution: use two relations to store PersonPerson

information
–– Person1Person1 (SSN, Name, Address)
–– HobbiesHobbies (SSN, Hobby)

• The decomposition is more general: people 
with hobbies can now be described 

• No update anomalies:
– Name and address stored once
– A hobby  can  be separately supplied or 

deleted
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Normalization Theory

• Result of E-R analysis need further 
refinement

• Appropriate decomposition can solve 
problems

• The underlying theory is referred to as 
normalization theorynormalization theoryand is based on 
functional dependenciesfunctional dependencies(and other kinds, 
like multivalued multivalued dependenciesdependencies)
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Example

• Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

• Some functional dependencies on Hourly_Emps:
– ssnis the key:    S        SNLRWH 

– rating determineshrly_wages:    R       W

• Are there anomalies?

lot

name

Hourly Emps

ssn

hourly_wages

hours_worked

rating

→
→

ER Model

Relational Model
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Functional Dependencies
• Definition: A functional dependencyfunctional dependency(FD) on a relation 

schema R is a constraintX → Y, where X and Y are subsets 
of attributes of R.

• Definition : An FD X → Y is satisfiedsatisfiedin an instance r of  
R if for everypair of tuples, t and s:  if t and sagree on all 
attributes in X then they must agree on all attributes in Y

• Definition : A constrainton a relation schema R is a 
condition that has to be satisfied in every allowable 
instance of R.
¾ FDs must be identified based on semantics of application.
¾ Given a particular allowable instance r1 of R, we can check if it 

violates some FD f, but we cannot tell if f holds over the schema R!
¾ A key constraint is a special kind of functional dependency:  all 

attributes of relation occur on the right-hand side of the FD:
• SSN → SSN, Name, Address
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Functional Dependencies

• Address → ZipCode
– Stony Brook’s ZIP is 11733

• ArtistName → BirthYear
– Picasso was born in 1881

• Autobrand → Manufacturer, Engine type
– Pontiac is built by General Motors with 

gasoline engine

• Author, Title → PublDate
– Shakespeare’s Hamlet published in 1600
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Functional Dependency - Example

• Brokerage firm allows multiple clients to share an 
account, but each account is managed from a single 
office and a client can have no more than one account in 
an office

–– HasAccountHasAccount (AcctNum, ClientId, OfficeId)
• keys  are (ClientId, OfficeId),  (AcctNum, ClientId) 

– ClientId, OfficeId→ AcctNum

– AcctNum→ OfficeId
• Thus, attribute values need not depend only on key values
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Entailment, Closure, Equivalence

• Definition : If F is a set of FDs on schema R and f is 
another FD on R, then F entailsentails f if every instance r of 
R that satisfies every FD inF also satisfies f
– Ex: F = {A → B, B→ C} and  f  is A → C

• If Streetaddr→ Town and Town → Zip thenStreetaddr→ Zip 

• Definition : The closureclosureof F, denoted F+, is the set of 
all FDs entailed by F

• Definition : F and G are equivalentequivalentif F entails G and G
entails F
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Entailment (cont’d)
• Satisfaction, entailment, and equivalence are semantic

concepts – defined in terms of the actual relations in the 
“real world.”  
– They define what these notions are, not how to compute them

• How to check if  F entails f or if F and G are equivalent?  
– Apply the respective definitions for all possible relations?

• Bad idea: might be infinite in number for infinite domains

• Even for finite domains, we have to look at relations of all arities

– Solution:  find algorithmic, syntacticways to compute these 
notions

• Important:  The syntactic solution must be “correct” with respect to the 
semantic definitions

• Correctness has two aspects: soundnesssoundnessand completenesscompleteness
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Armstrong’s Axioms for FDs

• This is the syntacticway of computing/testing 
the various properties of FDs 

• Reflexivity:  If Y ⊆ X then X → Y  (trivial FD)
– Name, Address→ Name

• Augmentation:  If X → Y  then X Z→ YZ
– If Town → Zip then Town, Name → Zip, Name

• Transitivity : If X → Y  and Y → Z then  X → Z
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Armstrong’s Axioms for FDs (cont.)

• Two more rules (which can be derived from the 
axioms) can be useful:

– Union: If X → Y  and X → Z then  X → YZ

– Decomposition: If X → YZ  then X → Y and

X → Z
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Soundness and Completeness

• Axioms are soundsound: If an FD  f: X→ Y can be 
derived from a set of FDs  F using the axioms, 
then  f holds in every relation that satisfies every 
FD in F.

• Axioms are completecomplete: If F entails f , then f can be 
derived from F using the axioms

• A consequence of completeness is the following 
(naïve) algorithm to determining if F entails f: 
–– AlgorithmAlgorithm: Use the axioms in all possible ways to 

generate F+ (the set of possible FD’s is finite so this can 
be done) and see if  f  is in F+

University  of AlbertaDr. Osmar Zaïane, 2004 18CMPUT 391 – Database Management Systems

Reflexivity

• If  Y       X,  then   X        Y

• R=(A,B,C,D,E)

⊆ →

Y

X
t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
πX(t1)= πX(t2) Î
a1 = a2,b1 = b2,c1 = c2,d1 = d2

πY(t1)= πY(t2)     Í
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Augmentation

• If  X       Y,  then   XZ        YZ for any Z

• R=(A,B,C,D,E)

→

Y

X

→

Z
t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
πXZ(t1)= πXZ(t2) Î
a1 = a2,b1 = b2,e1 = e2

Since X    Y and e1 = e2

then c1 = c2,d1 = d2,e1 = e2

πYZ(t1)= πYZ(t2)     

→

University  of AlbertaDr. Osmar Zaïane, 2004 20CMPUT 391 – Database Management Systems

Transitivity

• If  X       Y,  and Y Z then   X        Z

• R=(A,B,C,D,E)

→

Y

X

→

Z

→

t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2) 
assume X     Y and Y Z
πX(t1)= πX(t2) Î
a1 = a2,b1 = b2

Since X    Y then c1 = c2 ,d1 = d2

Î πY(t1)= πY(t2) 
Since Y   Y then e1 = e2 

Î πZ(t1)= πZ(t2)     

→ →

→

→
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Generating F+

F

AB→ C
AB→ BCD        

A→ D        AB→ BD                                 AB→ BCDE      AB→ CDE

D→ E           BCD → BCDE

Thus, AB→ BD, AB → BCD, AB → BCDE, and AB → CDE 
are all elements of F+

union
aug

trans

aug

decomp
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Attribute Closure

• Calculating attribute closureleads to a more 
efficient way of checking entailment

• The attribute closureattribute closureof a set of attributes,  X, 
with respect to a set of functional dependencies, 
F, (denoted X+

F) is the set of all attributes,  A, 
such that X → A
– X +F1 is not necessarily the same asX +F2 if F1 ≠ F2

• Attribute closure and entailment: 
–– AlgorithmAlgorithm: Given a set of FDs, F, then X → Y if and 

only if  X+
F ⊇ Y
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Example - Computing Attribute Closure

F: AB → C            
A → D
D → E
AC → B

X                 XF+

A            {A, D, E}
AB         {A, B, C, D, E}

(Hence AB is a key)

B            {B}
D            {D, E}

Is  AB → E entailed by F?    Yes
Is  D→ C  entailed by F?      No

Result:  XF
+ allows us to determine FDs  

of the formX → Y entailed byF
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Computation of Attribute Closure  X+
F

closure := X;               // since X ⊆ X+
F

repeat
old := closure;
if there is an FD  Z → V in F such that  

Z ⊆ closure and V ⊆ closure
then closure := closure ∪ V

until old = closure

– If T ⊆ closure then X → T is entailed by F
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Example: Computation of Attribute Closure

AB → C    (a)         
A → D      (b)
D → E      (c)
AC → B    (d)

Problem: Compute the attribute closure of AB with 
respect to the set of FDs:

Initially closure = {AB}
Using (a) closure = {ABC}
Using (b) closure = {ABCD}
Using (c) closure = {ABCDE}

Solution:
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Normal Forms
• Each normal form is a set of conditions on a schema 

that guarantees certain properties (relating to 
redundancy and update anomalies)

• First normal form (1NF) is the same as the definition 
of relational model (relations = sets of tuples; each 
tuple = sequence of atomic values)

• Second normal form (2NF): no non-key attribute is 
dependent on part of a key; has no practical or 
theoretical value – won’t discuss

• The two commonly used normal forms are third third 
normal formnormal form(3NF) and BoyceBoyce--Codd Codd normal formnormal form
(BCNF)
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BCNF

• Definition : A relation schema R is in BCNF if 
for every FD X→ Y associated with R either

– Y ⊆ X (i.e., the FD is trivial) or

– X is a superkey of R

• Example:  Person1Person1(SSN, Name, Address)
– The only FD is SSN→ Name, Address

– Since SSNis a key, Person1Person1 is in BCNF
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(non) BCNF Examples

•• PersonPerson (SSN, Name, Address, Hobby)
– The FD  SSN → Name, Address does notsatisfy 

requirements of BCNF 
• since the key is (SSN, Hobby)

•• HasAccountHasAccount (AccountNumber, ClientId, OfficeId)
– The FD AcctNum→ OfficeId does notsatisfy BCNF 

requirements 
• since keys are (ClientId, OfficeId) and (AcctNum, ClientId)
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Redundancy
• Suppose R has a FD A → B.  If an instance has 2 rows with 

same value in A, they must also have same value in B (=> 
redundancy, if the A-valuerepeats twice)

• If A is a superkey, there cannot be two rows with same 
value of A
– Hence, BCNF eliminates redundancy

SSN → Name, Address

SSN  Name Address       Hobby
1111   Joe      123 Main   stamps
1111   Joe      123 Main   coins

redundancy
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Third Normal Form
• A relational schema R is in 3NF if for 

every FD  X→ Y  associated with R either:

– Y ⊆ X (i.e., the FD is trivial); or

– X is a superkey of R; or

– Every A∈ Y is part of some key of R
• 3NF is weaker than BCNF (every schema 

that is in BCNF is also in 3NF)

BCNF 
conditions
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3NF Example

•• HasAccountHasAccount (AcctNum, ClientId, OfficeId)
– ClientId, OfficeId→ AcctNum

• OK since LHS contains a  key

– AcctNum→ OfficeId

• OK since RHS is part of a key

•• HasAccountHasAccount is in 3NF but it might still contain 
redundant information due to AcctNum Æ OfficeId
(which is not allowed by BCNF)
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3NF Example
•• HasAccountHasAccount might store redundant data:

ClientId             OfficeId                   AcctNum

1111          Stony Brook       28315
2222          Stony Brook           28315
3333          Stony Brook           28315

ClientId        AcctNum

1111          28315
2222          28315
3333          28315

BCNF (only trivial FDs)

• Decompose to eliminate redundancy:

OfficeId             AcctNum

Stony Brook     28315

BCNF: AcctNumis key
FD: AcctNum→ OfficeId

3NF:OfficeIdpart of key
FD: AcctNum→ OfficeId

redundancy
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3NF (Non) Example
•• PersonPerson (SSN, Name, Address, Hobby)

– (SSN, Hobby) is the only key.

– SSN→ Name violates 3NF conditions 
since Nameis not part of a key and SSN
is not a superkey
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Decompositions
• Goal:  Eliminate redundancy by 

decomposing a relation into several 
relations in a higher normal form

• Decomposition must be losslesslossless: it must be 
possible to reconstruct the original relation 
from the relations in the decomposition

• We will see why
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Decomposition
• Schema R = (R, F)

– R is set a of attributes
– F is a set of functional dependencies over R

• Each key is described by a FD

• The decompositiondecompositionof schemaof schemaR is a collection of 
schemasRi = (Ri, Fi) where
– R = ∪i Ri for all i (no new attributes)
– Fi is a set of functional dependences involving only 

attributes of  Ri

– F entails Fi for all i  (no new FDs)

• The decomposition of an instancedecomposition of an instance, r , of R is a set 
of relations r i = πRi(r ) for all i
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Example Decomposition

Schema (R, F) where
R = { SSN, Name, Address, Hobby}
F = { SSN→ Name, Address}

can be decomposed into
R1 = { SSN, Name, Address}
F1 = { SSN → Name, Address}

and 
R2 = { SSN, Hobby}
F2 = { }
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Lossless Schema Decomposition

• A decomposition should not lose information
• A decomposition (R1,…,Rn) of a schema, R, is 

losslesslosslessif every valid instance, r , of R can be 
reconstructed from its components:

• where each  r i = πRi(r )

r = r 1 r 2 r n……
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Lossy Decomposition

r ⊆ r 1 r 2 ... r n

SSN  Name       Address SSN    Name Name Address

1111  Joe        1 Pine         1111 Joe         Joe        1 Pine
2222  Alice     2 Oak         2222  Alice     Alice     2 Oak
3333  Alice     3 Pine         3333 Alice     Alice     3 Pine

r ⊇ r 1 r 2 r n...

r 1 r 2r ⊇

The following is always the case(Think why?):

But the following is not always true:

Example:

The tuples(2222, Alice, 3 Pine)and (3333, Alice, 2 Oak)are  in the join, 
but not in the original
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Lossy Decompositions: 
What is Actually Lost?

• In the previous example, the tuples (2222, Alice, 3 
Pine) and (3333, Alice, 2 Oak) were gained, not lost!  
– Why do we say that the decomposition was lossy?

• What was lost is information:
– That  2222 lives at  2 Oak:  In the decomposition, 2222 can 

live at either 2 Oak or 3 Pine

– That  3333 lives at  3 Pine:  In the decomposition, 3333 can 
live at either 2 Oak or 3 Pine
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Testing for Losslessness
• A (binary) decomposition of  R = (R, F)

into R1 = (R1, F1) and R2 = (R2, F2) is 
lossless if and only if:
– either the FD

• (R1 ∩ R2 ) → R1 is in  F+

– or the FD
• (R1 ∩ R2 ) → R2 is in  F+

Intuitively: the attributes common to R1 and R2

must contain a key for either R1 or R2.



University  of AlbertaDr. Osmar Zaïane, 2004 41CMPUT 391 – Database Management Systems

Example
Schema (R, F) where

R = { SSN, Name, Address, Hobby}
F = { SSN → Name, Address}

can be decomposed into
R1 = { SSN, Name, Address}
F1 = { SSN → Name, Address}

and 
R2 = { SSN, Hobby}
F2 = { }

Since R1 ∩ R2 = SSN  and SSN → R1  the
decomposition is lossless
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Intuition Behind the Test for 
Losslessness

• Suppose R1 ∩ R2 → R2 .  Then a row of r1 
can combine with exactly one row of r 2  in 
the natural join (since in  r2 a particular set 
of values for the attributes in R1 ∩ R2
defines a unique row)

R1∩R2 R1∩R2

………….   a               a   ………...
…………    a               b   ………….
…………    b       c   ………….
…………    c

r 1 r 2
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Dependency Preservation
• Consider a decomposition of R = (R, F) into R1 = (R1, 

F1) and R2 = (R2, F2)
– An FD X → Y of F is in Fi iff  X ∪ Y ⊆ Ri

– An FD,  f ∈F may be in neither F1, nor F2, nor even 
(F1 ∪ F2)+

• Checking that  f is true in r 1 or r 2 is (relatively) easy
• Checking  f in  r1 r 2 is harder – requires a join
• Ideally:  want to check FDs locally, in r1 and r 2, and have 

a guarantee that every f ∈F holds in r 1 r 2

• The decomposition is dependency preservingdependency preservingiff the sets 
F and F1 ∪ F2 are equivalent:  F+ = (F1 ∪ F2)+

– Then checking all FDs in F, as r 1 and r 2 are updated, can  be 
done by checking F1 in r 1 and F2 in r 2
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Dependency Preservation

• If  f is an FD in F, but f is not in F1 ∪ F2,
there are two possibilities:
– f ∈ (F1 ∪ F2)+

• If the constraints in  F1 and F2 are maintained,  f
will be maintained automatically.

– f ∉ (F1 ∪ F2)+

• f can be checked only by first taking the join of r1

and r2.  This is costly.
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Example
Schema (R, F) where

R = { SSN, Name, Address, Hobby}
F = { SSN → Name, Address}

can be decomposed into
R1 = { SSN, Name, Address}
F1 = { SSN → Name, Address}

and 
R2 = { SSN, Hobby}
F2 = { }

Since F = F1 ∪ F2 the decomposition is
dependency preserving
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Example

• Schema: (ABC;  F) ,  F = {A Æ B, BÆ C, CÆ B}
• Decomposition:

– (AC, F1),  F1 = {AÆC}
• Note:  AÆC ∉ F, but in F+

– (BC, F2),  F2 = {BÆ C, CÆ B}

• A Æ B ∉ (F1  ∪ F2),  but  A Æ B ∈ (F1  ∪ F2)
+.

– So  F+ = (F1  ∪ F2)+  and thus the decompositions is 
still dependency preserving
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Example
•• HasAccountHasAccount (AccountNumber, ClientId, OfficeId)

f1: AccountNumber→ OfficeId
f2: ClientId, OfficeId→ AccountNumber

• Decomposition:
AcctOfficeAcctOffice = (AccountNumber, OfficeId;  {AccountNumber→ OfficeId})
AcctClientAcctClient = (AccountNumber, ClientId;   {})

• Decomposition islossless:  R1∩ R2= {AccountNumber} and 
AccountNumber→ OfficeId

• In BCNF

• Not dependency preserving:  f2 ∉ (F1 ∪ F2)+

•• HasAccountHasAccountdoes nothave BCNF decompositions that are both 
lossless and dependency preserving!(Check, eg, by enumeration)

• Hence:  BCNF+lossless+dependency preserving  decompositions 
are not always possible!
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BCNF Decomposition Algorithm

Input:  R = (R; F)

Decomp:= R
while there is S= (S; F’) ∈ Decomp and Snot in BCNF do 

Find X → Y ∈ F’ that violates BCNF //X isn’t a superkey in S
ReplaceS in Decomp with  S1 = (XY; F1),  S2 = (S -(Y - X); F2)
// F1 = all FDs of F’ involving only attributes of  XY 
// F2 = all FDs of F’ involving only attributes of  S - (Y - X)

end
return Decomp
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Example
Given: R = (R; T) where R= ABCDEFGH and 

T = {ABH→ C, A→ DE, BGH→ F, F→ ADH, BH→ GE}
step 1:  Find a FD that violates BCNF

Not ABH → C since (ABH)+ includes all attributes 
(BH is a key)

A → DE violates BCNF since A is not a superkey (A+ =ADE)
step 2:  Split R into: 

R1 = (ADE, {A→ DE })
R2 = (ABCFGH; {ABH→ C, BGH→ F, F→ AH , BH→ G})
Note 1:  R1 is in BCNF
Note 2:  Decomposition islosslesssince A is a key of R1.

Note 3: FDsF → D and BH → E are not in T1 or T2. But
both can be derived from T1∪ T2

(E.g., F→ A  and A→ D implies F→ D)
Hence, decomposition is dependency preserving.
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Properties of BCNF Decomposition Algorithm

Let X → Y violate BCNF inR = (R,F) and R1 = (R1,F1),
R2 = (R2,F2) is the resulting decomposition. Then:

• There are fewer violationsof BCNF in R1 and R2 than 
there were in R
– X → Y  implies X is a key of R1

– Hence X → Y ∈ F1 does not violate BCNF in R1 and, since   
X → Y ∉F2, does not violate BCNF in R2 either

– Suppose f  is X· → Y· and  f ∈ F doesn’t violate BCNF in R.
I f  f ∈ F1 or F2 it does not violate BCNF in R1 or R2 either 
since X· is a superkey of R and hence also of R1 and R2 .

• The decomposition is lossless
– Since F1 ∩ F2 = X
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Example (con’t)

Given: R2 = (ABCFGH; { ABH→C, BGH→F, F→AH, BH→G})
step 1:  Find a FD that violates BCNF.

Not ABH → C or BGH → F, since BH is a key of R2
F→ AH  violates BCNF since F is not a superkey (F+ =AH)

step 2:  Split R2 into: 
R21 = (FAH, {F → AH})
R22 = (BCFG; {})

Note 1: Both R21 and R22 are in BCNF.
Note 2: The decomposition is lossless (since F is a key of R21)
Note 3: FDsABH→ C, BGH→ F, BH→ G  are not in T21

or  T22 , and they can’t be derived from T1 ∪ T21 ∪ T22 .
Hence the decomposition is not dependency-preserving
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Properties of BCNF Decomposition 
Algorithm

• A BCNF decomposition is not necessarily
dependency preserving 

• But alwayslossless

• BCNF+lossless+dependency preserving is 
sometimes unachievable (recallHasAccountHasAccount)
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Third Normal Form
• Compromise  – Not all redundancy 

removed, but dependency preserving 
decompositions are alwayspossible (and, of 
course, lossless)

• 3NF decomposition is based on a minimal 
cover
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Minimal Cover
• A minimal coverminimal coverof a set of dependencies, T, is a set of 

dependencies, U, such that:
– U is equivalent to T    (T+ = U+)

– All FDs in U have the form X → A where A is a single 
attribute

– It is not possible to make U smaller (while preserving 
equivalence) by

• Deleting an FD

• Deleting an attribute from an FD  (either from LHS or RHS)

– FDs and attributes that can be deleted in this way are called 
redundantredundant
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Computing Minimal Cover
• Example: T = { ABH → CK, A → D, C → E,

BGH → F, F → AD, E → F, BH → E}

• step 1: Make RHS of each FD into a single attribute
– Algorithm:  Use the decomposition inference rule for FDs
– Example:F → AD replaced by F → A, F → D ;   ABH →CK by 

ABH →C, ABH →K

• step 2: Eliminate redundant attributes from LHS.  
– Algorithm: If FD XB → A ∈ T  (where B is a single attribute) 

and X → A is entailed by T, then B was unnecessary 
– Example: Can an attribute be deleted from ABH → C ?  

• Compute AB+
T, AH+

T, BH+
T. 

• Since C ∈ (BH)+
T , BH → C  is entailed by T and A is redundant in 

ABH → C.

University  of AlbertaDr. Osmar Zaïane, 2004 56CMPUT 391 – Database Management Systems

Computing Minimal Cover (con’t)
• step 3: Delete redundant FDs from T

– Algorithm:  If T - { f} entails  f, then  f  is redundant
• If f  is X → A then check if A ∈ X+

T-{f}

– Example:BGH → F is entailed by E → F,  BH → E,
so it is redundant

• Note:  Steps 2 and 3 cannot be reversed!! 
See the textbook for a counterexample
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Synthesizing a 3NF Schema

• step 1: Compute a minimal cover, U, of T.  The 
decomposition is based on U, but since U+ = T+

the same functional dependencies will hold
– A minimal cover for                                             

T={ ABH→CK, A→D, C→E, BGH→F, F→AD, 
E→ F, BH → E}

is

U={ BH→C, BH→K, A→D, C→E, F→A, E→F}

Starting with a schema R = (R, T)

University  of AlbertaDr. Osmar Zaïane, 2004 58CMPUT 391 – Database Management Systems

Synthesizing a 3NF schema (con’t)

• step 2: Partition U into sets U1, U2, … Un

such that the LHS of all elements of Ui are the 
same
– U1 = { BH → C, BH → K} , U2 = { A → D} , 

U3 = { C → E} , U4 = { F → A} , U5 = { E → F}
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Synthesizing a 3NF schema (con’t)

• step 3: For each Ui form schema Ri = (Ri, Ui), 
where Ri  is the set of all attributes mentioned in 
Ui

– Each FD of U will be in some Ri.  Hence the 
decomposition is dependency preserving

– R1 = (BHC;  BH → C, BH → K),  R2 = (AD;  A → D),     
R3 = (CE;  C → E),  R4 = (FA;  F → A),                      
R5 = (EF;  E → F)
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Synthesizing a 3NF schema (con’t)

• step 4: If no Ri is a superkey of R, add schema R0 = 
(R0,{}) where R0 is a key of R.
– R0 = (BGH, {})

• R0  might be needed when not all attributes are necessarily 
contained in R1∪R2 …∪Rn

– A missing attribute, A, must be part of all keys 
(since it’s not in any FD of U, deriving a key constraint from U
involves the augmentation axiom)

• R0  might be needed even if all attributes are accounted for in 
R1∪R2 …∪Rn

– Example:  (ABCD; {AÆB, CÆD}).  Step 3 decomposition: 
R1 = (AB; {AÆB}),  R2 =  (CD; {CÆD}).  Lossy! Need to add 
(AC; { }), for losslessness

– Step 4 guarantees lossless decomposition.
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BCNF Design Strategy

• The resulting decomposition, R0, R1, … Rn , is 
– Dependency preserving (since every FD in U is a FD of 

some schema)
– Lossless (although this is not obvious)
– In 3NF (although this is not obvious)

• Strategy for decomposing a relation
– Use 3NF decomposition first to get lossless, 

dependency preserving decomposition
– If any resulting schema is not in BCNF, split it using 

the BCNF algorithm (but this may yield a non-
dependency preserving result)
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Normalization Drawbacks

• By limiting redundancy, normalization  helps 
maintain consistency and saves space

• But performance of querying can suffer because 
related information that was stored in a single 
relation is now distributed among several

• Example:  A join is required to get the names and 
grades of all students taking CS305 in S2002.

6(/(&7� S.Name, T.Grade
)520 StudentStudent S, TranscriptTranscript T
:+(5( S.Id = T.StudId $1'

T.CrsCode= ‘CS305’  $1' T.Semester= ‘S2002’ 
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Denormalization
• Tradeoff:  Judiciouslyintroduce redundancy to improve 

performance of certain queries
• Example:  Add attribute Nameto TranscriptTranscript

– Join is avoided
– If queries are asked more frequently than TranscriptTranscript

is modified, added redundancy might  improve 
average performance

– But, TranscriptTranscript·· is no longer in BCNF since key is 
(StudId, CrsCode, Semester) and StudId→ Name

6(/(&7 T.Name, T.Grade
)520� TranscriptTranscript·· T
:+(5(��T.CrsCode= ‘CS305’  $1' T.Semester= ‘S2002’

University  of AlbertaDr. Osmar Zaïane, 2004 64CMPUT 391 – Database Management Systems

Fourth Normal Form

• Relation has redundant data 

• Yet it is in BCNF (since there are no non-trivial FDs)

• Redundancy is due to set valued attributes (in the E-R 
sense), not because of the FDs

SSN        PhoneN         ChildSSN

111111    123-4444     222222
111111    123-4444     333333
222222    987-6666     444444
222222    555-5555     444444

redundancy
PersonPerson
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Multi-Valued Dependency

• Problem: multi-valued (or binary join) dependency
– Definition : If every instance of schema R can be (losslessly) 

decomposed using attribute sets (X, Y) such that:

r = π X (r )          π Y (r )

then a multimulti--valued dependencyvalued dependency
R = π X (R)         π Y (R)

holds in r

Ex: PersonPerson=πSSN,PhoneN(PersonPerson)           π SSN,ChildSSN(PersonPerson)
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Fourth Normal Form (4NF)

• A schema is in fourth normal formfourth normal form(4NF) if for 

every non-trivial multi-valued dependency:

R = X       Y
either:

- X ⊆ Yor Y ⊆ X  (trivial case); or
- X ∩ Y is a superkey of R  (i.e., X ∩ Y→ R )
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Fourth Normal Form (Cont’d)

• Intuition: if X ∩ Y→ R, there is a unique row 
in relation r for each value of X ∩ Y (hence 
no redundancy)
– Ex: SSNdoes not uniquely determine PhoneNor 

ChildSSN, thus PersonPerson is not in 4NF.

• Solution: Decompose R into X and Y
– Decomposition is lossless – but not necessarily 

dependency preserving (since 4NF implies BCNF 
– next)
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4NF Implies BCNF
• Suppose R is in 4NF and X → Y is an FD.

– R1 = XY,  R2 = R-Yis a lossless decomposition of  R

– Thus R has the multi-valued dependency:

R = R1        R2

– Since R is in 4NF, one of the following must hold :
- XY⊆ R – Y    (an impossibility)
- R – Y ⊆ XY  (i.e.,  R = XY and X is a superkey)
- XY ∩ R – Y   (= X)   is a superkey

– Hence X → Y satisfies BCNF condition


