
University of AlbertaDr. Osmar Zaïane, 2004 1CMPUT 391 – Database Management Systems

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2004

CMPUT 391: Database Design Theory

Chapter 8
of Textbook

Based on slides by Lewis, Bernstein and Kifer.

or Relational Normalization Theory

Lecture 2

University of AlbertaDr. Osmar Zaïane, 2004 2CMPUT 391 – Database Management Systems

Limitations of Relational Database Designs

• Provides a set of guidelines, does not result in a
unique database schema

• Does not provide a way of evaluating alternative
schemas

• Pitfalls:
– Repetition of information
– Inability to represent certain information
– Loss of information

¾Normalization theory provides a mechanism for
analyzing and refining the schema produced by an
E-R design

University of AlbertaDr. Osmar Zaïane, 2004 3CMPUT 391 – Database Management Systems

Redundancy

• Dependencies between attributes cause
redundancy
– Ex. All addresses in the same town have the

same zip code

SSN Name Town Zip
1234 Joe Stony Brook 11790
4321 Mary Stony Brook 11790
5454 Tom Stony Brook 11790

………………….

Redundancy

University of AlbertaDr. Osmar Zaïane, 2004 4CMPUT 391 – Database Management Systems

Redundancy and Other Problems

• Set valued attributes in the E-R diagram result in
multiple rows in corresponding table

• Example: PersonPerson (SSN, Name, Address, Hobbies)

– A person entity with multiple hobbies yields multiple
rows in table PersonPerson

• Hence, the association between Nameand Address for the
same person is stored redundantly

– SSNis key of entity set, but (SSN, Hobby) is key of
corresponding relation

• The relationPersonPerson can’t describe people without hobbies

University of AlbertaDr. Osmar Zaïane, 2004 5CMPUT 391 – Database Management Systems

Example

SSN Name Address Hobby

1111 Joe 123 Main biking
1111 Joe 123 Main hiking

…………….

SSN Name Address Hobby
1111 Joe 123 Main {biking, hiking}

ER Model

Relational Model

Redundancy

Person

SIN AddressName

Hobbies

University of AlbertaDr. Osmar Zaïane, 2004 6CMPUT 391 – Database Management Systems

Anomalies
• Redundancy leads to anomalies:

– Update anomaly: A change in Addressmust be
made in several places

– Deletion anomaly: Suppose a person gives up
all hobbies. Do we:

• Set Hobby attribute to null? No, since Hobbyis part
of key

• Delete the entire row? No, since we lose other
information in the row

– Insertion anomaly: Hobbyvalue must be
supplied for any inserted row since Hobbyis
part of key

University of AlbertaDr. Osmar Zaïane, 2004 7CMPUT 391 – Database Management Systems

Decomposition
• Solution: use two relations to store PersonPerson

information
–– Person1Person1 (SSN, Name, Address)
–– HobbiesHobbies (SSN, Hobby)

• The decomposition is more general: people
with hobbies can now be described

• No update anomalies:
– Name and address stored once
– A hobby can be separately supplied or

deleted

University of AlbertaDr. Osmar Zaïane, 2004 8CMPUT 391 – Database Management Systems

Normalization Theory

• Result of E-R analysis need further
refinement

• Appropriate decomposition can solve
problems

• The underlying theory is referred to as
normalization theorynormalization theoryand is based on
functional dependenciesfunctional dependencies(and other kinds,
like multivalued multivalued dependenciesdependencies)

University of AlbertaDr. Osmar Zaïane, 2004 9CMPUT 391 – Database Management Systems

Example

• Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

• Some functional dependencies on Hourly_Emps:
– ssnis the key: S SNLRWH

– rating determineshrly_wages: R W

• Are there anomalies?

lot

name

Hourly Emps

ssn

hourly_wages

hours_worked

rating

→
→

ER Model

Relational Model

University of AlbertaDr. Osmar Zaïane, 2004 10CMPUT 391 – Database Management Systems

Functional Dependencies
• Definition: A functional dependencyfunctional dependency(FD) on a relation

schema R is a constraintX → Y, where X and Y are subsets
of attributes of R.

• Definition : An FD X → Y is satisfiedsatisfiedin an instance r of
R if for everypair of tuples, t and s: if t and sagree on all
attributes in X then they must agree on all attributes in Y

• Definition : A constrainton a relation schema R is a
condition that has to be satisfied in every allowable
instance of R.
¾ FDs must be identified based on semantics of application.
¾ Given a particular allowable instance r1 of R, we can check if it

violates some FD f, but we cannot tell if f holds over the schema R!
¾ A key constraint is a special kind of functional dependency: all

attributes of relation occur on the right-hand side of the FD:
• SSN → SSN, Name, Address

University of AlbertaDr. Osmar Zaïane, 2004 11CMPUT 391 – Database Management Systems

Functional Dependencies

• Address → ZipCode
– Stony Brook’s ZIP is 11733

• ArtistName → BirthYear
– Picasso was born in 1881

• Autobrand → Manufacturer, Engine type
– Pontiac is built by General Motors with

gasoline engine

• Author, Title → PublDate
– Shakespeare’s Hamlet published in 1600

University of AlbertaDr. Osmar Zaïane, 2004 12CMPUT 391 – Database Management Systems

Functional Dependency - Example

• Brokerage firm allows multiple clients to share an
account, but each account is managed from a single
office and a client can have no more than one account in
an office

–– HasAccountHasAccount (AcctNum, ClientId, OfficeId)
• keys are (ClientId, OfficeId), (AcctNum, ClientId)

– ClientId, OfficeId→ AcctNum

– AcctNum→ OfficeId
• Thus, attribute values need not depend only on key values

University of AlbertaDr. Osmar Zaïane, 2004 13CMPUT 391 – Database Management Systems

Entailment, Closure, Equivalence

• Definition : If F is a set of FDs on schema R and f is
another FD on R, then F entailsentails f if every instance r of
R that satisfies every FD inF also satisfies f
– Ex: F = {A → B, B→ C} and f is A → C

• If Streetaddr→ Town and Town → Zip thenStreetaddr→ Zip

• Definition : The closureclosureof F, denoted F+, is the set of
all FDs entailed by F

• Definition : F and G are equivalentequivalentif F entails G and G
entails F

University of AlbertaDr. Osmar Zaïane, 2004 14CMPUT 391 – Database Management Systems

Entailment (cont’d)
• Satisfaction, entailment, and equivalence are semantic

concepts – defined in terms of the actual relations in the
“real world.”
– They define what these notions are, not how to compute them

• How to check if F entails f or if F and G are equivalent?
– Apply the respective definitions for all possible relations?

• Bad idea: might be infinite in number for infinite domains

• Even for finite domains, we have to look at relations of all arities

– Solution: find algorithmic, syntacticways to compute these
notions

• Important: The syntactic solution must be “correct” with respect to the
semantic definitions

• Correctness has two aspects: soundnesssoundnessand completenesscompleteness

University of AlbertaDr. Osmar Zaïane, 2004 15CMPUT 391 – Database Management Systems

Armstrong’s Axioms for FDs

• This is the syntacticway of computing/testing
the various properties of FDs

• Reflexivity: If Y ⊆ X then X → Y (trivial FD)
– Name, Address→ Name

• Augmentation: If X → Y then X Z→ YZ
– If Town → Zip then Town, Name → Zip, Name

• Transitivity : If X → Y and Y → Z then X → Z

University of AlbertaDr. Osmar Zaïane, 2004 16CMPUT 391 – Database Management Systems

Armstrong’s Axioms for FDs (cont.)

• Two more rules (which can be derived from the
axioms) can be useful:

– Union: If X → Y and X → Z then X → YZ

– Decomposition: If X → YZ then X → Y and

X → Z

University of AlbertaDr. Osmar Zaïane, 2004 17CMPUT 391 – Database Management Systems

Soundness and Completeness

• Axioms are soundsound: If an FD f: X→ Y can be
derived from a set of FDs F using the axioms,
then f holds in every relation that satisfies every
FD in F.

• Axioms are completecomplete: If F entails f , then f can be
derived from F using the axioms

• A consequence of completeness is the following
(naïve) algorithm to determining if F entails f:
–– AlgorithmAlgorithm: Use the axioms in all possible ways to

generate F+ (the set of possible FD’s is finite so this can
be done) and see if f is in F+

University of AlbertaDr. Osmar Zaïane, 2004 18CMPUT 391 – Database Management Systems

Reflexivity

• If Y X, then X Y

• R=(A,B,C,D,E)

⊆ →

Y

X
t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
πX(t1)= πX(t2) Î
a1 = a2,b1 = b2,c1 = c2,d1 = d2

πY(t1)= πY(t2) Í

University of AlbertaDr. Osmar Zaïane, 2004 19CMPUT 391 – Database Management Systems

Augmentation

• If X Y, then XZ YZ for any Z

• R=(A,B,C,D,E)

→

Y

X

→

Z
t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
πXZ(t1)= πXZ(t2) Î
a1 = a2,b1 = b2,e1 = e2

Since X Y and e1 = e2

then c1 = c2,d1 = d2,e1 = e2

πYZ(t1)= πYZ(t2)

→

University of AlbertaDr. Osmar Zaïane, 2004 20CMPUT 391 – Database Management Systems

Transitivity

• If X Y, and Y Z then X Z

• R=(A,B,C,D,E)

→

Y

X

→

Z

→

t1 =(a1,b1,c1,d1,e1)
t2 =(a2,b2,c2,d2,e2)
assume X Y and Y Z
πX(t1)= πX(t2) Î
a1 = a2,b1 = b2

Since X Y then c1 = c2 ,d1 = d2

Î πY(t1)= πY(t2)
Since Y Y then e1 = e2

Î πZ(t1)= πZ(t2)

→ →

→

→

University of AlbertaDr. Osmar Zaïane, 2004 21CMPUT 391 – Database Management Systems

Generating F+

F

AB→ C
AB→ BCD

A→ D AB→ BD AB→ BCDE AB→ CDE

D→ E BCD → BCDE

Thus, AB→ BD, AB → BCD, AB → BCDE, and AB → CDE
are all elements of F+

union
aug

trans

aug

decomp

University of AlbertaDr. Osmar Zaïane, 2004 22CMPUT 391 – Database Management Systems

Attribute Closure

• Calculating attribute closureleads to a more
efficient way of checking entailment

• The attribute closureattribute closureof a set of attributes, X,
with respect to a set of functional dependencies,
F, (denoted X+

F) is the set of all attributes, A,
such that X → A
– X +F1 is not necessarily the same asX +F2 if F1 ≠ F2

• Attribute closure and entailment:
–– AlgorithmAlgorithm: Given a set of FDs, F, then X → Y if and

only if X+
F ⊇ Y

University of AlbertaDr. Osmar Zaïane, 2004 23CMPUT 391 – Database Management Systems

Example - Computing Attribute Closure

F: AB → C
A → D
D → E
AC → B

X XF+

A {A, D, E}
AB {A, B, C, D, E}

(Hence AB is a key)

B {B}
D {D, E}

Is AB → E entailed by F? Yes
Is D→ C entailed by F? No

Result: XF
+ allows us to determine FDs

of the formX → Y entailed byF

University of AlbertaDr. Osmar Zaïane, 2004 24CMPUT 391 – Database Management Systems

Computation of Attribute Closure X+
F

closure := X; // since X ⊆ X+
F

repeat
old := closure;
if there is an FD Z → V in F such that

Z ⊆ closure and V ⊆ closure
then closure := closure ∪ V

until old = closure

– If T ⊆ closure then X → T is entailed by F

University of AlbertaDr. Osmar Zaïane, 2004 25CMPUT 391 – Database Management Systems

Example: Computation of Attribute Closure

AB → C (a)
A → D (b)
D → E (c)
AC → B (d)

Problem: Compute the attribute closure of AB with
respect to the set of FDs:

Initially closure = {AB}
Using (a) closure = {ABC}
Using (b) closure = {ABCD}
Using (c) closure = {ABCDE}

Solution:

University of AlbertaDr. Osmar Zaïane, 2004 26CMPUT 391 – Database Management Systems

Normal Forms
• Each normal form is a set of conditions on a schema

that guarantees certain properties (relating to
redundancy and update anomalies)

• First normal form (1NF) is the same as the definition
of relational model (relations = sets of tuples; each
tuple = sequence of atomic values)

• Second normal form (2NF): no non-key attribute is
dependent on part of a key; has no practical or
theoretical value – won’t discuss

• The two commonly used normal forms are third third
normal formnormal form(3NF) and BoyceBoyce--Codd Codd normal formnormal form
(BCNF)

University of AlbertaDr. Osmar Zaïane, 2004 27CMPUT 391 – Database Management Systems

BCNF

• Definition : A relation schema R is in BCNF if
for every FD X→ Y associated with R either

– Y ⊆ X (i.e., the FD is trivial) or

– X is a superkey of R

• Example: Person1Person1(SSN, Name, Address)
– The only FD is SSN→ Name, Address

– Since SSNis a key, Person1Person1 is in BCNF

University of AlbertaDr. Osmar Zaïane, 2004 28CMPUT 391 – Database Management Systems

(non) BCNF Examples

•• PersonPerson (SSN, Name, Address, Hobby)
– The FD SSN → Name, Address does notsatisfy

requirements of BCNF
• since the key is (SSN, Hobby)

•• HasAccountHasAccount (AccountNumber, ClientId, OfficeId)
– The FD AcctNum→ OfficeId does notsatisfy BCNF

requirements
• since keys are (ClientId, OfficeId) and (AcctNum, ClientId)

University of AlbertaDr. Osmar Zaïane, 2004 29CMPUT 391 – Database Management Systems

Redundancy
• Suppose R has a FD A → B. If an instance has 2 rows with

same value in A, they must also have same value in B (=>
redundancy, if the A-valuerepeats twice)

• If A is a superkey, there cannot be two rows with same
value of A
– Hence, BCNF eliminates redundancy

SSN → Name, Address

SSN Name Address Hobby
1111 Joe 123 Main stamps
1111 Joe 123 Main coins

redundancy

University of AlbertaDr. Osmar Zaïane, 2004 30CMPUT 391 – Database Management Systems

Third Normal Form
• A relational schema R is in 3NF if for

every FD X→ Y associated with R either:

– Y ⊆ X (i.e., the FD is trivial); or

– X is a superkey of R; or

– Every A∈ Y is part of some key of R
• 3NF is weaker than BCNF (every schema

that is in BCNF is also in 3NF)

BCNF
conditions

University of AlbertaDr. Osmar Zaïane, 2004 31CMPUT 391 – Database Management Systems

3NF Example

•• HasAccountHasAccount (AcctNum, ClientId, OfficeId)
– ClientId, OfficeId→ AcctNum

• OK since LHS contains a key

– AcctNum→ OfficeId

• OK since RHS is part of a key

•• HasAccountHasAccount is in 3NF but it might still contain
redundant information due to AcctNum Æ OfficeId
(which is not allowed by BCNF)

University of AlbertaDr. Osmar Zaïane, 2004 32CMPUT 391 – Database Management Systems

3NF Example
•• HasAccountHasAccount might store redundant data:

ClientId OfficeId AcctNum

1111 Stony Brook 28315
2222 Stony Brook 28315
3333 Stony Brook 28315

ClientId AcctNum

1111 28315
2222 28315
3333 28315

BCNF (only trivial FDs)

• Decompose to eliminate redundancy:

OfficeId AcctNum

Stony Brook 28315

BCNF: AcctNumis key
FD: AcctNum→ OfficeId

3NF:OfficeIdpart of key
FD: AcctNum→ OfficeId

redundancy

University of AlbertaDr. Osmar Zaïane, 2004 33CMPUT 391 – Database Management Systems

3NF (Non) Example
•• PersonPerson (SSN, Name, Address, Hobby)

– (SSN, Hobby) is the only key.

– SSN→ Name violates 3NF conditions
since Nameis not part of a key and SSN
is not a superkey

University of AlbertaDr. Osmar Zaïane, 2004 34CMPUT 391 – Database Management Systems

Decompositions
• Goal: Eliminate redundancy by

decomposing a relation into several
relations in a higher normal form

• Decomposition must be losslesslossless: it must be
possible to reconstruct the original relation
from the relations in the decomposition

• We will see why

University of AlbertaDr. Osmar Zaïane, 2004 35CMPUT 391 – Database Management Systems

Decomposition
• Schema R = (R, F)

– R is set a of attributes
– F is a set of functional dependencies over R

• Each key is described by a FD

• The decompositiondecompositionof schemaof schemaR is a collection of
schemasRi = (Ri, Fi) where
– R = ∪i Ri for all i (no new attributes)
– Fi is a set of functional dependences involving only

attributes of Ri

– F entails Fi for all i (no new FDs)

• The decomposition of an instancedecomposition of an instance, r , of R is a set
of relations r i = πRi(r) for all i

University of AlbertaDr. Osmar Zaïane, 2004 36CMPUT 391 – Database Management Systems

Example Decomposition

Schema (R, F) where
R = { SSN, Name, Address, Hobby}
F = { SSN→ Name, Address}

can be decomposed into
R1 = { SSN, Name, Address}
F1 = { SSN → Name, Address}

and
R2 = { SSN, Hobby}
F2 = { }

University of AlbertaDr. Osmar Zaïane, 2004 37CMPUT 391 – Database Management Systems

Lossless Schema Decomposition

• A decomposition should not lose information
• A decomposition (R1,…,Rn) of a schema, R, is

losslesslosslessif every valid instance, r , of R can be
reconstructed from its components:

• where each r i = πRi(r)

r = r 1 r 2 r n……

University of AlbertaDr. Osmar Zaïane, 2004 38CMPUT 391 – Database Management Systems

Lossy Decomposition

r ⊆ r 1 r 2 ... r n

SSN Name Address SSN Name Name Address

1111 Joe 1 Pine 1111 Joe Joe 1 Pine
2222 Alice 2 Oak 2222 Alice Alice 2 Oak
3333 Alice 3 Pine 3333 Alice Alice 3 Pine

r ⊇ r 1 r 2 r n...

r 1 r 2r ⊇

The following is always the case(Think why?):

But the following is not always true:

Example:

The tuples(2222, Alice, 3 Pine)and (3333, Alice, 2 Oak)are in the join,
but not in the original

University of AlbertaDr. Osmar Zaïane, 2004 39CMPUT 391 – Database Management Systems

Lossy Decompositions:
What is Actually Lost?

• In the previous example, the tuples (2222, Alice, 3
Pine) and (3333, Alice, 2 Oak) were gained, not lost!
– Why do we say that the decomposition was lossy?

• What was lost is information:
– That 2222 lives at 2 Oak: In the decomposition, 2222 can

live at either 2 Oak or 3 Pine

– That 3333 lives at 3 Pine: In the decomposition, 3333 can
live at either 2 Oak or 3 Pine

University of AlbertaDr. Osmar Zaïane, 2004 40CMPUT 391 – Database Management Systems

Testing for Losslessness
• A (binary) decomposition of R = (R, F)

into R1 = (R1, F1) and R2 = (R2, F2) is
lossless if and only if:
– either the FD

• (R1 ∩ R2) → R1 is in F+

– or the FD
• (R1 ∩ R2) → R2 is in F+

Intuitively: the attributes common to R1 and R2

must contain a key for either R1 or R2.

University of AlbertaDr. Osmar Zaïane, 2004 41CMPUT 391 – Database Management Systems

Example
Schema (R, F) where

R = { SSN, Name, Address, Hobby}
F = { SSN → Name, Address}

can be decomposed into
R1 = { SSN, Name, Address}
F1 = { SSN → Name, Address}

and
R2 = { SSN, Hobby}
F2 = { }

Since R1 ∩ R2 = SSN and SSN → R1 the
decomposition is lossless

University of AlbertaDr. Osmar Zaïane, 2004 42CMPUT 391 – Database Management Systems

Intuition Behind the Test for
Losslessness

• Suppose R1 ∩ R2 → R2 . Then a row of r1
can combine with exactly one row of r 2 in
the natural join (since in r2 a particular set
of values for the attributes in R1 ∩ R2
defines a unique row)

R1∩R2 R1∩R2

…………. a a ………...
………… a b ………….
………… b c ………….
………… c

r 1 r 2

University of AlbertaDr. Osmar Zaïane, 2004 43CMPUT 391 – Database Management Systems

Dependency Preservation
• Consider a decomposition of R = (R, F) into R1 = (R1,

F1) and R2 = (R2, F2)
– An FD X → Y of F is in Fi iff X ∪ Y ⊆ Ri

– An FD, f ∈F may be in neither F1, nor F2, nor even
(F1 ∪ F2)+

• Checking that f is true in r 1 or r 2 is (relatively) easy
• Checking f in r1 r 2 is harder – requires a join
• Ideally: want to check FDs locally, in r1 and r 2, and have

a guarantee that every f ∈F holds in r 1 r 2

• The decomposition is dependency preservingdependency preservingiff the sets
F and F1 ∪ F2 are equivalent: F+ = (F1 ∪ F2)+

– Then checking all FDs in F, as r 1 and r 2 are updated, can be
done by checking F1 in r 1 and F2 in r 2

University of AlbertaDr. Osmar Zaïane, 2004 44CMPUT 391 – Database Management Systems

Dependency Preservation

• If f is an FD in F, but f is not in F1 ∪ F2,
there are two possibilities:
– f ∈ (F1 ∪ F2)+

• If the constraints in F1 and F2 are maintained, f
will be maintained automatically.

– f ∉ (F1 ∪ F2)+

• f can be checked only by first taking the join of r1

and r2. This is costly.

University of AlbertaDr. Osmar Zaïane, 2004 45CMPUT 391 – Database Management Systems

Example
Schema (R, F) where

R = { SSN, Name, Address, Hobby}
F = { SSN → Name, Address}

can be decomposed into
R1 = { SSN, Name, Address}
F1 = { SSN → Name, Address}

and
R2 = { SSN, Hobby}
F2 = { }

Since F = F1 ∪ F2 the decomposition is
dependency preserving

University of AlbertaDr. Osmar Zaïane, 2004 46CMPUT 391 – Database Management Systems

Example

• Schema: (ABC; F) , F = {A Æ B, BÆ C, CÆ B}
• Decomposition:

– (AC, F1), F1 = {AÆC}
• Note: AÆC ∉ F, but in F+

– (BC, F2), F2 = {BÆ C, CÆ B}

• A Æ B ∉ (F1 ∪ F2), but A Æ B ∈ (F1 ∪ F2)
+.

– So F+ = (F1 ∪ F2)+ and thus the decompositions is
still dependency preserving

University of AlbertaDr. Osmar Zaïane, 2004 47CMPUT 391 – Database Management Systems

Example
•• HasAccountHasAccount (AccountNumber, ClientId, OfficeId)

f1: AccountNumber→ OfficeId
f2: ClientId, OfficeId→ AccountNumber

• Decomposition:
AcctOfficeAcctOffice = (AccountNumber, OfficeId; {AccountNumber→ OfficeId})
AcctClientAcctClient = (AccountNumber, ClientId; {})

• Decomposition islossless: R1∩ R2= {AccountNumber} and
AccountNumber→ OfficeId

• In BCNF

• Not dependency preserving: f2 ∉ (F1 ∪ F2)+

•• HasAccountHasAccountdoes nothave BCNF decompositions that are both
lossless and dependency preserving!(Check, eg, by enumeration)

• Hence: BCNF+lossless+dependency preserving decompositions
are not always possible!

University of AlbertaDr. Osmar Zaïane, 2004 48CMPUT 391 – Database Management Systems

BCNF Decomposition Algorithm

Input: R = (R; F)

Decomp:= R
while there is S= (S; F’) ∈ Decomp and Snot in BCNF do

Find X → Y ∈ F’ that violates BCNF //X isn’t a superkey in S
ReplaceS in Decomp with S1 = (XY; F1), S2 = (S -(Y - X); F2)
// F1 = all FDs of F’ involving only attributes of XY
// F2 = all FDs of F’ involving only attributes of S - (Y - X)

end
return Decomp

University of AlbertaDr. Osmar Zaïane, 2004 49CMPUT 391 – Database Management Systems

Example
Given: R = (R; T) where R= ABCDEFGH and

T = {ABH→ C, A→ DE, BGH→ F, F→ ADH, BH→ GE}
step 1: Find a FD that violates BCNF

Not ABH → C since (ABH)+ includes all attributes
(BH is a key)

A → DE violates BCNF since A is not a superkey (A+ =ADE)
step 2: Split R into:

R1 = (ADE, {A→ DE })
R2 = (ABCFGH; {ABH→ C, BGH→ F, F→ AH , BH→ G})
Note 1: R1 is in BCNF
Note 2: Decomposition islosslesssince A is a key of R1.

Note 3: FDsF → D and BH → E are not in T1 or T2. But
both can be derived from T1∪ T2

(E.g., F→ A and A→ D implies F→ D)
Hence, decomposition is dependency preserving.

University of AlbertaDr. Osmar Zaïane, 2004 50CMPUT 391 – Database Management Systems

Properties of BCNF Decomposition Algorithm

Let X → Y violate BCNF inR = (R,F) and R1 = (R1,F1),
R2 = (R2,F2) is the resulting decomposition. Then:

• There are fewer violationsof BCNF in R1 and R2 than
there were in R
– X → Y implies X is a key of R1

– Hence X → Y ∈ F1 does not violate BCNF in R1 and, since
X → Y ∉F2, does not violate BCNF in R2 either

– Suppose f is X· → Y· and f ∈ F doesn’t violate BCNF in R.
I f f ∈ F1 or F2 it does not violate BCNF in R1 or R2 either
since X· is a superkey of R and hence also of R1 and R2 .

• The decomposition is lossless
– Since F1 ∩ F2 = X

University of AlbertaDr. Osmar Zaïane, 2004 51CMPUT 391 – Database Management Systems

Example (con’t)

Given: R2 = (ABCFGH; { ABH→C, BGH→F, F→AH, BH→G})
step 1: Find a FD that violates BCNF.

Not ABH → C or BGH → F, since BH is a key of R2
F→ AH violates BCNF since F is not a superkey (F+ =AH)

step 2: Split R2 into:
R21 = (FAH, {F → AH})
R22 = (BCFG; {})

Note 1: Both R21 and R22 are in BCNF.
Note 2: The decomposition is lossless (since F is a key of R21)
Note 3: FDsABH→ C, BGH→ F, BH→ G are not in T21

or T22 , and they can’t be derived from T1 ∪ T21 ∪ T22 .
Hence the decomposition is not dependency-preserving

University of AlbertaDr. Osmar Zaïane, 2004 52CMPUT 391 – Database Management Systems

Properties of BCNF Decomposition
Algorithm

• A BCNF decomposition is not necessarily
dependency preserving

• But alwayslossless

• BCNF+lossless+dependency preserving is
sometimes unachievable (recallHasAccountHasAccount)

University of AlbertaDr. Osmar Zaïane, 2004 53CMPUT 391 – Database Management Systems

Third Normal Form
• Compromise – Not all redundancy

removed, but dependency preserving
decompositions are alwayspossible (and, of
course, lossless)

• 3NF decomposition is based on a minimal
cover

University of AlbertaDr. Osmar Zaïane, 2004 54CMPUT 391 – Database Management Systems

Minimal Cover
• A minimal coverminimal coverof a set of dependencies, T, is a set of

dependencies, U, such that:
– U is equivalent to T (T+ = U+)

– All FDs in U have the form X → A where A is a single
attribute

– It is not possible to make U smaller (while preserving
equivalence) by

• Deleting an FD

• Deleting an attribute from an FD (either from LHS or RHS)

– FDs and attributes that can be deleted in this way are called
redundantredundant

University of AlbertaDr. Osmar Zaïane, 2004 55CMPUT 391 – Database Management Systems

Computing Minimal Cover
• Example: T = { ABH → CK, A → D, C → E,

BGH → F, F → AD, E → F, BH → E}

• step 1: Make RHS of each FD into a single attribute
– Algorithm: Use the decomposition inference rule for FDs
– Example:F → AD replaced by F → A, F → D ; ABH →CK by

ABH →C, ABH →K

• step 2: Eliminate redundant attributes from LHS.
– Algorithm: If FD XB → A ∈ T (where B is a single attribute)

and X → A is entailed by T, then B was unnecessary
– Example: Can an attribute be deleted from ABH → C ?

• Compute AB+
T, AH+

T, BH+
T.

• Since C ∈ (BH)+
T , BH → C is entailed by T and A is redundant in

ABH → C.

University of AlbertaDr. Osmar Zaïane, 2004 56CMPUT 391 – Database Management Systems

Computing Minimal Cover (con’t)
• step 3: Delete redundant FDs from T

– Algorithm: If T - { f} entails f, then f is redundant
• If f is X → A then check if A ∈ X+

T-{f}

– Example:BGH → F is entailed by E → F, BH → E,
so it is redundant

• Note: Steps 2 and 3 cannot be reversed!!
See the textbook for a counterexample

University of AlbertaDr. Osmar Zaïane, 2004 57CMPUT 391 – Database Management Systems

Synthesizing a 3NF Schema

• step 1: Compute a minimal cover, U, of T. The
decomposition is based on U, but since U+ = T+

the same functional dependencies will hold
– A minimal cover for

T={ ABH→CK, A→D, C→E, BGH→F, F→AD,
E→ F, BH → E}

is

U={ BH→C, BH→K, A→D, C→E, F→A, E→F}

Starting with a schema R = (R, T)

University of AlbertaDr. Osmar Zaïane, 2004 58CMPUT 391 – Database Management Systems

Synthesizing a 3NF schema (con’t)

• step 2: Partition U into sets U1, U2, … Un

such that the LHS of all elements of Ui are the
same
– U1 = { BH → C, BH → K} , U2 = { A → D} ,

U3 = { C → E} , U4 = { F → A} , U5 = { E → F}

University of AlbertaDr. Osmar Zaïane, 2004 59CMPUT 391 – Database Management Systems

Synthesizing a 3NF schema (con’t)

• step 3: For each Ui form schema Ri = (Ri, Ui),
where Ri is the set of all attributes mentioned in
Ui

– Each FD of U will be in some Ri. Hence the
decomposition is dependency preserving

– R1 = (BHC; BH → C, BH → K), R2 = (AD; A → D),
R3 = (CE; C → E), R4 = (FA; F → A),
R5 = (EF; E → F)

University of AlbertaDr. Osmar Zaïane, 2004 60CMPUT 391 – Database Management Systems

Synthesizing a 3NF schema (con’t)

• step 4: If no Ri is a superkey of R, add schema R0 =
(R0,{}) where R0 is a key of R.
– R0 = (BGH, {})

• R0 might be needed when not all attributes are necessarily
contained in R1∪R2 …∪Rn

– A missing attribute, A, must be part of all keys
(since it’s not in any FD of U, deriving a key constraint from U
involves the augmentation axiom)

• R0 might be needed even if all attributes are accounted for in
R1∪R2 …∪Rn

– Example: (ABCD; {AÆB, CÆD}). Step 3 decomposition:
R1 = (AB; {AÆB}), R2 = (CD; {CÆD}). Lossy! Need to add
(AC; { }), for losslessness

– Step 4 guarantees lossless decomposition.

University of AlbertaDr. Osmar Zaïane, 2004 61CMPUT 391 – Database Management Systems

BCNF Design Strategy

• The resulting decomposition, R0, R1, … Rn , is
– Dependency preserving (since every FD in U is a FD of

some schema)
– Lossless (although this is not obvious)
– In 3NF (although this is not obvious)

• Strategy for decomposing a relation
– Use 3NF decomposition first to get lossless,

dependency preserving decomposition
– If any resulting schema is not in BCNF, split it using

the BCNF algorithm (but this may yield a non-
dependency preserving result)

University of AlbertaDr. Osmar Zaïane, 2004 62CMPUT 391 – Database Management Systems

Normalization Drawbacks

• By limiting redundancy, normalization helps
maintain consistency and saves space

• But performance of querying can suffer because
related information that was stored in a single
relation is now distributed among several

• Example: A join is required to get the names and
grades of all students taking CS305 in S2002.

6(/(&7� S.Name, T.Grade
)520 StudentStudent S, TranscriptTranscript T
:+(5(S.Id = T.StudId $1'

T.CrsCode= ‘CS305’ $1' T.Semester= ‘S2002’

University of AlbertaDr. Osmar Zaïane, 2004 63CMPUT 391 – Database Management Systems

Denormalization
• Tradeoff: Judiciouslyintroduce redundancy to improve

performance of certain queries
• Example: Add attribute Nameto TranscriptTranscript

– Join is avoided
– If queries are asked more frequently than TranscriptTranscript

is modified, added redundancy might improve
average performance

– But, TranscriptTranscript·· is no longer in BCNF since key is
(StudId, CrsCode, Semester) and StudId→ Name

6(/(&7 T.Name, T.Grade
)520� TranscriptTranscript·· T
:+(5(��T.CrsCode= ‘CS305’ $1' T.Semester= ‘S2002’

University of AlbertaDr. Osmar Zaïane, 2004 64CMPUT 391 – Database Management Systems

Fourth Normal Form

• Relation has redundant data

• Yet it is in BCNF (since there are no non-trivial FDs)

• Redundancy is due to set valued attributes (in the E-R
sense), not because of the FDs

SSN PhoneN ChildSSN

111111 123-4444 222222
111111 123-4444 333333
222222 987-6666 444444
222222 555-5555 444444

redundancy
PersonPerson

University of AlbertaDr. Osmar Zaïane, 2004 65CMPUT 391 – Database Management Systems

Multi-Valued Dependency

• Problem: multi-valued (or binary join) dependency
– Definition : If every instance of schema R can be (losslessly)

decomposed using attribute sets (X, Y) such that:

r = π X (r) π Y (r)

then a multimulti--valued dependencyvalued dependency
R = π X (R) π Y (R)

holds in r

Ex: PersonPerson=πSSN,PhoneN(PersonPerson) π SSN,ChildSSN(PersonPerson)

University of AlbertaDr. Osmar Zaïane, 2004 66CMPUT 391 – Database Management Systems

Fourth Normal Form (4NF)

• A schema is in fourth normal formfourth normal form(4NF) if for

every non-trivial multi-valued dependency:

R = X Y
either:

- X ⊆ Yor Y ⊆ X (trivial case); or
- X ∩ Y is a superkey of R (i.e., X ∩ Y→ R)

University of AlbertaDr. Osmar Zaïane, 2004 67CMPUT 391 – Database Management Systems

Fourth Normal Form (Cont’d)

• Intuition: if X ∩ Y→ R, there is a unique row
in relation r for each value of X ∩ Y (hence
no redundancy)
– Ex: SSNdoes not uniquely determine PhoneNor

ChildSSN, thus PersonPerson is not in 4NF.

• Solution: Decompose R into X and Y
– Decomposition is lossless – but not necessarily

dependency preserving (since 4NF implies BCNF
– next)

University of AlbertaDr. Osmar Zaïane, 2004 68CMPUT 391 – Database Management Systems

4NF Implies BCNF
• Suppose R is in 4NF and X → Y is an FD.

– R1 = XY, R2 = R-Yis a lossless decomposition of R

– Thus R has the multi-valued dependency:

R = R1 R2

– Since R is in 4NF, one of the following must hold :
- XY⊆ R – Y (an impossibility)
- R – Y ⊆ XY (i.e., R = XY and X is a superkey)
- XY ∩ R – Y (= X) is a superkey

– Hence X → Y satisfies BCNF condition

