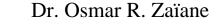
Lecture 2

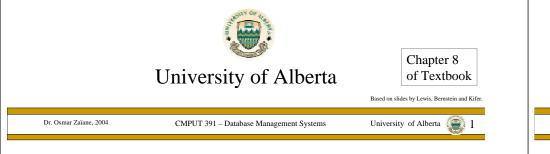
Database Management Systems

Winter 2004

CMPUT 391: Database Design Theory

or Relational Normalization Theory





Limitations of Relational Database Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Pitfalls:

Dr. Osmar Zaïane, 2004

- Repetition of information
- Inability to represent certain information
- Loss of information
- Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design

CMPUT 391 - Database Management Systems

Redundancy

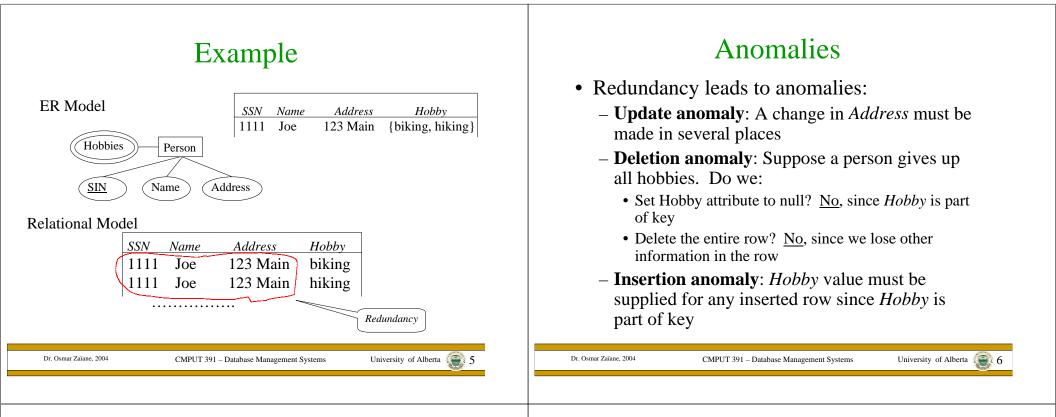
- Dependencies between attributes cause redundancy
 - Ex. All addresses in the same town have the same zip code

<i>SSN</i> 1234 4321 5454	Mary	Town Stony Brook Stony Brook Stony Brook	11790	Redundancy
smar Zaïane, 2004		CMPUT 391 – Database Mana	agement Systems	University of Alberta 💽 3

Redundancy and Other Problems

- Set valued attributes in the E-R diagram result in multiple rows in corresponding table
- Example: Person (SSN, Name, Address, Hobbies)
 - A person entity with multiple hobbies yields multiple rows in table Person
 - Hence, the association between *Name* and *Address* for the same person is stored redundantly
 - SSN is key of entity set, but (SSN, Hobby) is key of corresponding relation
 - The relation Person can't describe people without hobbies

```
Dr. Osmar Zaïane, 2004 CMPUT 391 – Database Management Systems
```

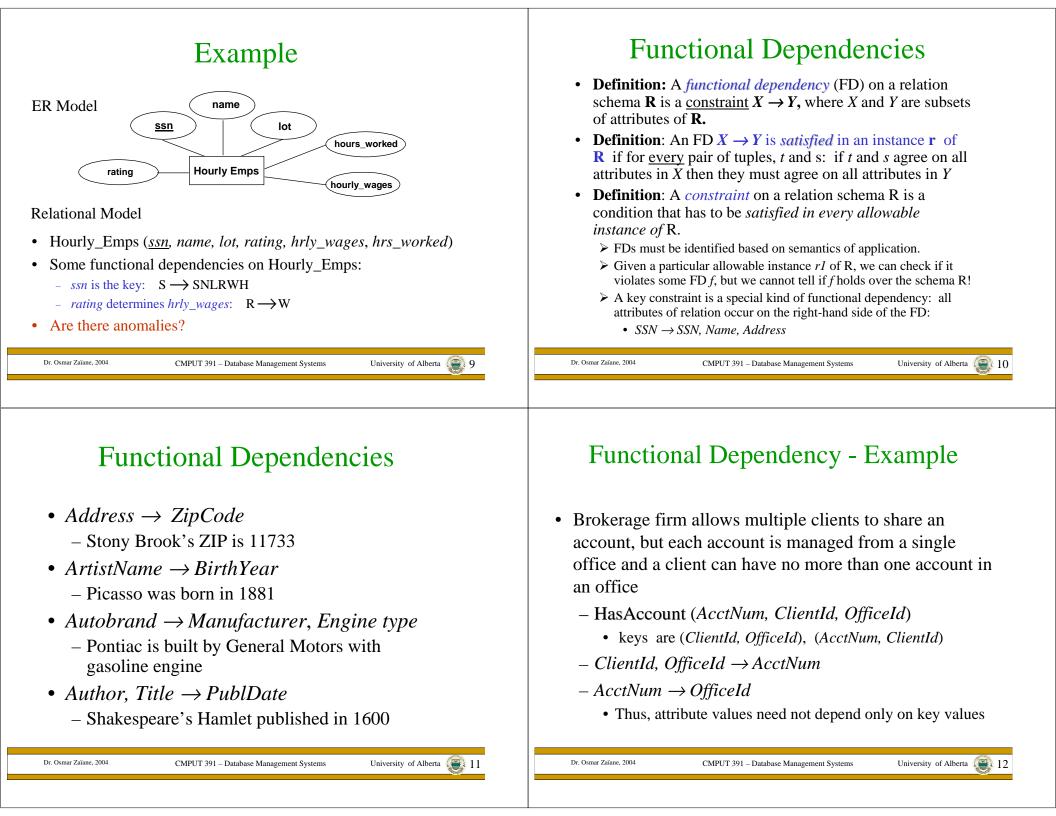
Decomposition

- **Solution**: use two relations to store Person information
 - Person1 (SSN, Name, Address)
 - Hobbies (SSN, Hobby)
- The decomposition is more general: people with hobbies can now be described
- No update anomalies:
 - Name and address stored once
 - A hobby can be separately supplied or deleted

University of Alberta

Normalization Theory

- Result of E-R analysis need further refinement
- Appropriate decomposition can solve problems
- The underlying theory is referred to as *normalization theory* and is based on *functional dependencies* (and other kinds, like *multivalued dependencies*)



Entailment, Closure, Equivalence

- Definition: If F is a set of FDs on schema R and f is another FD on R, then F entails f if every instance r of R that satisfies every FD in F also satisfies f
 - Ex: $F = \{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$
 - If *Streetaddr* \rightarrow *Town* and *Town* \rightarrow *Zip* then *Streetaddr* \rightarrow *Zip*
- **Definition**: The *closure* of *F*, denoted *F*⁺, is the set of all FDs entailed by *F*
- **Definition**: *F* and *G* are *equivalent* if *F* entails *G* and *G* entails *F*

Entailment (cont'd)

- Satisfaction, entailment, and equivalence are <u>semantic</u> concepts defined in terms of the actual relations in the "real world."
 - They define *what these notions are*, **not** how to compute them
- How to check if F entails f or if F and G are equivalent?
 - Apply the respective definitions for all possible relations?
 - Bad idea: might be infinite in number for infinite domains
 - Even for finite domains, we have to look at relations of all arities
 - Solution: find algorithmic, <u>syntactic</u> ways to compute these notions
 - *Important*: The syntactic solution must be "correct" with respect to the semantic definitions
 - Correctness has two aspects: soundness and completeness

Dr. Osmar Zaïane, 2004	CMPUT 391 – Database Management Systems	University of Alberta 💓 13	Dr. Osmar Zaïane, 2004	CMPUT 391 – Database Management Systems	University of Alberta 😰 14

Armstrong's Axioms for FDs

- This is the *syntactic* way of computing/testing the various properties of FDs
- **Reflexivity**: If $Y \subseteq X$ then $X \to Y$ (trivial FD) – *Name*, *Address* \to *Name*
- Augmentation: If $X \rightarrow Y$ then $X Z \rightarrow YZ$ - If $Town \rightarrow Zip$ then Town, $Name \rightarrow Zip$, Name
- **Transitivity**: If $X \to Y$ and $Y \to Z$ then $X \to Z$

Armstrong's Axioms for FDs (cont.)

- Two more rules (which can be derived from the axioms) can be useful:
 - **Union**: If $X \to Y$ and $X \to Z$ then $X \to YZ$
 - **Decomposition**: If $X \to YZ$ then $X \to Y$ and $X \to Z$

University of Alberta 🛞 15

Dr. Osmar Zaïane, 2004

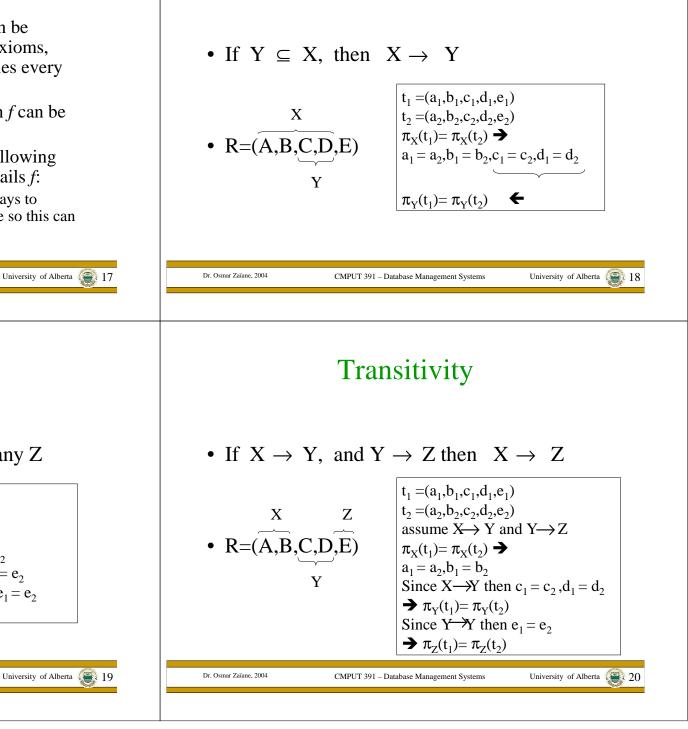
Soundness and Completeness

- Axioms are *sound*: If an FD *f*: X→ Y can be derived from a set of FDs *F* using the axioms, then *f* holds in every relation that satisfies every FD in *F*.
- Axioms are *complete*: If *F* entails *f*, then *f* can be derived from *F* using the axioms
- A consequence of completeness is the following (<u>naïve</u>) algorithm to determining if *F* entails *f*:
 - Algorithm: Use the axioms in all possible ways to generate F^+ (the set of possible FD's is finite so this can be done) and see if f is in F^+

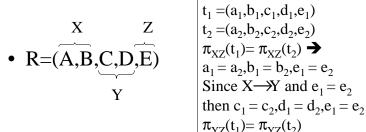
CMPUT 391 - Database Management Systems

Augmentation

Reflexivity

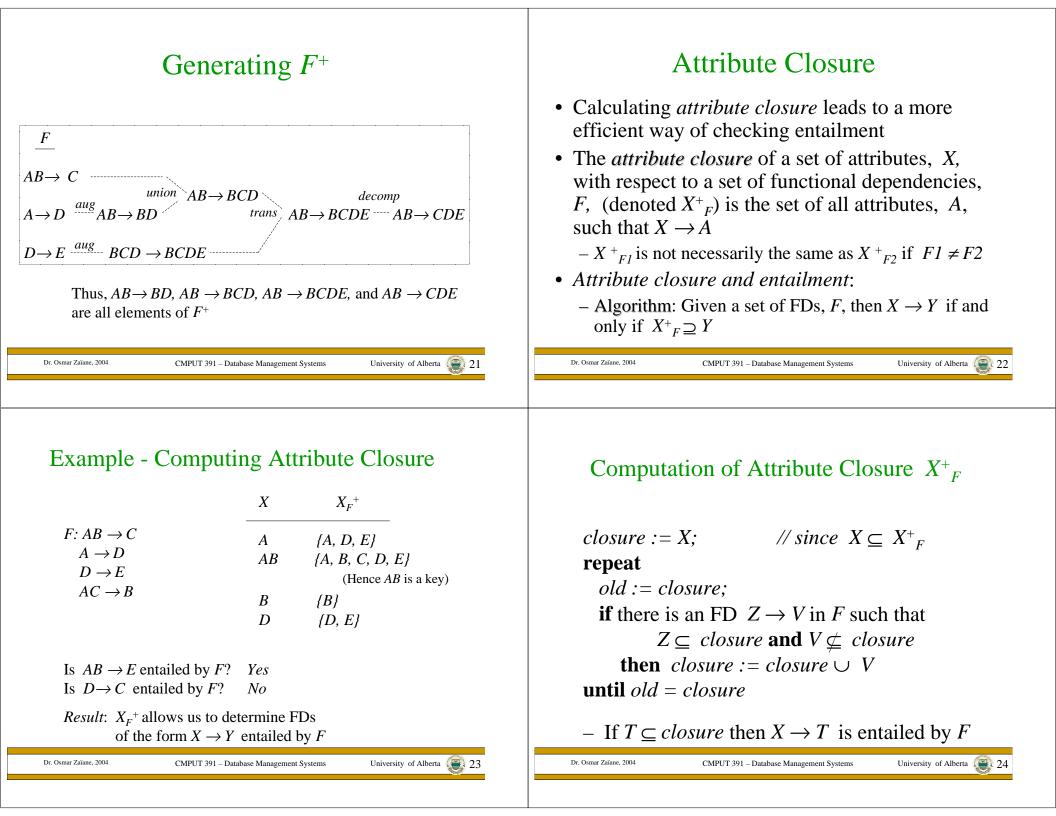


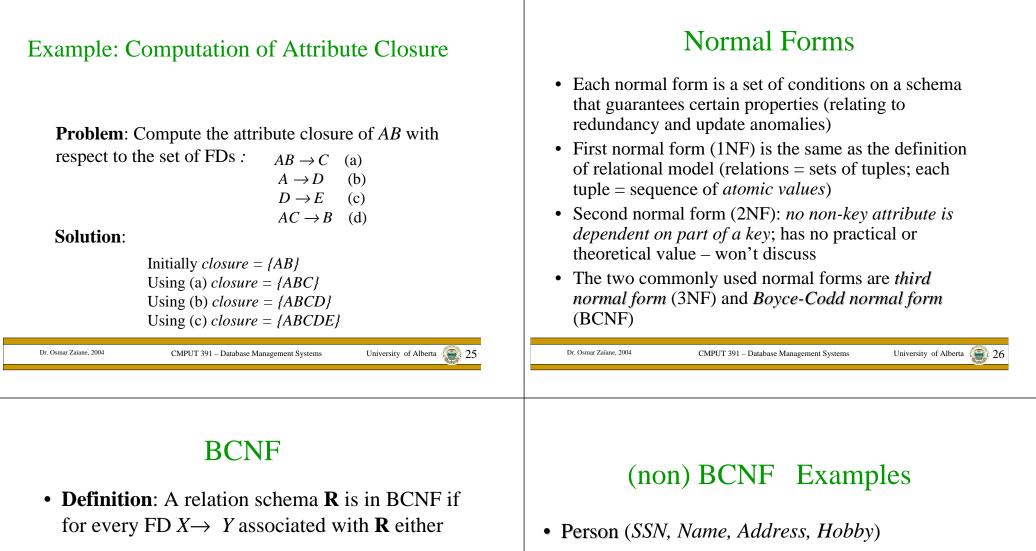
• If $X \to Y$, then $XZ \to YZ$ for any Z



Dr. Osmar Zaïane, 2004

Dr. Osmar Zaïane, 2004





- $-Y \subseteq X$ (i.e., the FD is trivial) or
- -X is a superkey of **R**
- Example: Person1(SSN, Name, Address)
 - The only FD is $SSN \rightarrow Name$, Address
 - Since SSN is a key, Person1 is in BCNF

Dr. Osmar Zaïane, 2004

- The FD $SSN \rightarrow Name$, Address does <u>not</u> satisfy requirements of BCNF
 - since the key is (SSN, Hobby)
- HasAccount (AccountNumber, ClientId, OfficeId)
 - The FD $AcctNum \rightarrow OfficeId$ does <u>not</u> satisfy BCNF requirements
 - since keys are (ClientId, OfficeId) and (AcctNum, ClientId)

Redundancy

Suppose **R** has a FD $A \rightarrow B$. If an instance has 2 rows with ٠ same value in A, they *must* also have same value in B (=)redundancy, if the A-value repeats twice)

redundancy		$SSN \rightarrow$	Name, Addres	'S
$\langle \rangle$	SSN	Name	Address	Hobby
	1111	Joe	123 Main	stamps
	1111	Joe	123 Main	coins

- If A is a superkey, there cannot be two rows with same value of A
 - Hence, BCNF eliminates redundancy

Third Normal Form

- A relational schema **R** is in 3NF if for every FD $X \rightarrow Y$ associated with **R** either:
 - $-Y \subseteq X$ (i.e., the FD is trivial); or
 - -X is a superkey of **R**; or

Dr. Osmar Zaïane, 2004

Dr. Osmar Zaïane, 2004

- -Every $A \in Y$ is part of some key of **R**
- 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF)

3NF Example

CMPUT 391 - Database Management Systems

- HasAccount (AcctNum, ClientId, OfficeId)
 - ClientId, OfficeId \rightarrow AcctNum
 - OK since LHS contains a key
 - AcctNum \rightarrow OfficeId
 - OK since RHS is part of a key
- HasAccount is in 3NF but it might still contain redundant information due to AcctNum \rightarrow OfficeId (which is not allowed by BCNF)

3NF Example

CMPUT 391 - Database Management Systems

• HasAccount might store redundant data:

ClientId	OfficeId	AcctNum	3NF: OfficeId part of key
1111	Stony Brook	28315	FD: AcctNum \rightarrow OfficeId
2222	Stony Brook	28315	_
3333	Stony Brook	28315	redundancy

• Decompose to eliminate redundancy:

<i>ClientId</i> 1111 2222 3333	AcctNum 28315 28315 28315	OfficeId Stony Brook BCNF: AcctNun FD: AcctNun	
BCNF (or	ly trivial FDs)	FD: AcctNur	$n \rightarrow OfficeId$

Dr. Osmar Zaïane, 2004

Dr. Osmar Zaïane, 2004

University of Alberta 31

University of Alberta

CMPUT 391 - Database Management Systems

BCNF conditions

3NF (Non) Example

- Person (SSN, Name, Address, Hobby)
 - (*SSN*, *Hobby*) is the only key.
 - SSN→Name violates 3NF conditions since Name is not part of a key and SSN is not a superkey

Decompositions

- **Goal**: Eliminate redundancy by decomposing a relation into several relations in a higher normal form
- Decomposition must be *lossless*: it must be possible to reconstruct the original relation from the relations in the decomposition

• We will see why

Dr. Osmar Zaïane, 2004 CMPUT 391 – Database Management Systems University of Alberta 💓 33	Dr. Osmar Zaïane, 2004 CMPUT 391 – Database Management Systems University of Alberta 34
Decomposition	
• Schema $\mathbf{R} = (R, F)$	Example Decomposition
 <i>R</i> is set a of attributes <i>F</i> is a set of functional dependencies over <i>R</i> Each key is described by a FD The <i>decomposition of schema</i> R is a collection of schemas R_i = (<i>R</i>_i, <i>F</i>_i) where <i>R</i> = ∪_i<i>R</i>_i for all <i>i</i> (<i>no new attributes</i>) <i>F</i>_i is a set of functional dependences involving only attributes of <i>R</i>_i <i>F</i> entails <i>F</i>_i for all <i>i</i> (<i>no new FDs</i>) The <i>decomposition of an instance</i>, r, of R is a set of relations r_i = π_{Ri}(r) for all <i>i</i> 	Schema (R, F) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ can be decomposed into $R_{1} = \{SSN, Name, Address\}$ $F_{1} = \{SSN \rightarrow Name, Address\}$ and $R_{2} = \{SSN, Hobby\}$ $F_{2} = \{\}$

Lossless Schema Decomposition

- A decomposition should not lose information
- A decomposition (R₁,...,R_n) of a schema, R, is *lossless* if every valid instance, r, of R can be reconstructed from its components:

$$\mathbf{r} = \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \dots \dots \bowtie \mathbf{r}_n$$

• where each $\mathbf{r}_i = \pi_{\mathbf{R}i}(\mathbf{r})$

Dr. Osmar Zaïane, 2004 CMPUT 391 – Database Management Systems

Lossy Decompositions: What is Actually Lost?

- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were *gained*, not lost!
 - Why do we say that the decomposition was lossy?
- What was lost is *information*:
 - That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either 2 Oak or 3 Pine
 - That 3333 lives at 3 Pine: *In the decomposition, 3333 can live at either 2 Oak or 3 Pine*

Lossy Decomposition

The following is always the case (Think why?):

 $\mathbf{r} \subseteq \mathbf{r}_1 \ \bowtie \ \mathbf{r}_2 \ \bowtie \ \ldots \ \bowtie \ \mathbf{r}_n$

But the following is not always true:

$$\mathbf{r} \supseteq \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \dots \bowtie \mathbf{r}_n$$

Example: **r**

 \mathbf{r}_1

SSN Name	Address	SSN Name Name Address
1111 Joe	1 Pine	1111 Joe Joe 1 Pine
2222 Alice	2 Oak	2222 Alice Alice 2 Oak
3333 Alice	3 Pine	3333 Alice Alice 3 Pine

⊉

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) *are in the join, but not in the original*

CMPUT 391 - Database Management Systems

Dr. Osmar Zaïane, 2004

University of Alberta

 \mathbf{r}_2

Testing for Losslessness

- A (binary) decomposition of $\mathbf{R} = (R, F)$ into $\mathbf{R}_1 = (R_1, F_1)$ and $\mathbf{R}_2 = (R_2, F_2)$ is lossless *if and only if*:
 - either the FD
 - $(R_1 \cap R_2) \rightarrow R_1$ is in F^+
 - or the FD
 - $(R_1 \cap R_2) \rightarrow R_2$ is in F^+

Intuitively: the attributes common to R_1 and R_2 must contain a key for either R_1 or R_2 .

University of Alberta 💽 39

University of Alberta

Dr. Osmar Zaïane, 2004

Example

Schema (R, F) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ can be decomposed into $R_1 = \{SSN, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$ and $R_2 = \{SSN, Hobby\}$ $F_2 = \{ \}$ Since $R_1 \cap R_2 = SSN$ and $SSN \rightarrow R_1$ the decomposition is lossless University of Alberta

Dr. Osmar Zaïane, 2004

CMPUT 391 - Database Management Systems

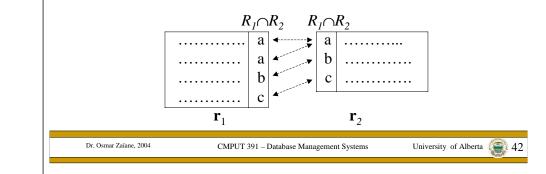
Dependency Preservation

- Consider a decomposition of $\mathbf{R} = (R, F)$ into $\mathbf{R}_1 = (R_1, F)$ F_1) and $\mathbf{R}_2 = (R_2, F_2)$
 - An FD $X \rightarrow Y$ of F is in F_i iff $X \cup Y \subseteq R_i$
 - An FD, $f \in F$ may be in neither F_1 , nor F_2 , nor even $(F_1 \cup F_2)^+$
 - Checking that f is true in \mathbf{r}_1 or \mathbf{r}_2 is (relatively) easy
 - Checking f in $\mathbf{r}_1 \bowtie \mathbf{r}_2$ is harder requires a join
 - *Ideally*: want to check FDs locally, in \mathbf{r}_1 and \mathbf{r}_2 , and have a guarantee that every $f \in F$ holds in $\mathbf{r}_1 \Join \mathbf{r}_2$
- The decomposition is *dependency preserving* iff the sets F and $F_1 \cup F_2$ are equivalent: $F^+ = (F_1 \cup F_2)^+$
 - Then checking all FDs in F, as \mathbf{r}_1 and \mathbf{r}_2 are updated, can be done by checking F_1 in \mathbf{r}_1 and F_2 in \mathbf{r}_2

University of Alberta

Intuition Behind the Test for Losslessness

• Suppose $R_1 \cap R_2 \rightarrow R_2$. Then a row of \mathbf{r}_1 can combine with exactly one row of \mathbf{r}_2 in the natural join (since in \mathbf{r}_2 a particular set of values for the attributes in $R_1 \cap R_2$ defines a unique row)



Dependency Preservation

- If f is an FD in F, but f is not in $F_1 \cup F_2$, there are two possibilities:
 - $-f \in (F_1 \cup F_2)^+$
 - If the constraints in F_1 and F_2 are maintained, fwill be maintained automatically.
 - $-f \notin (F_1 \cup F_2)^+$
 - f can be checked only by first taking the join of r_1 and r_2 . This is costly.

Example

Schema (*R*, *F*) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ can be decomposed into $R_1 = \{SSN, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$ and $R_2 = \{SSN, Hobby\}$ $F_2 = \{\}$ Since $F = F_1 \cup F_2$ the decomposition is dependency preserving

Dr. Osmar Zaïane, 2004

CMPUT 391 - Database Management Systems

University of Alberta 💽 45

Example

- Schema: (*ABC*; *F*), $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
- Decomposition: $-(AC, F_1), F_1 = \{A \rightarrow C\}$ • Note: $A \rightarrow C \notin F$, but in F^+ $-(BC, F_2), F_2 = \{B \rightarrow C, C \rightarrow B\}$
- A → B ∉ (F₁ ∪ F₂), but A → B ∈ (F₁ ∪ F₂)⁺.
 So F⁺ = (F₁ ∪ F₂)⁺ and thus the decompositions is still dependency preserving

. Osmar Zaïane, 2004	
----------------------	--

D

CMPUT 391 - Database Management Systems

Example

- HasAccount (AccountNumber, ClientId, OfficeId)
 f₁: AccountNumber → OfficeId
 f₂: ClientId, OfficeId → AccountNumber
- Decomposition: AcctOffice = (AccountNumber, OfficeId; {AccountNumber → OfficeId}) AcctClient = (AccountNumber, ClientId; {})
- Decomposition <u>is</u> lossless: $R_1 \cap R_2 = \{AccountNumber\}$ and $AccountNumber \rightarrow OfficeId$
- In BCNF
- <u>Not</u> dependency preserving: $f_2 \notin (F_1 \cup F_2)^+$
- HasAccount *does not* have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration)
- Hence: BCNF+lossless+dependency preserving decompositions are not always possible!

Dr. Osmar Zaïane, 2004

University of Alberta (20) 47

BCNF Decomposition Algorithm

Input: $\mathbf{R} = (R; F)$

Decomp := **R** while there is $\mathbf{S} = (S; F') \in Decomp$ and **S** not in BCNF **do** Find $X \to Y \in F'$ that violates BCNF // X isn't a superkey in **S** Replace **S** in Decomp with $\mathbf{S}_1 = (XY; F_1)$, $\mathbf{S}_2 = (S - (Y - X); F_2)$ // $F_1 = all FDs \text{ of } F' \text{ involving only attributes of } XY$ // $F_2 = all FDs \text{ of } F' \text{ involving only attributes of } S - (Y - X)$ end

return Decomp

Example

Given: $\mathbf{R} = (R; T)$ where $R = ABCDEFGH$ and
$T = \{ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow F, F \rightarrow ADH, BH \rightarrow GE\}$
step 1: Find a FD that violates BCNF
Not $ABH \rightarrow C$ since $(ABH)^+$ includes all attributes
(BH is a key)
$A \rightarrow DE$ violates BCNF since A is not a superkey (A ⁺ =ADE)
step 2: Split R into:
$\mathbf{R}_1 = (ADE, \{A \to DE\})$
$\mathbf{R}_2 = (ABCFGH; \{ABH \rightarrow C, BGH \rightarrow F, F \rightarrow AH, BH \rightarrow G\})$
Note 1: \mathbf{R}_1 is in BCNF
Note 2: Decomposition is <i>lossless</i> since A is a key of \mathbf{R}_{1} .
Note 3: FDs $F \to D$ and $BH \to E$ are not in T_1 or T_2 . But
both can be derived from $T_1 \cup T_2$
$(E.g., F \rightarrow A \text{ and } A \rightarrow D \text{ implies } F \rightarrow D)$
Hence, decomposition is dependency preserving.
Dr. Osmar Zaiane, 2004 CMPUT 391 – Database Management Systems University of Alberta 📿 49

Dr. Osmar Zaïane, 2004

University of Alberta 🚛 49

Properties of BCNF Decomposition Algorithm

Let $X \to Y$ violate BCNF in $\mathbf{R} = (R, F)$ and $\mathbf{R}_1 = (R_1, F_2)$, $\mathbf{R}_2 = (R_2, F_2)$ is the resulting decomposition. Then:

- There are *fewer violations* of BCNF in \mathbf{R}_1 and \mathbf{R}_2 than there were in **R**
 - $-X \rightarrow Y$ implies X is a key of **R**₁
 - Hence $X \rightarrow Y \in F_1$ does not violate BCNF in **R**₁ and, since $X \rightarrow Y \notin F_2$, does not violate BCNF in **R**₂ either
 - Suppose f is $X' \rightarrow Y'$ and $f \in F$ doesn't violate BCNF in **R**. If $f \in F_1$ or F_2 it does not violate BCNF in \mathbf{R}_1 or \mathbf{R}_2 either since X' is a superkey of **R** and hence also of \mathbf{R}_1 and \mathbf{R}_2 .
- The decomposition is *lossless*

dependency preserving

• But *always* lossless

- Since $F_1 \cap F_2 = X$

Dr. Osmar Zaïane, 2004

CMPUT 391 - Database Management Systems

Properties of BCNF Decomposition

Algorithm

• A BCNF decomposition is *not necessarily*

• BCNF+lossless+dependency preserving is

sometimes unachievable (recall HasAccount)

University of Alberta

Example (con't)

Given: $\mathbf{R}_{2} = (ABCFGH; \{ABH \rightarrow C, BGH \rightarrow F, F \rightarrow AH, BH \rightarrow G\})$ step 1: Find a FD that violates BCNF.

Not $ABH \rightarrow C$ or $BGH \rightarrow F$, since BH is a key of \mathbf{R}_2

 $F \rightarrow AH$ violates BCNF since F is not a superkey ($F^+ = AH$) step 2: Split R₂ into:

 $\mathbf{R}_{21} = (FAH, \{F \rightarrow AH\})$ $\mathbf{R}_{22} = (BCFG; \{\})$

Note 1: Both \mathbf{R}_{21} and \mathbf{R}_{22} are in BCNF.

Note 2: The decomposition is *lossless* (since F is a key of \mathbf{R}_{21}) Note 3: FDs $ABH \rightarrow C$, $BGH \rightarrow F$, $BH \rightarrow G$ are not in T_{21}

> or T_{22} , and they can't be derived from $T_1 \cup T_{21} \cup T_{22}$. Hence the decomposition is *not* dependency-preserving

Dr. Osmar Zaïane, 2004

51

Third Normal Form

- Compromise Not all redundancy removed, but dependency preserving decompositions are <u>always</u> possible (and, of course, lossless)
- 3NF decomposition is based on a *minimal cover*

Minimal Cover

- A *minimal cover* of a set of dependencies, *T*, is a set of dependencies, *U*, such that:
 - U is equivalent to T $(T^+ = U^+)$
 - All FDs in *U* have the form $X \rightarrow A$ where *A* is a single attribute
 - It is not possible to make U smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)
 - FDs and attributes that can be deleted in this way are called *redundant*

```
Dr. Osmar Zaïane, 2004
```

CMPUT 391 - Database Management Systems

University of Alberta 🚑 54

Computing Minimal Cover

CMPUT 391 - Database Management Systems

University of Alberta

University of Alberta

- **Example**: $T = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow F, F \rightarrow AD, E \rightarrow F, BH \rightarrow E\}$
- step 1: Make RHS of each FD into a single attribute
 - Algorithm: Use the decomposition inference rule for FDs
 - Example: $F \rightarrow AD$ replaced by $F \rightarrow A, F \rightarrow D$; $ABH \rightarrow CK$ by $ABH \rightarrow C$, $ABH \rightarrow K$
- step 2: Eliminate redundant attributes from LHS.
 - *Algorithm*: If FD $XB \rightarrow A \in T$ (where *B* is a single attribute) and $X \rightarrow A$ is entailed by *T*, then *B* was unnecessary
 - Example: Can an attribute be deleted from $ABH \rightarrow C$?
 - Compute AB^+_{T} , AH^+_{T} , BH^+_{T} .
 - Since $C \in (BH)^+_T$, $BH \to C$ is entailed by *T* and *A* is redundant in $ABH \to C$.

Dr. Osmar Zaïane, 2004

Dr. Osmar Zaïane, 2004

55

Computing Minimal Cover (con't)

- **step 3**: Delete redundant FDs from *T*
 - Algorithm: If $T \{f\}$ entails f, then f is redundant
 - If f is $X \to A$ then check if $A \in X^+_{T-\{f\}}$
 - Example: $BGH \rightarrow F$ is entailed by $E \rightarrow F$, $BH \rightarrow E$, so it is redundant
- *Note*: Steps 2 and 3 cannot be reversed!! See the textbook for a counterexample

Synthesizing a 3NF Schema

Starting with a schema $\mathbf{R} = (R, T)$

- **step 1**: Compute a minimal cover, *U*, of *T*. The decomposition is based on *U*, but since $U^+ = T^+$ the same functional dependencies will hold
 - A minimal cover for $T=\{ABH\rightarrow CK, A\rightarrow D, C\rightarrow E, BGH\rightarrow F, F\rightarrow AD, E\rightarrow F, BH\rightarrow E\}$ is

 $U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, F \rightarrow A, E \rightarrow F\}$

Synthesizing a 3NF schema (con't)

step 2: Partition U into sets U₁, U₂, ... U_n such that the LHS of all elements of U_i are the same

$$\begin{split} &-U_1=\{BH\rightarrow C,\,BH\rightarrow K\},\,U_2=\{A\rightarrow D\},\\ &U_3=\{C\rightarrow E\},\,U_4=\{F\rightarrow A\},\,U_5=\{E\rightarrow F\} \end{split}$$

Synthesizing a 3NF schema (con't)

- step 3: For each U_i form schema R_i = (R_i, U_i), where R_i is the set of all attributes mentioned in U_i
 - Each FD of U will be in some \mathbf{R}_{i} . Hence the decomposition is *dependency preserving*

$$-\mathbf{R}_{1} = (BHC; BH \to C, BH \to K), \mathbf{R}_{2} = (AD; A \to D),$$

$$\mathbf{R}_{3} = (CE; C \to E), \mathbf{R}_{4} = (FA; F \to A),$$

$$\mathbf{R}_{5} = (EF; E \to F)$$

Synthesizing a 3NF schema (con't)

- step 4: If no R_i is a superkey of **R**, add schema $\mathbf{R}_0 = (R_0, \{\})$ where R_0 is a key of **R**.
 - $\mathbf{R}_0 = (BGH, \{\})$
 - \mathbf{R}_0 might be needed when not all attributes are necessarily contained in $R_1 \cup R_2 \ldots \cup R_n$
 - A missing attribute, A, must be part of all keys
 (since it's not in any FD of U, deriving a key constraint from U involves the augmentation axiom)
 - \mathbf{R}_0 might be needed even if all attributes are accounted for in $R_1 \cup R_2 \ldots \cup R_n$
 - Example: $(ABCD; \{A \rightarrow B, C \rightarrow D\})$. Step 3 decomposition: $R_1 = (AB; \{A \rightarrow B\}), R_2 = (CD; \{C \rightarrow D\})$. Lossy! Need to add (AC; $\{ \}$), for losslessness
 - Step 4 guarantees lossless decomposition.

University of Alberta 💽 59

Dr. Osmar Zaïane, 2004

BCNF Design Strategy

- The resulting decomposition, $\mathbf{R}_0, \mathbf{R}_1, \dots, \mathbf{R}_n$, is
 - Dependency preserving (since every FD in U is a FD of some schema)
 - Lossless (although this is not obvious)
 - In 3NF (although this is not obvious)
- Strategy for decomposing a relation
 - Use 3NF decomposition first to get lossless, dependency preserving decomposition
 - If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a nondependency preserving result)

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
- **Example**: A join is required to get the names and grades of all students taking CS305 in S2002.

SELECT S.*Name*, T.*Grade* FROM Student S, Transcript T WHERE S.*Id* = T.*StudId* AND T.*CrsCode* = 'CS305' AND T.*Semester* = 'S2002'

Dr. Osmar Zaïane, 2004	CMPUT 391 – Database Management Systems	University of Alberta 💽 61	Dr. Osmar Zaïane, 2004	CMPUT 391 – Database Management Systems	University of Alberta 💽 62

Denormalization

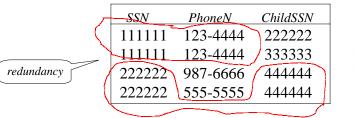
- **Tradeoff**: *Judiciously* introduce redundancy to improve performance of certain queries
- Example: Add attribute Name to Transcript

SELECT T.Name, T.Grade FROM Transcript' T WHERE T.CrsCode = 'CS305' AND T.Semester = 'S2002'

- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance
- But, Transcript' is no longer in BCNF since key is (StudId, CrsCode, Semester) and StudId \rightarrow Name

University of Alberta . 63

Fourth Normal Form



Person

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense), not because of the FDs

```
Dr. Osmar Zaïane, 2004 CMPUT
```


Multi-Valued Dependency

- **Problem**: multi-valued (or binary join) dependency
 - Definition: If every instance of schema R can be (losslessly) decomposed using attribute sets (*X*, *Y*) such that:

 $\mathbf{r} = \pi_X(\mathbf{r}) \quad \bowtie \quad \pi_Y(\mathbf{r})$

```
then a multi-valued dependency

\mathbf{R} = \pi_X(\mathbf{R}) \quad \bowtie \ \pi_Y(\mathbf{R})

holds in r
```

Ex: Person= $\pi_{SSN,PhoneN}$ (Person) $\bowtie \pi_{SSN,ChildSSN}$ (Person)

Fourth Normal Form (4NF)

• A schema is in *fourth normal form* (4NF) if for every non-trivial multi-valued dependency:

 $R = X \bowtie Y$

either:

Dr. Osmar Zaïane, 2004

- $X \subseteq Y$ or $Y \subseteq X$ (trivial case); or
- $X \cap Y$ is a superkey of R (*i.e.*, $X \cap Y \rightarrow R$)

Fourth Normal Form (Cont'd)

- *Intuition*: if $X \cap Y \rightarrow R$, there is a unique row in relation **r** for each value of $X \cap Y$ (hence no redundancy)
 - Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.
- *Solution*: Decompose *R* into *X* and *Y*
 - Decomposition is lossless but not necessarily dependency preserving (since 4NF implies BCNF – next)

```
Dr. Osmar Zaïane, 2004
```

4NF Implies BCNF

CMPUT 391 - Database Management Systems

- Suppose *R* is in 4NF and $X \rightarrow Y$ is an FD.
 - -R1 = XY, R2 = R-Y is a lossless decomposition of R
 - Thus R has the multi-valued dependency:

$$R=R_1\bowtie R_2$$

- Since *R* is in 4NF, one of the following must hold :
 - $XY \subseteq R Y$ (an impossibility)
 - $R Y \subseteq XY$ (i.e., R = XY and X is a superkey)
 - $XY \cap R Y$ (= X) is a superkey
- Hence $X \rightarrow Y$ satisfies BCNF condition