Database Management Systems

Winter 2004
CMPUT 391: An Overview of Query Optimization

Dr. Osmar R. Zaïane

Naïve Conversion

SELECTDISTINCT TargetList
FROM R1, R2, ..., RN
WHERE Condition
is equivalent to

$$
\pi_{\text {TargetList }}\left(\sigma_{\text {Condition }}(\mathrm{R} 1 \times \mathrm{R} 2 \times \ldots \times \mathrm{RN})\right)
$$

but this may imply a very inefficient query execution plan.
Example: $\quad \pi_{\text {Name }}\left(\sigma_{\text {Id=Profld CrsCode }=\text { 'CS532 }}\right.$ (Professor \times Teaching))

- Result can be < 100 bytes
- But if each relation is 50 K then we end up computing an intermediate result Professor \times Teaching of size 1 G before shrinking it down to just a few bytes.

Problem: Find an equivalent relational algebra expression that can be evaluated "efficiently".

Query Evaluation

- Problem: An SQL query is declarative - does not specify a query execution plan.
- A relational algebra expression is procedural - there is an associated query execution plan.
- Solution: Convert SQL query to an equivalent relational algebra and evaluate it using the associated query execution plan.
- But which equivalent expression is best?

Query Optimizer

- Uses heuristic algorithms to evaluate relational algebra expressions. This involves:
- estimating the cost of a relational algebra expression
- transforming one relational algebra expression to an equivalent one
- choosing access paths for evaluating the sub-expressions
- Query optimizers do not "optimize" - just try to find "reasonably good" evaluation strategies

Equivalence Preserving Transformations

- To transform a relational expression into another equivalent expression we need transformation rules that preserve equivalence
- Each transformation rule
- Is provably correct (ie, does preserve equivalence)
- Has a heuristic associated with it

Selection and Projection Rules

- Break complex selection into simpler ones:

$$
-\sigma_{C o n d 1 \wedge C o n d 2}(\mathrm{R}) \equiv \sigma_{\text {Cond } 1}\left(\sigma_{C o n d 2}(\mathrm{R})\right)
$$

- Break projection into stages:
$-\pi_{a t t r}(\mathrm{R}) \equiv \pi_{a t t r}\left(\pi_{a t t r^{\prime}}(\mathrm{R})\right)$, if attr $\subseteq a t t r^{\prime}$
- Commute projection and selection:

$$
\begin{aligned}
& -\pi_{\text {attr }}\left(\sigma_{\text {Cond }}(\mathrm{R})\right) \equiv \sigma_{\text {Cond }}\left(\pi_{\text {attr }}(\mathrm{R})\right), \\
& \text { if } \text { attr } \supseteq \text { all attributes in Cond }
\end{aligned}
$$

Commutativity and Associativity of Join

 (and Cartesian Product as Special Case)- Join commutativity: $R \bowtie S \equiv S \bowtie R$
- used to reduce cost of nested loop evaluation strategies (smaller relation should be in outer loop)

- used to reduce the size of intermediate relations in computation of multirelational join - first compute the join that yields smaller intermediate result
- N-way join has $T(N) \times N$! different evaluation plans
- $T(N)$ is the number of parenthesized expressions
- N ! is the number of permutations
- Query optimizer cannot look at all plans (might take longer to find an optimal plan than to compute query brute-force). Hence it does not necessarily produce optimal plan
Dr. Osmar Zaiane, 2004 CMPUT 391 - Database Management Systems \quad University of Alberta 8

Pushing Selections and Projections

- $\sigma_{\text {Cond }}(\mathrm{R} \times \mathrm{S}) \equiv \mathrm{R} \bowtie_{\text {Cond }} \mathrm{S}$
- Cond relates attributes of both R and S
- Reduces size of intermediate relation since rows can be discarded sooner
- $\sigma_{\text {Cond }}(\mathrm{R} \times \mathrm{S}) \equiv \sigma_{\text {Cond }}(\mathrm{R}) \times \mathrm{S}$
- Cond involves only the attributes of R
- Reduces size of intermediate relation since rows of R are discarded sooner
- $\pi_{\text {attr }}(\mathrm{R} \times \mathrm{S}) \equiv \pi_{\text {attr }}\left(\pi_{\text {attr }}(\mathrm{R}) \times \mathrm{S}\right)$,
if attributes $(R) \supseteq$ attr $^{\prime} \supseteq$ attr
- reduces the size of an operand of product

Equivalence Example

- $\sigma_{C l \wedge C 2 \wedge C 3}(\mathrm{R} \times \mathrm{S}) \equiv \sigma_{C l}\left(\sigma_{C 2}\left(\sigma_{C 3}(\mathrm{R} \times \mathrm{S})\right)\right)$

$$
\begin{aligned}
& \equiv \sigma_{C 1}\left(\sigma_{C 2}(\mathrm{R}) \times \sigma_{C 3}(\mathrm{~S})\right) \\
& \equiv \sigma_{C 2}(\mathrm{R}) \bowtie \bigotimes_{C 1} \sigma_{C 3}(\mathrm{~S})
\end{aligned}
$$

assuming $C 2$ involves only attributes of R , C3 involves only attributes of S, and $C 1$ relates attributes of R and S

Cost - Example 1

SELECT P.Name

FROM Professor P, Teaching T
WHERE P.Id $=$ T.ProfId $\quad-$ join condition
AND P. DeptId $=$ 'CS'AND T.Semester $=$ 'F1994'
$\pi_{\text {Name }}\left(\sigma_{\text {DeptId='CS' }} \wedge\right.$ Semester='F1994, $\left(\right.$ Professor $X_{\text {Id=Profld }}$ Teaching $\left.)\right)$

Metadata on Tables (in system catalogue)

- Professor (Id, Name, DeptId)
- size: 200 pages, 1000 rows, 50 departments
- indexes: clustered, 2-level B+tree on DeptId, hash on Id
- Teaching (ProfId, CrsCode, Semester)
- size: 1000 pages, 10,000 rows, 4 semesters
- indexes: clustered, 2-level B+tree on Semester; hash on ProfId
- Definition: Weight of an attribute - average number of rows that have a particular value
- weight of $I d=1$ (it is a key)
- weight of ProfId $=10$ (10,000 classes/ 1000 professors)

Estimating Cost - Example 1

- Join - block-nested loops with 52 page buffer (50 pages - input for Professor, 1 page - input for Teaching, 1 - output page
- Scanning Professor (outer loop): 200 page transfers, (4 iterations, 50 pages each)
- Finding matching rows in Teaching (inner loop): 1000 page transfers for each iteration of outer loop
- 250 professors in each 50 page chunk * 10 matching Teaching tuples per professor $=2500$ tuple fetches $=2500$ page transfers for Teaching (Why?)
- By sorting the record Ids of these tuples we can get away with only 1000 page transfers (Why?)
- total cost $=200+4 * 1000=4200$ page transfers

Pipelining

- Solution: use pipelining:
- join and select/project act as coroutines, operate as producer/consumer sharing a buffer in main memory.
- When join fills buffer; select/project filters it and outputs result
- Process is repeated until select/project has processed last output from join
- Performing select/project adds no additional cost

Estimating Cost - Example 1 (cont'd)

- Selection and projection - scan rows of intermediate file, discard those that don't satisfy selection, project on those that do, write result when output buffer is full.
- Complete algorithm:
- do join, write result to intermediate file on disk
- read intermediate file, do select/project, write final result
- Problem: unnecessary I/O

Estimating Cost - Example 1 (cont'd)

- Total cost:
$4200+$ (cost of outputting final result)
- We will disregard the cost of outputting final result in comparing with other query evaluation strategies, since this will be same for all

Cost Example 2

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.ProfId AND
P. DeptId $=$ 'CS' AND T.Semester $={ }^{\prime} \mathrm{F} 1994$ '
$\pi_{\text {Name }}\left(\sigma_{\text {Semester='F1994' }}\left(\sigma_{\text {DeptId='CS }},(\right.\right.$ Professor $) \searrow_{\text {Id=ProfId }}$ Teaching $\left.)\right)$ $\pi_{\text {Name }}$

Partially pushed
plan: selection
plan: selection

- Compute $\sigma_{\text {DeptId=‘CS }}$, $($ Professor) (to reduce size of one join table) using clustered, 2-level B^{+}tree on DeptId.
- 50 departments and 1000 professors; hence weight of DeptId is 20 (roughly 20 CS professors). These rows are in ~ 4 consecutive pages in Professor.
- Cost $=4$ (to get rows) +2 (to search index) $=6$
- keep resulting 4 pages in memory and pipe to next step

Cost Example 2 - join (cont'd)

- Each professor matches ~ 10 Teaching rows. Since 20 CS professors, hence 200 teaching records.
- All index entries for a particular ProfId are in same bucket. Assume ~ 1.2 I/Os to get a bucket.
- Cost $=1.2 \times 20$ (to fetch index entries for 20 CS professors) +200 (to fetch Teaching rows, since hash index is unclustered) $=224$

- Index-nested loops join using hash index on ProfId of Teaching and looping on the selected professors (computed on previous slide)
- Since selection on Semester was not pushed, hash index on ProfId of Teaching can be used
- Note: if selection on Semester were pushed, the index on Profld would have been lost - an advantage of not using a fully pushed query execution plan

Cost Example 2 - select/project

- Pipe result of join to select (on Semester) and project (on Name) at no I/O cost
- Cost of output same as for Example 1
- Total cost:

6 (select on Professor) +224 (join) $=230$

- Comparison:

4200 (example 1) vs. 230 (example 2) !!!

Estimating Output Size

- It is important to estimate the size of the output of a relational expression - size serves as input to the next stage and affects the choice of how the next stage will be evaluated.
- Size estimation uses the following measures on a particular instance of R:
- Tuples(R): number of tuples
- Blocks(R): number of blocks
- Values(R.A): number of distinct values of A
- MaxVal(R.A): maximum value of A
- MinVal(R.A): minimum value of A

Estimating Output Size

- For the query: SELECT TargetList

FROM $\quad \mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{n}}$ WHERE Condition

- Reduction factor is

$$
\frac{\text { Blocks (result set) }}{\text { Blocks }\left(\mathrm{R}_{1}\right) \times \ldots \times \operatorname{Blocks}\left(\mathrm{R}_{\mathrm{n}}\right)}
$$

Estimation of Reduction Factor

- Assume that reduction factors due to target list and query condition are independent
- Thus:
reduction $($ Query $)=$
reduction(TargetList) \times reduction(Condition)

Reduction Due to Simple Condition

- reduction $\left(\mathrm{R}_{\mathrm{i}}, A=\right.$ val $)=\frac{1}{\operatorname{Values}(\mathrm{R} . A)}$
- reduction $\left(\mathrm{R}_{\mathrm{i}} \cdot A=\mathrm{R}_{\mathrm{j}} \cdot B\right)=\frac{1}{\max \left(\operatorname{Values}\left(\mathrm{R}_{\mathrm{i}} \cdot A\right), \operatorname{Values}\left(\mathrm{R}_{\mathrm{j}} \cdot B\right)\right)}$
- Assume that values are uniformly distributed,

Tuples $\left(\mathrm{R}_{\mathrm{i}}\right)<\operatorname{Tuples}\left(\mathrm{R}_{\mathrm{j}}\right)$, and every row of R_{i} matches a row of R_{j}. Then the number of tuples that satisfy Condition is:
$\operatorname{Values}\left(\mathrm{R}_{\mathrm{i}} \cdot A\right) \times\left(\operatorname{Tuples}\left(\mathrm{R}_{\mathrm{i}} \cdot A\right) / \operatorname{Values}\left(\mathrm{R}_{\mathrm{i}} \cdot A\right)\right)$

$$
\times\left(\operatorname{Tuples}\left(\mathrm{R}_{\mathrm{j}}, A\right) / \operatorname{Values}\left(\mathrm{R}_{\mathrm{j}} \cdot A\right)\right)
$$

- reduction $\left(\mathrm{R}_{\mathrm{i}} \cdot A>\operatorname{val}\right)=\frac{\operatorname{Max\operatorname {Val}(\mathrm {R}_{\mathrm {i}},A)-val}}{\operatorname{Values}\left(\mathrm{R}_{\mathrm{i}}, A\right)}$

Reduction Due to TargetList

- reduction(TargetList) $=$ number-of-attributes (TargetList) Σ_{i} number-of-attributes $\left(\mathrm{R}_{\mathrm{i}}\right)$

Reduction Due to Complex Condition

- $\operatorname{reduction}\left(\operatorname{Cond}_{1}\right.$ AND $\left.\operatorname{Cond}_{2}\right)=$
reduction $\left(\right.$ Cond $\left._{1}\right) \times$ reduction $\left(\right.$ Cond $\left._{2}\right)$
- $\operatorname{reduction}\left(\operatorname{Cond}_{1}\right.$ OR Cond $\left._{2}\right)=$
$\min \left(1, \operatorname{reduction}\left(\operatorname{Cond}_{1}\right)+\operatorname{reduction}\left(\operatorname{Cond}_{2}\right)\right)$

Estimating Weight of Attribute

weight $(\mathrm{R} . A)=$
Tuples $(\mathrm{R}) \times$ reduction $(\mathrm{R} . A=$ value $)$

Choosing Query Execution Plan

- Step 1: Choose a logical plan
- Step 2: Reduce search space
- Step 3: Use a heuristic search to further reduce complexity

Step 1: Choosing a Logical Plan

- Involves choosing a query tree, which indicates the order in which algebraic operations are applied
- Heuristic: Pushed trees are good, but sometimes "nearly fully pushed" trees are better due to indexing (as we saw in the example)
- So: Take the initial "master plan" tree and produce a fully pushed tree plus several nearly fully pushed trees.

Step 2 (cont'd)

- Two issues:
- Choose a particular shape of a tree (like in the previous slide)
- Equals the number of ways to parenthesize N -way join - grows very rapidly
- Choose a particular permutation of the leaves
- E.g., 4! permutations of the leaves A, B, C, D

Step 2: Dealing With Associativity

- Too many trees to evaluate: settle on a particular shape: left-deep tree.
- Used because it allows pipelining:

- Property: once a row of X has been output by P_{1}, it need not be output again (but C may have to be processed several times in P_{2} for successive portions of X)
- Advantage: none of the intermediate relations (X, Y) have to be completely materialized and saved on disk.
- Important if one such relation is very large, but the final result is small

Step 3: Heuristic Search

- The choice of left-deep trees still leaves open too many options (N ! permutations):
- (((A \bowtie B) \bowtie
C)
D),
$-(((\mathrm{C} \bowtie \mathrm{A}) \bowtie$
D) $\bowtie B$
- A heuristic (often dynamic programming based) algorithm is used to get a 'good' plan

Index-Only Queries

- A B^{+}tree index with search key attributes A_{1}, A_{2}, \ldots, A_{n} has stored in it the values of these attributes for each row in the table.
- Queries involving a prefix of the attribute list $A_{1}, A_{2}, \ldots, A_{n}$ can be satisfied using only the index - no access to the actual table is required.
- Example: Transcript has a clustered B ${ }^{+}$tree index on StudId. A frequently asked query is one that requests all grades for a given CrsCode.
- Problem: Already have a clustered index on StudId - cannot create another one (on CrsCode)
- Solution: Create an unclustered index on (CrsCode, Grade)
- Keep in mind, however, the overhead in maintaining extra indices

