Database Management Systems

Winter 2004
CMPUT 391: Database Design Theory or Relational Normalization Theory Dr. Osmar R. Zaïane

University of Alberta

Redundancy

- Dependencies between attributes cause redundancy
- Ex. All addresses in the same town have the same zip code

SSN	Name	Town	Zip	
1234	Joe	Stony Brook	11790	Redundancy
4321	Mary	Stony Brook	11790	
5454	Tom	Stony Brook	11790	

Limitations of Relational Database Designs

- Provides a set of guidelines, does not result in a unique database schema
- Does not provide a way of evaluating alternative schemas
- Pitfalls:
- Repetition of information
- Inability to represent certain information
- Loss of information
> Normalization theory provides a mechanism for analyzing and refining the schema produced by an E-R design

| Dr. Osmar Zaiane, 2004 | CMPUT 391 - Database Management Systems | University of Alberta 2 |
| :--- | :--- | :--- | :--- |

CMPUT 391 - Database Management Systems University of Alberta 2

Redundancy and Other Problems

- Set valued attributes in the E-R diagram result in multiple rows in corresponding table
- Example: Person (SSN, Name, Address, Hobbies)
- A person entity with multiple hobbies yields multiple rows in table Person
- Hence, the association between Name and Address for the same person is stored redundantly
- SSN is key of entity set, but (SSN, Hobby) is key of corresponding relation
- The relation Person can't describe people without hobbies

Example

ER Model

Relational Model

Dr. Osmar Zaiane, 2004
CMPUT 391 - Database Management Systems
University of Alberta 5

Decomposition

- Solution: use two relations to store Person information
- Person1 (SSN, Name, Address)
- Hobbies (SSN, Hobby)
- The decomposition is more general: people with hobbies can now be described
- No update anomalies:
- Name and address stored once
- A hobby can be separately supplied or deleted

Anomalies

- Redundancy leads to anomalies:
- Update anomaly: A change in Address must be made in several places
- Deletion anomaly: Suppose a person gives up all hobbies. Do we:
- Set Hobby attribute to null? No, since Hobby is part of key
- Delete the entire row? No, since we lose other information in the row
- Insertion anomaly: Hobby value must be supplied for any inserted row since Hobby is part of key

Dr. Osmar Zaiane, 2004 UnPUT 391 - Database Management Systems 6

Normalization Theory

- Result of E-R analysis need further refinement
- Appropriate decomposition can solve problems
- The underlying theory is referred to as normalization theory and is based on functional dependencies (and other kinds, like multivalued dependencies)

Example

ER Model

Relational Model

- Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
- Some functional dependencies on Hourly_Emps:
- ssn is the key: $\mathrm{S} \longrightarrow$ SNLRWH
- rating determines hrly_wages: $\mathrm{R} \longrightarrow \mathrm{W}$
- Are there anomalies?

Functional Dependencies

- Definition: A functional dependency (FD) on a relation schema \mathbf{R} is a constraint $\boldsymbol{X} \rightarrow \boldsymbol{Y}$, where X and Y are subsets of attributes of \mathbf{R}.
- Definition: An FD $\boldsymbol{X} \rightarrow \boldsymbol{Y}$ is satisfied in an instance \mathbf{r} of \mathbf{R} if for every pair of tuples, t and s: if t and s agree on all attributes in X then they must agree on all attributes in Y
- Definition: A constraint on a relation schema R is a condition that has to be satisfied in every allowable instance of R .
$>$ FDs must be identified based on semantics of application.
> Given a particular allowable instance $r l$ of R , we can check if it violates some $\mathrm{FD} f$, but we cannot tell if f holds over the schema R !
- A key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
- SSN \rightarrow SSN, Name, Address

Dr. Osmar Zaiane, 2004
CMPUT 391 - Database Management Systems
University of Alberta (잉) 10

Functional Dependency - Example

- Brokerage firm allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office
- HasAccount (AcctNum, ClientId, OfficeId)
- keys are (ClientId, OfficeId), (AcctNum, ClientId)
- ClientId, OfficeId \rightarrow AcctNum
- AcctNum \rightarrow OfficeId
- Thus, attribute values need not depend only on key values

Entailment, Closure, Equivalence

- Definition: If F is a set of FDs on schema \mathbf{R} and f is another FD on \mathbf{R}, then F entails f if every instance \mathbf{r} of \mathbf{R} that satisfies every FD in F also satisfies f
- Ex: $F=\{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$
- If Streetaddr \rightarrow Town and Town \rightarrow Zip then Streetaddr \rightarrow Zip
- Definition: The closure of F, denoted F^{+}, is the set of all FDs entailed by F
- Definition: F and G are equivalent if F entails G and G entails F

Armstrong's Axioms for FDs

- This is the syntactic way of computing/testing the various properties of FDs
- Reflexivity: If $Y \subseteq X$ then $X \rightarrow Y$ (trivial FD)
- Name, Address \rightarrow Name
- Augmentation: If $X \rightarrow Y$ then $X Z \rightarrow Y Z$
- If Town \rightarrow Zip then Town, Name \rightarrow Zip, Name
- Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

Soundness and Completeness

- Axioms are sound: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.
- Axioms are complete: If F entails f, then f can be derived from F using the axioms
- A consequence of completeness is the following (naïve) algorithm to determining if F entails f :
- Algorithm: Use the axioms in all possible ways to generate F^{+}(the set of possible FD's is finite so this can be done) and see if f is in F^{+}

Reflexivity

- If $Y \subseteq X$, then $X \rightarrow Y$

Augmentation

Transitivity

- If $\mathrm{X} \rightarrow \mathrm{Y}$, and $\mathrm{Y} \rightarrow \mathrm{Z}$ then $\mathrm{X} \rightarrow \mathrm{Z}$

- $=(\overbrace{A, B}^{X}, \underbrace{C, D, E}_{Y} \overbrace{Y}^{Z}$	$\begin{aligned} & \mathrm{t}_{1}=\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right) \\ & \mathrm{t}_{2}=\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right) \\ & \text { assume }^{2} \rightarrow \mathrm{Y} \text { and } \mathrm{Y} \rightarrow \mathrm{Z} \\ & \left.\pi_{\mathrm{x}} \mathrm{t}_{1}\right)=\pi_{\mathrm{x}}\left(\mathrm{t}_{2}\right) \rightarrow \\ & \mathrm{a}_{1}=\mathrm{a}_{2}, \mathrm{~b}_{1}=\mathrm{b}_{2} \end{aligned}$ Since $X \rightarrow Y$ then $c_{1}=c_{2}, d_{1}=d_{2}$ $\Rightarrow \pi_{\mathrm{Y}}\left(\mathrm{t}_{1}\right)=\pi_{\mathrm{Y}}\left(\mathrm{t}_{2}\right)$ Since $Y \longrightarrow Y$ then $\mathrm{e}_{1}=\mathrm{e}_{2}$ $\rightarrow \pi_{\mathrm{Z}}\left(\mathrm{t}_{1}\right)=\pi_{\mathrm{Z}}\left(\mathrm{t}_{2}\right)$

Generating F^{+}

$$
\begin{aligned}
& \text { F } \\
& A B \rightarrow C
\end{aligned}
$$

Thus, $A B \rightarrow B D, A B \rightarrow B C D, A B \rightarrow B C D E$, and $A B \rightarrow C D E$ are all elements of F^{+}

Attribute Closure

- Calculating attribute closure leads to a more efficient way of checking entailment
- The attribute closure of a set of attributes, X, with respect to a set of functional dependencies, F, (denoted $X^{+}{ }_{F}$) is the set of all attributes, A, such that $X \rightarrow A$
$-X^{+}{ }_{F 1}$ is not necessarily the same as $X^{+}{ }_{F 2}$ if $F 1 \neq F 2$
- Attribute closure and entailment:
- Algorithm: Given a set of FDs, F, then $X \rightarrow Y$ if and only if $X^{+}{ }_{F} \supseteq Y$

Dr. Osmar Zaäane, 2004

Computation of Attribute Closure $X^{+}{ }_{F}$

```
closure :=X; // since X\subseteq X ' 
```

repeat
old $:=$ closure;
if there is an FD $Z \rightarrow V$ in F such that $Z \subseteq$ closure and $V \nsubseteq$ closure
then closure $:=$ closure $\cup V$
until old = closure

- If $T \subseteq$ closure then $X \rightarrow T$ is entailed by F

Example: Computation of Attribute Closure

Problem: Compute the attribute closure of $A B$ with
respect to the set of FDs : $\quad A B \rightarrow C \quad$ (a)
$A \rightarrow D \quad$ (b)
$D \rightarrow E \quad$ (c)
$A C \rightarrow B \quad$ (d)
Solution:

$$
\begin{aligned}
& \text { Initially closure }=\{A B\} \\
& \text { Using (a) closure }=\{A B C\} \\
& \text { Using (b) closure }=\{A B C D\} \\
& \text { Using (c) closure }=\{A B C D E\}
\end{aligned}
$$

BCNF

- Definition: A relation schema \mathbf{R} is in BCNF if for every FD $X \rightarrow Y$ associated with \mathbf{R} either $-Y \subseteq X$ (i.e., the FD is trivial) or $-X$ is a superkey of \mathbf{R}
- Example: Person1(SSN, Name, Address)
- The only FD is $S S N \rightarrow$ Name, Address
- Since $S S N$ is a key, Person1 is in BCNF

Normal Forms

- Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)
- First normal form (1NF) is the same as the definition of relational model (relations $=$ sets of tuples; each tuple $=$ sequence of atomic values)
- Second normal form (2NF): no non-key attribute is dependent on part of a key; has no practical or theoretical value - won't discuss
- The two commonly used normal forms are third normal form (3NF) and Boyce-Codd normal form (BCNF)

(non) BCNF Examples

- Person (SSN, Name, Address, Hobby)
- The FD SSN \rightarrow Name, Address does not satisfy requirements of BCNF
- since the key is (SSN, Hobby)
- HasAccount (AccountNumber, ClientId, OfficeId)
- The FD AcctNum \rightarrow OfficeId does not satisfy BCNF requirements
- since keys are (ClientId, OfficeId) and (AcctNum, ClientId)

Redundancy

- Suppose \mathbf{R} has a FD $A \rightarrow B$. If an instance has 2 rows with same value in A, they must also have same value in B (=> redundancy, if the A-value repeats twice)

$\sqrt{\text { redundancy }}$| SSN \rightarrow Name, Address | | | |
| :--- | :--- | :--- | :--- |
| SSN Name Address Hobby
 1111 Joe 123 Main stamps
 1111 Joe 123 Main coins | | | |

- If A is a superkey, there cannot be two rows with same value of A
- Hence, BCNF eliminates redundancy

3NF Example

- HasAccount (AcctNum, ClientId, OfficeId)
- ClientId, OfficeId \rightarrow AcctNum
- OK since LHS contains a key
- AcctNum \rightarrow OfficeId
- OK since RHS is part of a key
- HasAccount is in 3NF but it might still contain redundant information due to AcctNum \rightarrow OfficeId (which is not allowed by BCNF)

Third Normal Form

- A relational schema \mathbf{R} is in 3NF if for every FD $X \rightarrow Y$ associated with \mathbf{R} either:

```
\(-Y \subseteq X\) (i.e., the FD is trivial); or
\(-X\) is a superkey of \(\mathbf{R}\); or
- Every \(A \in Y\) is part of some key of \(\mathbf{R}\)
- 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF)

\section*{3NF Example}
- HasAccount might store redundant data:
\begin{tabular}{|c|c|c|c|}
\hline Clientld & Officeld & AcctNum & 3NF: Officeld part of key \\
\hline 1111 & Stony Brook & 28315 & FD: AcctNum \(\rightarrow\) Officeld \\
\hline 2222 & Stony Brook & 28315 & \\
\hline 3333 & Stony Brook & 28315 & redundancy \\
\hline
\end{tabular}
- Decompose to eliminate redundancy:
\begin{tabular}{|cc|}
\hline ClientId & AcctNum \\
\hline 1111 & 28315 \\
2222 & 28315 \\
3333 & 28315 \\
\hline \multicolumn{2}{|c|}{\begin{tabular}{|l|l|}
\hline OfficeId & AcctNum \\
\hline
\end{tabular}} \\
\hline & Stony \\
& Brook \\
28315 \\
\hline
\end{tabular}

\section*{3NF (Non) Example}
- Person (SSN, Name, Address, Hobby)
- (SSN, Hobby) is the only key.
\(-S S N \rightarrow\) Name violates 3NF conditions since Name is not part of a key and \(S S N\) is not a superkey

\section*{Decompositions}
- Goal: Eliminate redundancy by decomposing a relation into several relations in a higher normal form
- Decomposition must be lossless: it must be possible to reconstruct the original relation from the relations in the decomposition
- We will see why

\section*{Decomposition}
- \(\operatorname{Schema} \mathbf{R}=(R, F)\)
\(-R\) is set a of attributes
- \(F\) is a set of functional dependencies over \(R\)
- Each key is described by a FD
- The decomposition of schema \(\mathbf{R}\) is a collection of schemas \(\mathbf{R}_{\mathrm{i}}=\left(R_{i}, F_{i}\right)\) where
\(-R=\cup_{i} R_{i}\) for all \(i\) (no new attributes)
- \(F_{i}\) is a set of functional dependences involving only attributes of \(R_{i}\)
- \(F\) entails \(F_{i}\) for all \(i\) (no new FDs)
- The decomposition of an instance, \(\mathbf{r}\), of \(\mathbf{R}\) is a set of relations \(\mathbf{r}_{i}=\pi_{R_{i}}(\mathbf{r})\) for all \(i\)

\section*{Lossless Schema Decomposition}
- A decomposition should not lose information
- A decomposition \(\left(\mathbf{R}_{l}, \ldots, \mathbf{R}_{n}\right)\) of a schema, \(\mathbf{R}\), is lossless if every valid instance, \(\mathbf{r}\), of \(\mathbf{R}\) can be reconstructed from its components:
\[
\mathbf{r}=\mathbf{r}_{1} \bowtie \mathbf{r}_{2} \bowtie \quad \ldots \ldots . \bowtie \mathbf{r}_{n}
\]
- where each \(\mathbf{r}_{\mathrm{i}}=\pi_{\mathrm{R} i}(\mathbf{r})\)

Dr. Osmar Zaiane, 2004

\section*{Lossy Decompositions: \\ What is Actually Lost?}
- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were gained, not lost!
- Why do we say that the decomposition was lossy?
- What was lost is information:
- That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either 2 Oak or 3 Pine
- That 3333 lives at 3 Pine: In the decomposition, 3333 can live at either 2 Oak or 3 Pine

\section*{Lossy Decomposition}

The following is always the case (Think why?):
\[
\mathbf{r} \subseteq \mathbf{r}_{1} \quad \bowtie \quad \mathbf{r}_{2} \bowtie \varliminf^{\ldots} \quad \bowtie \mathbf{r}_{n}
\]

But the following is not always true:
\(\mathbf{r} \supseteq \mathbf{r}_{1} \bowtie \mathbf{r}_{2} \bowtie \quad \ldots \bowtie \mathbf{r}_{n}\)
\begin{tabular}{|c|c|c|c|c|}
\hline Example: & r & \(\nsupseteq \quad \mathbf{r}_{1}\) & \(\bowtie\) & \(\mathbf{r}_{2}\) \\
\hline SSN Name & Address & SSN Name & Name & Address \\
\hline 1111 Joe & 1 Pine & 1111 Joe & Joe & 1 Pine \\
\hline 2222 Alice & 2 Oak & 2222 Alice & Alice & 2 Oak \\
\hline 3333 Alice & 3 Pine & 3333 Alice & Alice & 3 Pine \\
\hline
\end{tabular}

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join, but not in the original

\section*{Testing for Losslessness}
- A (binary) decomposition of \(\mathbf{R}=(R, F)\)
into \(\mathbf{R}_{1}=\left(R_{1}, F_{1}\right)\) and \(\mathbf{R}_{2}=\left(R_{2}, F_{2}\right)\) is
lossless if and only if :
- either the FD
- \(\left(R_{1} \cap R_{2}\right) \rightarrow R_{1}\) is in \(F^{+}\)
- or the FD
- \(\left(R_{1} \cap R_{2}\right) \rightarrow R_{2}\) is in \(F^{+}\)

Intuitively: the attributes common to \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) must contain a key for either \(\mathrm{R}_{1}\) or \(\mathrm{R}_{2}\).

\section*{Example}

Schema ( \(R, F\) ) where
\[
\begin{aligned}
& R=\{S S N, \text { Name, Address, Hobby }\} \\
& F=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
\]
can be decomposed into
\[
\begin{aligned}
& R_{1}=\{S S N, \text { Name, Address }\} \\
& F_{1}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
\]
and
\[
\begin{aligned}
& R_{2}=\{S S N, \text { Hobby }\} \\
& F_{2}=\{ \}
\end{aligned}
\]

Since \(R_{l} \cap R_{2}=S S N\) and \(S S N \rightarrow R_{1}\) the decomposition is lossless

\section*{Dependency Preservation}
- Consider a decomposition of \(\mathbf{R}=(R, F)\) into \(\mathbf{R}_{1}=\left(R_{l}\right.\),
\(\left.F_{1}\right)\) and \(\mathbf{R}_{2}=\left(R_{2}, F_{2}\right)\)
\(-\mathrm{An} \mathrm{FD} X \rightarrow Y\) of \(F\) is in \(F_{i}\) iff \(X \cup Y \subseteq R_{i}\)
- An FD, \(f \in F\) may be in neither \(F_{1}\), nor \(F_{2}\), nor even \(\left(F_{1} \cup F_{2}\right)^{+}\)
- Checking that \(f\) is true in \(\mathbf{r}_{1}\) or \(\mathbf{r}_{2}\) is (relatively) easy
- Checking \(f\) in \(\mathbf{r}_{1} \bowtie \mathbf{r}_{2}\) is harder - requires a join
- Ideally: want to check FDs locally, in \(\mathbf{r}_{1}\) and \(\mathbf{r}_{2}\), and have a guarantee that every \(f \in F\) holds in \(\mathbf{r}_{1} \bowtie \mathbf{r}_{2}\)
- The decomposition is dependency preserving iff the sets \(F\) and \(F_{1} \cup F_{2}\) are equivalent: \(F^{+}=\left(F_{1} \cup F_{2}\right)^{+}\)
- Then checking all FDs in \(F\), as \(\mathbf{r}_{1}\) and \(\mathbf{r}_{2}\) are updated, can be done by checking \(F_{1}\) in \(\mathbf{r}_{1}\) and \(F_{2}\) in \(\mathbf{r}_{2}\)

\section*{Intuition Behind the Test for Losslessness}
- Suppose \(R_{1} \cap R_{2} \rightarrow R_{2}\). Then a row of \(\mathbf{r}_{1}\) can combine with exactly one row of \(\mathbf{r}_{2}\) in the natural join (since in \(\mathbf{r}_{2}\) a particular set of values for the attributes in \(R_{l} \cap R_{2}\) defines a unique row)


Dr. Osmar Zaiane, 2004

\section*{Dependency Preservation}
- If \(f\) is an FD in \(F\), but \(f\) is not in \(F_{1} \cup F_{2}\), there are two possibilities:
\(-f \in\left(F_{1} \cup F_{2}\right)^{+}\)
- If the constraints in \(F_{1}\) and \(F_{2}\) are maintained, \(f\) will be maintained automatically.
\(-f \notin\left(F_{1} \cup F_{2}\right)^{+}\)
- \(f\) can be checked only by first taking the join of \(\mathrm{r}_{l}\) and \(r_{2}\). This is costly.

\section*{Example}

Schema ( \(R, F\) ) where
\[
\begin{aligned}
& R=\{S S N, \text { Name, Address, Hobby }\} \\
& F=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
\]
can be decomposed into
\[
\begin{aligned}
& R_{1}=\{S S N, \text { Name, Address }\} \\
& F_{1}=\{S S N \rightarrow \text { Name, Address }\}
\end{aligned}
\]
and
\[
\begin{aligned}
& R_{2}=\{S S N, H o b b y\} \\
& F_{2}=\{ \}
\end{aligned}
\]

Since \(F=F_{1} \cup F_{2}\) the decomposition is dependency preserving

\section*{Example}
- HasAccount (AccountNumber, ClientId, OfficeId)
\(f_{1}:\) AccountNumber \(\rightarrow\) Officeld
\(f_{2}\) : ClientId, OfficeId \(\rightarrow\) AccountNumber
- Decomposition:

AcctOffice \(=(\) AccountNumber, OfficeId \(;\{\) AccountNumber \(\rightarrow\) OfficeId \(\})\)
AcctClient \(=(\) AccountNumber, ClientId; \(\{ \})\)
- Decomposition is lossless: \(R_{I} \cap R_{2}=\{\) AccountNumber \(\}\) and AccountNumber \(\rightarrow\) OfficeId
- In BCNF
- Not dependency preserving: \(f_{2} \notin\left(F_{1} \cup F_{2}\right)^{+}\)
- HasAccount does not have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration)
- Hence: BCNF+lossless+dependency preserving decompositions are not always possible!

\section*{Example}
- Schema: \((A B C ; F), F=\{A \rightarrow B, B \rightarrow C, C \rightarrow B\}\)
- Decomposition:
\(-\left(A C, F_{1}\right), F_{1}=\{A \rightarrow C\}\)
- Note: \(\mathrm{A} \rightarrow \mathrm{C} \notin F\), but in \(\mathrm{F}^{+}\)
\(-\left(B C, F_{2}\right), F_{2}=\{B \rightarrow C, C \rightarrow B\}\)
- \(A \rightarrow B \notin\left(F_{1} \cup F_{2}\right)\), but \(A \rightarrow B \in\left(F_{1} \cup F_{2}\right)^{+}\).
- So \(F^{+}=\left(F_{1} \cup F_{2}\right)^{+}\)and thus the decompositions is still dependency preserving

\section*{BCNF Decomposition Algorithm}

Input: \(\mathbf{R}=(R ; F)\)
Decomp := R
while there is \(\mathbf{S}=\left(S ; F^{\prime}\right) \in\) Decomp and \(\mathbf{S}\) not in BCNF do
Find \(X \rightarrow Y \in F\) ' that violates BCNF // \(X\) isn't a superkey in \(\mathbf{S}\)
Replace \(\mathbf{S}\) in Decomp with \(\mathbf{S}_{1}=\left(X Y ; F_{1}\right), \mathbf{S}_{2}=\left(S-(Y-X) ; F_{2}\right)\)
\(/ / F_{1}=\) all FDs of \(F^{\prime}\) involving only attributes of \(X Y\)
\(/ / F_{2}=\) all FDs of \(F^{\prime}\) involving only attributes of \(S-(Y-X)\)
end
return Decomp

\section*{Example}

step 1: Find a FD that violates BCNF
Not \(A B H \rightarrow C\) since \((A B H)^{+}\)includes all attributes
( \(B H\) is a key)
\(A \rightarrow D E\) violates BCNF since \(A\) is not a superkey \(\left(A^{+}=A D E\right)\)
step 2: Split \(\mathbf{R}\) into:
\(\mathbf{R}_{\mathbf{1}}=(A D E,\{A \rightarrow D E\})\)
\(\mathbf{R}_{\mathbf{2}}=(A B C F G H ;\{A B H \rightarrow C, B G H \rightarrow F, F \rightarrow A H, B H \rightarrow G\})\)
Note 1: \(\mathbf{R}_{\mathbf{1}}\) is in BCNF
Note 2: Decomposition is lossless since \(A\) is a key of \(\mathbf{R}_{\mathbf{1}}\).
Note 3: FDs \(F \rightarrow D\) and \(B H \rightarrow E\) are not in \(T_{1}\) or \(T_{2}\). But both can be derived from \(T_{1} \cup T_{2}\)
(E.g., \(F \rightarrow A\) and \(A \rightarrow D\) implies \(F \rightarrow D\) )

Hence, decomposition is dependency preserving.

\section*{Example (con't)}

Given: \(\mathbf{R}_{2}=(A B C F G H ;\{A B H \rightarrow C, B G H \rightarrow F, F \rightarrow A H, B H \rightarrow G\})\) step 1: Find a FD that violates BCNF.

Not \(A B H \rightarrow C\) or \(B G H \rightarrow F\), since \(B H\) is a key of \(\mathbf{R}_{2}\)
\(F \rightarrow A H\) violates BCNF since \(F\) is not a superkey \(\left(F^{+}=A H\right)\)
step 2: Split \(\mathbf{R}_{2}\) into:
\(\mathbf{R}_{\mathbf{2 1}}=(F A H,\{F \rightarrow A H\})\)
\(\mathbf{R}_{22}=(B C F G ;\{ \})\)
Note 1: Both \(\mathbf{R}_{\mathbf{2 1}}\) and \(\mathbf{R}_{\mathbf{2 2}}\) are in BCNF.
Note 2: The decomposition is lossless (since \(F\) is a key of \(\mathbf{R}_{\mathbf{2 1}}\) )
Note 3: FDs \(A B H \rightarrow C, B G H \rightarrow F, B H \rightarrow G\) are not in \(T_{21}\) or \(T_{22}\), and they can't be derived from \(T_{1} \cup T_{21} \cup T_{22}\). Hence the decomposition is not dependency-preserving

\section*{Properties of BCNF Decomposition Algorithm}

Let \(X \rightarrow Y\) violate BCNF in \(\mathbf{R}=(R, F)\) and \(\mathbf{R}_{\mathbf{1}}=\left(R_{l}, F_{1}\right)\), \(\mathbf{R}_{\mathbf{2}}=\left(R_{2}, F_{2}\right)\) is the resulting decomposition. Then:
- There are fewer violations of BCNF in \(\mathbf{R}_{\mathbf{1}}\) and \(\mathbf{R}_{\mathbf{2}}\) than there were in \(\mathbf{R}\)
\(-X \rightarrow Y\) implies \(X\) is a key of \(\mathbf{R}_{\mathbf{1}}\)
- Hence \(X \rightarrow Y \in F_{1}\) does not violate BCNF in \(\mathbf{R}_{1}\) and, since \(X \rightarrow Y \notin F_{2}\), does not violate BCNF in \(\mathbf{R}_{2}\) either
- Suppose \(f\) is \(X^{\prime} \rightarrow Y^{\prime}\) and \(f \in F\) doesn't violate BCNF in \(\mathbf{R}\). If \(f \in F_{1,}\) or \(F_{2}\) it does not violate BCNF in \(\mathbf{R}_{1}\) or \(\mathbf{R}_{2}\) either since \(X^{\prime}\) is a superkey of \(\mathbf{R}\) and hence also of \(\mathbf{R}_{\mathbf{1}}\) and \(\mathbf{R}_{\mathbf{2}}\).
- The decomposition is lossless
- Since \(F_{1} \cap F_{2}=X\)

\section*{Properties of BCNF Decomposition} Algorithm
- A BCNF decomposition is not necessarily dependency preserving
- But always lossless
- BCNF+lossless+dependency preserving is sometimes unachievable (recall HasAccount)

\section*{Third Normal Form}
- Compromise - Not all redundancy removed, but dependency preserving decompositions are always possible (and, of course, lossless)
- 3NF decomposition is based on a minimal cover

\section*{Minimal Cover}
- A minimal cover of a set of dependencies, \(T\), is a set of dependencies, \(U\), such that:
- \(U\) is equivalent to \(T \quad\left(T^{+}=U^{+}\right)\)
- All FDs in \(U\) have the form \(X \rightarrow A\) where \(A\) is a single attribute
- It is not possible to make \(U\) smaller (while preserving equivalence) by
- Deleting an FD
- Deleting an attribute from an FD (either from LHS or RHS)
- FDs and attributes that can be deleted in this way are called redundant

Dr. Osmar Zaäane, 2004
CMPUT 391 - Database Management Systems
University of Alberta 54

\section*{Computing Minimal Cover}
- Example: \(T=\{A B H \rightarrow C K, A \rightarrow D, C \rightarrow E\),
\[
B G H \rightarrow F, F \rightarrow A D, E \rightarrow F, B H \rightarrow E\}
\]
- step 1: Make RHS of each FD into a single attribute
- Algorithm: Use the decomposition inference rule for FDs
- Example: \(F \rightarrow A D\) replaced by \(F \rightarrow A, F \rightarrow D ; A B H \rightarrow C K\) by \(A B H \rightarrow C, A B H \rightarrow K\)
- step 2: Eliminate redundant attributes from LHS.
- Algorithm: If FD \(X B \rightarrow A \in T\) (where \(B\) is a single attribute) and \(X \rightarrow A\) is entailed by \(T\), then \(B\) was unnecessary
- Example: Can an attribute be deleted from \(A B H \rightarrow C\) ?
- Compute \(A B^{+}{ }_{p} A H^{+}{ }_{p} B H^{+}{ }_{T}\).
- Since \(C \in(B H)^{+}{ }_{T}, B H \rightarrow C\) is entailed by \(T\) and \(A\) is redundant in \(A B H \rightarrow C\).

\section*{Synthesizing a 3NF Schema}

Starting with a schema \(\mathbf{R}=(R, T)\)
- step 1: Compute a minimal cover, \(U\), of \(T\). The decomposition is based on \(U\), but since \(U^{+}=T^{+}\) the same functional dependencies will hold
- A minimal cover for
\[
\begin{gathered}
T=\{A B H \rightarrow C K, A \rightarrow D, C \rightarrow E, B G H \rightarrow F, F \rightarrow A D, \\
\quad \text { is } \\
U=\{B H \rightarrow C, B H \rightarrow E\} \\
\end{gathered}
\]

\section*{Synthesizing a 3NF schema (con't)}
- step 2: Partition \(U\) into sets \(U_{1}, U_{2}, \ldots U_{n}\) such that the LHS of all elements of \(U_{i}\) are the same
\(-U_{1}=\{B H \rightarrow C, B H \rightarrow K\}, U_{2}=\{A \rightarrow D\}\), \(U_{3}=\{C \rightarrow E\}, U_{4}=\{F \rightarrow A\}, U_{5}=\{E \rightarrow F\}\)

\section*{Synthesizing a 3NF schema (con't)}
- step 3: For each \(U_{i}\) form schema \(\mathbf{R}_{\mathbf{i}}=\left(R_{i}, U_{i}\right)\), where \(R_{i}\) is the set of all attributes mentioned in \(U_{i}\)
- Each FD of \(U\) will be in some \(\mathbf{R}_{\mathrm{i}}\). Hence the decomposition is dependency preserving
\(-\mathbf{R}_{\mathbf{1}}=(B H C ; B H \rightarrow C, B H \rightarrow K), \mathbf{R}_{\mathbf{2}}=(A D ; A \rightarrow D)\),
\(\mathbf{R}_{\mathbf{3}}=(C E ; C \rightarrow E), \mathbf{R}_{4}=(F A ; F \rightarrow A)\),
\(\mathbf{R}_{5}=(E F ; E \rightarrow F)\)

\section*{Synthesizing a 3NF schema (con't)}
- step 4: If no \(R_{i}\) is a superkey of \(\mathbf{R}\), add schema \(\mathbf{R}_{\mathbf{0}}=\) ( \(R_{0},\{ \}\) ) where \(R_{0}\) is a key of \(\mathbf{R}\).
- \(\mathbf{R}_{0}=(B G H,\{ \})\)
- \(\mathbf{R}_{\mathbf{0}}\) might be needed when not all attributes are necessarily contained in \(R_{1} \cup R_{2} \ldots \cup R_{\mathrm{n}}\)
- A missing attribute, \(A\), must be part of all keys (since it's not in any FD of \(U\), deriving a key constraint from \(U\) involves the augmentation axiom)
- \(\mathbf{R}_{\mathbf{0}}\) might be needed even if all attributes are accounted for in \(R_{1} \cup R_{2} \ldots \cup R_{\mathrm{n}}\)
- Example: (ABCD; \(\{A \rightarrow B, C \rightarrow D\})\). Step 3 decomposition: \(R_{1}=(A B ;\{A \rightarrow B\}), R_{2}=(C D ;\{C \rightarrow D\})\). Lossy! Need to add (AC; \{ \}), for losslessness
- Step 4 guarantees lossless decomposition.

\section*{BCNF Design Strategy}
- The resulting decomposition, \(\mathbf{R}_{\mathbf{0}}, \mathbf{R}_{\mathbf{1}}, \ldots \mathbf{R}_{\mathrm{n}}\), is
- Dependency preserving (since every FD in \(U\) is a FD of some schema)
- Lossless (although this is not obvious)
- In 3NF (although this is not obvious)
- Strategy for decomposing a relation
- Use 3NF decomposition first to get lossless, dependency preserving decomposition
- If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a nondependency preserving result)

\section*{Normalization Drawbacks}
- By limiting redundancy, normalization helps maintain consistency and saves space
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
- Example: A join is required to get the names and grades of all students taking CS305 in S2002.
```

SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND
T.CrsCode = 'CS305` AND T.Semester = 'S2002'

```
\begin{tabular}{|ccc}
\hline Dr. Osmar Zaiane, 2004 & CMPUT 391 - Database Management Systems & University of Alberta 62 \\
\hline
\end{tabular}

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense), not because of the FDs
- But, Transcript' is no longer in BCNF since key is (StudId, CrsCode, Semester) and StudId \(\rightarrow\) Name

\section*{Denormalization}
- Tradeoff: Judiciously introduce redundancy to improve performance of certain queries
- Example: Add attribute Name to Transcript

SELECT T.Name, T.Grade
FROM Transcript' T
WHERE T.CrsCode \(=\) 'CS305' AND T.Semester \(=\) 'S2002'
- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance

Dr. Osmar Zäane, 2004
CMPUT 391 - Database Management Systems

\section*{Multi-Valued Dependency}
- Problem: multi-valued (or binary join) dependency
- Definition: If every instance of schema \(\mathbf{R}\) can be (losslessly) decomposed using attribute sets \((X, Y)\) such that:
\[
\mathbf{r}=\pi_{X}(\mathbf{r}) \bowtie \pi_{Y}(\mathbf{r})
\]
then a multi-valued dependency
\[
\mathbf{R}=\pi_{X}(\mathbf{R}) \bowtie \pi_{Y}(\mathbf{R})
\]
holds in \(\mathbf{r}\)

Ex: Person \(=\pi_{S S N, \text { PhoneN }}(\) Person \() ~ \bowtie \pi_{S S N, \text { ChildSSN }}(\) Person \()\)

\section*{Fourth Normal Form (4NF)}
- A schema is in fourth normal form (4NF) if for every non-trivial multi-valued dependency:
\[
R=X \bowtie Y
\]
either:
- \(X \subseteq Y\) or \(Y \subseteq X\) (trivial case); or
- \(X \cap Y\) is a superkey of \(R\) (i.e., \(X \cap Y \rightarrow R\) )

\section*{Fourth Normal Form (Cont'd)}
- Intuition: if \(X \cap Y \rightarrow R\), there is a unique row in relation \(\mathbf{r}\) for each value of \(X \cap Y\) (hence no redundancy)
- Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.
- Solution: Decompose \(R\) into \(X\) and \(Y\)
- Decomposition is lossless - but not necessarily dependency preserving (since 4NF implies BCNF - next)

\section*{4NF Implies BCNF}
- Suppose \(R\) is in 4 NF and \(X \rightarrow Y\) is an FD.
\(-R 1=X Y, R 2=R-Y\) is a lossless decomposition of \(R\)
- Thus R has the multi-valued dependency:
\[
R=R_{1} \bowtie R_{2}
\]
- Since \(R\) is in 4NF, one of the following must hold :
- \(X Y \subseteq R-Y \quad\) (an impossibility)
- \(R-Y \subseteq X Y\) (i.e., \(R=X Y\) and \(X\) is a superkey)
- \(X Y \cap R-Y \quad(=X)\) is a superkey
- Hence \(X \rightarrow Y\) satisfies BCNF condition```

