
University of AlbertaDr. Osmar Zaïane, 2004 1CMPUT 391 – Database Management Systems

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2004

CMPUT 391: An Overview of Query Optimization

Chapter 14
of Textbook

Based on slides by Lewis, Bernstein and Kifer.

Lecture 4

University of AlbertaDr. Osmar Zaïane, 2004 2CMPUT 391 – Database Management Systems

Query Evaluation
• Problem: An SQL query is declarative – does

not specify a query execution plan.

• A relational algebra expression is procedural
– there is an associated query execution plan.

• Solution: Convert SQL query to an
equivalent relational algebra and evaluate it
using the associated query execution plan.
– But which equivalent expression is best?

University of AlbertaDr. Osmar Zaïane, 2004 3CMPUT 391 – Database Management Systems

Naïve Conversion
SELECT DISTINCT TargetList
FROM R1, R2, …, RN
WHERE Condition

is equivalent to
πTargetList (σCondition (R1 × R2 × ... × RN))

but this may imply a very inefficient query execution plan.

Example: πName (σId=ProfId CrsCode=‘CS532’ (Professor × Teaching))
• Result can be < 100 bytes

• But if each relation is 50K then we end up computing an
intermediate result Professor × Teaching of size 1G
before shrinking it down to just a few bytes.

Problem: Find an equivalent relational algebra expression that can be
evaluated “efficiently”.

University of AlbertaDr. Osmar Zaïane, 2004 4CMPUT 391 – Database Management Systems

Query Processing Architecture

University of AlbertaDr. Osmar Zaïane, 2004 5CMPUT 391 – Database Management Systems

Query Optimizer

• Uses heuristic algorithms to evaluate relational
algebra expressions. This involves:
– estimating the cost of a relational algebra expression

– transforming one relational algebra expression to an
equivalent one

– choosing access paths for evaluating the sub-expressions

• Query optimizers do not “optimize” – just try to find
“reasonably good” evaluation strategies

University of AlbertaDr. Osmar Zaïane, 2004 6CMPUT 391 – Database Management Systems

Equivalence Preserving Transformations
• To transform a relational expression into another

equivalent expression we need transformation
rules that preserve equivalence

• Each transformation rule
– Is provably correct (ie, does preserve equivalence)

– Has a heuristic associated with it

University of AlbertaDr. Osmar Zaïane, 2004 7CMPUT 391 – Database Management Systems

Selection and Projection Rules

• Break complex selection into simpler ones:
– σCond1∧ Cond2 (R) ≡ σCond1 (σCond2 (R))

• Break projection into stages:
– πattr (R) ≡ πattr (π attr′ (R)), if attr ⊆ attr′

• Commute projection and selection:
– π attr (σCond(R)) ≡ σCond (π attr (R)),

if attr ⊇ all attributes in Cond

University of AlbertaDr. Osmar Zaïane, 2004 8CMPUT 391 – Database Management Systems

Commutativity and Associativity of Join
(and Cartesian Product as Special Case)

• Join commutativity: R S ≡ S R
– used to reduce cost of nested loop evaluation strategies (smaller relation

should be in outer loop)

• Join associativity: R (S T) ≡ (R S) T
– used to reduce the size of intermediate relations in computation of multi-

relational join – first compute the join that yields smaller intermediate
result

• N-way join has T(N)× N! different evaluation plans
– T(N) is the number of parenthesized expressions

– N! is the number of permutations

• Query optimizer cannot look at all plans (might take longer to
find an optimal plan than to compute query brute-force). Hence it
does not necessarily produce optimal plan

University of AlbertaDr. Osmar Zaïane, 2004 9CMPUT 391 – Database Management Systems

Pushing Selections and Projections
• σCond (R × S) ≡ R Cond S

– Cond relates attributes of both R and S
– Reduces size of intermediate relation since rows can be

discarded sooner

• σCond (R × S) ≡ σCond (R) × S
– Cond involves only the attributes of R
– Reduces size of intermediate relation since rows of R

are discarded sooner

• πattr(R × S) ≡ πattr(πattr′ (R) × S),

if attributes(R) ⊇ attr′ ⊇ attr
– reduces the size of an operand of product

University of AlbertaDr. Osmar Zaïane, 2004 10CMPUT 391 – Database Management Systems

Equivalence Example

• σC1 ∧ C2 ∧ C3 (R × S) ≡ σC1 (σC2 (σC3 (R × S)))
≡ σC1 (σC2 (R) × σC3 (S))
≡ σC2 (R) C1 σC3 (S)

assuming C2 involves only attributes of R,
C3 involves only attributes of S,
and C1 relates attributes of R and S

University of AlbertaDr. Osmar Zaïane, 2004 11CMPUT 391 – Database Management Systems

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.ProfId -- join condition

AND P. DeptId = ‘CS’ AND T.Semester = ‘F1994’

πName(σDeptId=‘CS’ ∧ Semester=‘F1994’(Professor Id=ProfId Teaching))

Cost - Example 1

πName

σDeptId=‘CS’∧ Semester=‘F1994’

Id=ProfId

Professor Teaching

Master query
execution plan
(nothing pushed)

University of AlbertaDr. Osmar Zaïane, 2004 12CMPUT 391 – Database Management Systems

Metadata on Tables (in system catalogue)

– Professor (Id, Name, DeptId)
• size: 200 pages, 1000 rows, 50 departments

• indexes: clustered, 2-level B+tree on DeptId, hash on Id

– Teaching (ProfId, CrsCode, Semester)
• size: 1000 pages, 10,000 rows, 4 semesters

• indexes: clustered, 2-level B+tree on Semester;

hash on ProfId

– Definition: Weight of an attribute – average number
of rows that have a particular value

• weight of Id = 1 (it is a key)

• weight of ProfId = 10 (10,000 classes/1000 professors)

University of AlbertaDr. Osmar Zaïane, 2004 13CMPUT 391 – Database Management Systems

Estimating Cost - Example 1
• Join - block-nested loops with 52 page buffer (50 pages – input

for Professor, 1 page – input for Teaching, 1 – output page

– Scanning Professor (outer loop): 200 page transfers, (4
iterations, 50 pages each)

– Finding matching rows in Teaching (inner loop): 1000 page
transfers for each iteration of outer loop

– 250 professors in each 50 page chunk * 10 matching Teaching tuples per
professor = 2500 tuple fetches = 2500 page transfers for Teaching
(Why?)

– By sorting the record Ids of these tuples we can get away with only 1000
page transfers (Why?)

– total cost = 200+4*1000 = 4200 page transfers

University of AlbertaDr. Osmar Zaïane, 2004 14CMPUT 391 – Database Management Systems

Estimating Cost - Example 1 (cont’d)

• Selection and projection – scan rows of
intermediate file, discard those that don’t satisfy
selection, project on those that do, write result
when output buffer is full.

• Complete algorithm:
– do join, write result to intermediate file on disk
– read intermediate file, do select/project, write final

result
– Problem: unnecessary I/O

University of AlbertaDr. Osmar Zaïane, 2004 15CMPUT 391 – Database Management Systems

Pipelining
• Solution: use pipelining:

– join and select/project act as coroutines, operate as
producer/consumer sharing a buffer in main memory.

• When join fills buffer; select/project filters it and outputs
result

• Process is repeated until select/project has processed last
output from join

– Performing select/project adds no additional cost

join select/project
Intermediate

result

output
final result

buffer

University of AlbertaDr. Osmar Zaïane, 2004 16CMPUT 391 – Database Management Systems

Estimating Cost - Example 1 (cont’d)

• Total cost:
4200 + (cost of outputting final result)

– We will disregard the cost of outputting final
result in comparing with other query evaluation
strategies, since this will be same for all

University of AlbertaDr. Osmar Zaïane, 2004 17CMPUT 391 – Database Management Systems

πName(σSemester=‘F1994’ (σDeptId=‘CS’ (Professor) Id=ProfId Teaching))

Cost Example 2
SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.ProfId AND

P. DeptId = ‘CS’ AND T.Semester = ‘F1994’

πName

σSemester=‘F1994’

σDeptId=‘CS’

Professor Teaching

Id=ProfId

Partially pushed
plan: selection
pushed to Professor

University of AlbertaDr. Osmar Zaïane, 2004 18CMPUT 391 – Database Management Systems

Cost Example 2 -- selection
• Compute σDeptId=‘CS’ (Professor) (to reduce size of one

join table) using clustered, 2-level B+ tree on DeptId.

– 50 departments and 1000 professors; hence weight
of DeptId is 20 (roughly 20 CS professors). These
rows are in ~4 consecutive pages in Professor.

• Cost = 4 (to get rows) + 2 (to search index) = 6

• keep resulting 4 pages in memory and pipe to next step

clustered index
on DeptId rows of

Professor

University of AlbertaDr. Osmar Zaïane, 2004 19CMPUT 391 – Database Management Systems

Cost Example 2 -- join

• Index-nested loops join using hash index on
ProfId of Teaching and looping on the selected
professors (computed on previous slide)
– Since selection on Semester was not pushed, hash

index on ProfId of Teaching can be used

– Note: if selection on Semester were pushed, the
index on ProfId would have been lost – an
advantage of not using a fully pushed query
execution plan

University of AlbertaDr. Osmar Zaïane, 2004 20CMPUT 391 – Database Management Systems

Cost Example 2 – join (cont’d)
– Each professor matches ~10 Teaching rows. Since 20 CS

professors, hence 200 teaching records.

– All index entries for a particular ProfId are in same bucket.
Assume ~1.2 I/Os to get a bucket.

• Cost = 1.2 × 20 (to fetch index entries for 20 CS
professors) + 200 (to fetch Teaching rows, since hash
index is unclustered) = 224

Teachinghash

1.2
20 × 10

ProfId

University of AlbertaDr. Osmar Zaïane, 2004 21CMPUT 391 – Database Management Systems

Cost Example 2 – select/project

• Pipe result of join to select (on Semester) and
project (on Name) at no I/O cost

• Cost of output same as for Example 1

• Total cost:
6 (select on Professor) + 224 (join) = 230

• Comparison:
4200 (example 1) vs. 230 (example 2) !!!

University of AlbertaDr. Osmar Zaïane, 2004 22CMPUT 391 – Database Management Systems

Estimating Output Size

• It is important to estimate the size of the output of a
relational expression – size serves as input to the next
stage and affects the choice of how the next stage will
be evaluated.

• Size estimation uses the following measures on a
particular instance of R:
– Tuples(R): number of tuples
– Blocks(R): number of blocks
– Values(R.A): number of distinct values of A
– MaxVal(R.A): maximum value of A
– MinVal(R.A): minimum value of A

University of AlbertaDr. Osmar Zaïane, 2004 23CMPUT 391 – Database Management Systems

Estimating Output Size

• For the query:

– Reduction factor is

• Estimates by how much query result is smaller than input

SELECT TargetList
FROM R1, R2, …, Rn

WHERE Condition

Blocks (result set)
Blocks(R1) × ... × Blocks(Rn)

University of AlbertaDr. Osmar Zaïane, 2004 24CMPUT 391 – Database Management Systems

Estimation of Reduction Factor

• Assume that reduction factors due to target
list and query condition are independent

• Thus:
reduction(Query) =

reduction(TargetList) × reduction(Condition)

University of AlbertaDr. Osmar Zaïane, 2004 25CMPUT 391 – Database Management Systems

• reduction (Ri.A=val) =

• reduction (Ri.A=Rj.B) =

– Assume that values are uniformly distributed,

Tuples(Ri) < Tuples(Rj), and every row of Ri matches a row

of Rj . Then the number of tuples that satisfy Condition is:

• reduction (Ri.A > val) =
MaxVal(Ri.A) – val

Values(Ri.A)

Reduction Due to Simple Condition
1

Values(R.A)

Values(Ri.A) × (Tuples(Ri.A)/Values(Ri.A))
× (Tuples(Rj.A)/Values(Rj.A))

1
max(Values(Ri.A), Values(Rj.B))

University of AlbertaDr. Osmar Zaïane, 2004 26CMPUT 391 – Database Management Systems

Reduction Due to Complex Condition

• reduction(Cond1 AND Cond2) =
reduction(Cond1) × reduction(Cond2)

• reduction(Cond1 OR Cond2) =

min(1, reduction(Cond1) + reduction(Cond2))

University of AlbertaDr. Osmar Zaïane, 2004 27CMPUT 391 – Database Management Systems

Reduction Due to TargetList

• reduction(TargetList) =

number-of-attributes (TargetList)
Σi number-of-attributes (Ri)

University of AlbertaDr. Osmar Zaïane, 2004 28CMPUT 391 – Database Management Systems

Estimating Weight of Attribute
weight(R.A) =

Tuples(R) × reduction(R.A=value)

University of AlbertaDr. Osmar Zaïane, 2004 29CMPUT 391 – Database Management Systems

Choosing Query Execution Plan
• Step 1: Choose a logical plan

• Step 2: Reduce search space

• Step 3: Use a heuristic search to further
reduce complexity

University of AlbertaDr. Osmar Zaïane, 2004 30CMPUT 391 – Database Management Systems

Step 1: Choosing a Logical Plan

• Involves choosing a query tree, which indicates the
order in which algebraic operations are applied

• Heuristic: Pushed trees are good, but sometimes “nearly
fully pushed” trees are better due to indexing (as we
saw in the example)

• So: Take the initial “master plan” tree and produce a
fully pushed tree plus several nearly fully pushed trees.

University of AlbertaDr. Osmar Zaïane, 2004 31CMPUT 391 – Database Management Systems

Step 2: Reduce Search Space

• Deal with associativity of binary operators
(join, union, …)

A B C D

A B C D

D

C

A B

Logical query
execution plan

Equivalent
query tree

Equivalent left
deep query tree

University of AlbertaDr. Osmar Zaïane, 2004 32CMPUT 391 – Database Management Systems

Step 2 (cont’d)
• Two issues:

– Choose a particular shape of a tree (like in the
previous slide)

• Equals the number of ways to parenthesize N-way
join – grows very rapidly

– Choose a particular permutation of the leaves
• E.g., 4! permutations of the leaves A, B, C, D

University of AlbertaDr. Osmar Zaïane, 2004 33CMPUT 391 – Database Management Systems

Step 2: Dealing With Associativity
• Too many trees to evaluate: settle on a particular

shape: left-deep tree.
– Used because it allows pipelining:

– Property: once a row of X has been output by P1, it need not
be output again (but C may have to be processed several
times in P2 for successive portions of X)

– Advantage: none of the intermediate relations (X, Y) have to
be completely materialized and saved on disk.

• Important if one such relation is very large, but the final result is
small

A B X C Y D
X Y

P1 P2 P3

University of AlbertaDr. Osmar Zaïane, 2004 34CMPUT 391 – Database Management Systems

Step 2: Dealing with Associativity

• consider the alternative: if we use the
association ((A B) (C D))

A B

C D

X Y

X

Y

Each row of X must
be processed against
all of Y. Hence all of
Y (can be very large)
must be stored
in P3, or P2 has to
recompute it several
times.

P1

P2
P3

University of AlbertaDr. Osmar Zaïane, 2004 35CMPUT 391 – Database Management Systems

Step 3: Heuristic Search

• The choice of left-deep trees still leaves open
too many options (N! permutations):
– (((A B) C) D),

– (((C A) D) B), …..

• A heuristic (often dynamic programming
based) algorithm is used to get a ‘good’ plan

University of AlbertaDr. Osmar Zaïane, 2004 36CMPUT 391 – Database Management Systems

Step 3: Dynamic Programming Algorithm

• Just an idea – see book for details

• To compute a join of E1, E2, …, EN in a left-deep
manner:
– Start with 1-relation expressions (can involve σ, π)

– Choose the best and “nearly best” plans for each (a plan is
considered nearly best if its output has some “interesting”
form, e.g., is sorted)

– Combine these 1-relation plans into 2-relation expressions.
Retain only the best and nearly best 2-relation plans

– Do same for 3-relation expressions, etc.

University of AlbertaDr. Osmar Zaïane, 2004 37CMPUT 391 – Database Management Systems

Index-Only Queries
• A B+ tree index with search key attributes A1, A2, …,

An has stored in it the values of these attributes for each
row in the table.
– Queries involving a prefix of the attribute list A1, A2, .., An

can be satisfied using only the index – no access to the actual
table is required.

• Example: Transcript has a clustered B+ tree index on
StudId. A frequently asked query is one that requests
all grades for a given CrsCode.
– Problem: Already have a clustered index on StudId – cannot

create another one (on CrsCode)
– Solution: Create an unclustered index on (CrsCode, Grade)

• Keep in mind, however, the overhead in maintaining extra indices

