
Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 1

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2004

CMPUT 391: Properties of Transactions

Chapter 20 of
Textbook

Lecture 6

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 2

Objectives of Lecture 6
Properties of TransactionsProperties of Transactions

• Introduce some important notions related to
DBMSs such as transactions, scheduling,
locking mechanisms, committing and
aborting transactions, etc.

• Understand the issues related to concurrent
execution of transactions on a database.

• Present the properties of transactions

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 3

Transactions

• Many enterprises use databases to store information
about their state
– e.g., Balances of all depositors at a bank

• When an event occurs in the real world that changes
the state of the enterprise, a program is executed to
change the database state in a corresponding way
– e.g., Bank balance must be updated when deposit is made

• Such a program is called a transaction

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 4

Transaction
• A transaction is the DBMS’s abstract view of a

user program: a sequence of reads and writes

• A transaction is a sequence of actions that make
consistent transformations of system states
while preserving system consistency

Begin
Transaction

End
Transaction

Database in a
Consistent State

Database in a
Consistent State

Execution of
Transaction

Database may be
Temporarily in an
Inconsistent state
During execution

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 5

What Does a Transaction Do?

• Update the database to reflect the occurrence
of a real world event
– Deposit transaction: Update customer’s balance

in database

• Cause the occurrence of a real world event
– Withdraw transaction: Dispense cash (and

update customer’s balance in database)

• Return information from the database
– RequestBalance transaction: Outputs customer’s

balance

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 6

Transaction Operations
• A user’s program may carry out many operations on the

data retrieved from DB but DBMS is only concerned
about Read/Write.

• A database transaction is the execution of a program that
include database access operations:
– Begin-transaction
– Read
– Write
– End-transaction
– Commit-transaction
– Abort-transaction
– Undo
– Redo

• Concurrent execution of user programs is essential for
good DBMS performance.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 7

State of Transactions
• Active: the transaction is executing.

• Partially Committed: the transaction ends after
execution of final statement.

• Committed: after successful completion checks.

• Failed: when the normal execution can no longer
proceed.

• Aborted: after the transaction has been rolled back.

Active
Partially
committed

CommittedBegin
transaction End

transaction

Commit

Abort
AbortedFailed

problem

problem

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 8

Concurrency in a DBMS
• Users submit transactions, and can think of each transaction

as executing by itself.
– Concurrency is achieved by the DBMS, which interleaves actions

(reads/writes of DB objects) of various transactions.

– Each transaction must leave the database in a consistent state if the
DB is consistent when the transaction begins.

• DBMS will enforce some ICs, depending on the ICs declared in CREATE
TABLE statements.

• Beyond this, the DBMS does not really understand the semantics of the
data. (e.g., it does not understand how the interest on a bank account is
computed).

• Issues: Effect of interleaving transactions, and crashes.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 9

Transactions
• The execution of each transaction must maintain

the relationship between the database state and the
enterprise state

• Therefore additional requirements are placed on
the execution of transactions beyond those placed
on ordinary programs:
– Atomicity
– Consistency
– Isolation
– Durability

ACID properties

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 10

Transaction Properties

• Atomicity (all or nothing)
– A transaction is atomic: transaction always executing all its

actions in one step, or not executing any actions at all.

• Consistency (no violation of integrity constraints)
– A transaction must preserve the consistency of a database

after execution. (responsibility of the user)

• Isolation (concurrent changes invisible serializable)
– Transaction is protected from the effects of concurrently

scheduling other transactions.

• Durability (committed updates persist)
– The effect of a committed transaction should persist even

after a crash.

The acronym ACID is often used to refer to the four properties of DB transactions.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 11

Durability

• The system must ensure that once a
transaction commits, its effect on the
database state is not lost in spite of
subsequent failures
– Not true of ordinary programs. A media failure

after a program successfully terminates could
cause the file system to be restored to a state
that preceded the program’s execution

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 12

Implementing Durability

• Database stored redundantly on mass
storage devices

• Architecture of mass storage devices affects
type of media failures that can be tolerated
– Availability: extent to which a (possibly

distributed) system can provide service despite
failure

• Non-stop DBMS (mirrored disks)
• Recovery based DBMS (log)

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 13

Isolation
• Serial Execution: The transactions execute one

after the other
– Each one starts after the previous one completes.
– The execution of each transaction is isolated from all

others.

• If the initial database state and all transactions are
consistent, all consistency constraints are satisfied
and the final database state will accurately reflect
the real-world state, but

• Serial execution is inadequate from a performance
perspective

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 14

Isolation

• Concurrent execution offers performance
benefits:
– A computer system has multiple resources

capable of executing independently (e.g., cpu’s,
I/O devices), but

– A transaction typically uses only one resource
at a time

– Concurrently executing transactions can make
effective use of the system

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 15

Concurrent ExecutionACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 16

Example
• Consider two transactions:

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

• Intuitively, the first transaction is transferring $100
from B’s account to A’s account. The second is
crediting both accounts with a 6% interest payment.

• There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together.

• However, the net effect must be equivalent to these
two transactions running serially in some order.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 17

Example (Contd.)
• Consider a possible interleaving (schedule):

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

• This is OK. But what about:
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

• The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 18

The net effect of an interleaved execution of T1 and T2 must be equivalent to
the effect of running T1 and T2 in some serial order!

T1
Read(A)
A=A+100

Write(A)

Read(B)
B=B-100

Write(B)

T2

Read(A)
A=A*1.06

Write(A)

Read(B)
B=B*1.06

Write(B)

T1, T2

T1

Read(A)
A=A+100

Write(A)

Read(B)
B=B-100

Write(B)

T2
Read(A)
A=A*1.06

Write(A)

Read(B)
B=B*1.06

Write(B)

T2, T1

T1
Read(A)
A=A+100

Write(A)

Read(B)
B=B-100

Write(B)

T2

Read(A)
A=A*1.06

Write(A)
Read(B)
B=B*1.06

Write(B)

Problem

Missing interest

T1

Read(A)
A=A+100

Write(A)
Read(B)
B=B-100

Write(B)

T2
Read(A)
A=A*1.06

Write(A)

Read(B)
B=B*1.06

Write(B)

Problem

Interest for $100 twice

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 19

Isolation
• Concurrent (interleaved) execution of a set of

consistent transactions offers performance
benefits, but might not be correct

• Example: course registration; cur_reg is
number of current registrants

T1: r(cur_reg : 29) w(cur_reg : 30)
T2: r(cur_reg : 29) w(cur_reg : 30)

time →

Result: Database state no longer corresponds to
real-world state, integrity constraint violated
(cur_reg <> |list_of_registered_students|)

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 20

Interaction of Atomicity and
Isolation

• T1 deposits $1000000
• T2 grants credit and commits before T1

completes
• T1 aborts and rolls balance back to $10
• T1 has had an effect even though it aborted!

T1: r(bal:10) w(bal:1000010) abort
T2: r(bal:1000010) w(yes!!!) commit

time →

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 21

Isolation

• An interleaved schedule of transactions is
isolated if its effect is the same as if the
transactions had executed serially in some
order (serializable)

• It follows that serializable schedules are
always correct (for any application)

• Serializable is better than serial from a
performance point of view

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 22

Isolation in the Real World

• SQL supports SERIALIZABLE isolation level,
which guarantees serializability and hence
correctness for all applications

• Performance of applications running at
SERIALIZABLE is often not adequate

• SQL also supports weaker levels of isolation with
better performance characteristics
– But beware! -- a particular application might not run

correctly at a weaker level

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 23

Database Consistency

• Enterprise (Business) Rules limit the occurrence
of certain real-world events
– Student cannot register for a course if the current

number of registrants equals the maximum allowed

• Correspondingly, allowable database states are
restricted

cur_reg <= max_reg

• These limitations are called (static) integrity
constraints: assertions that must be satisfied by
the database state

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 24

Database Consistency

• Other static consistency requirements are
related to the fact that the database might
store the same information in different ways
– cur_reg = |list_of_registered_students|
– Such limitations are also expressed as integrity

constraints

• Database is consistent if all static integrity
constraints are satisfied

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 25

Transaction Consistency
• A consistent database state does not necessarily model

the actual state of the enterprise
– A deposit transaction that increments the balance by the

wrong amount maintains the integrity constraint balance ≥ 0,
but does not maintain the relation between the enterprise and
database states

• A consistent transaction maintains database
consistency and the correspondence between the
database state and the enterprise state (implements its
specification)
– Specification of deposit transaction includes

balance = balance′ + amt_deposit ,
(balance′ is the initial value of balance)

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 26

Dynamic Integrity Constraints

• Some constraints restrict allowable state
transitions
– A transaction might transform the database

from one consistent state to another, but the
transition might not be permissible

– Example: A letter grade in a course (A, B, C,
D, F) cannot be changed to an incomplete (I)

• Dynamic constraints cannot be checked by
examining the database state

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 27

Transaction Consistency

• A transaction is consistent if, assuming the
database is in a consistent state initially,
when the transaction completes:
– All static integrity constraints are satisfied (but

constraints might be violated in intermediate
states)

• Can be checked by examining snapshot of database

– New state satisfies specifications of transaction
• Cannot be checked from database snapshot

– No dynamic constraints have been violated
• Cannot be checked from database snapshot

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 28

Checking Integrity Constraints
• Automatic: Embed constraint in schema.

– CHECK, ASSERTION for static constraints
– TRIGGER for dynamic constraints
– Increases confidence in correctness and decreases

maintenance costs
– Not always desirable since unnecessary checking

(overhead) might result
• Deposit transaction modifies balance but cannot violate

constraint balance ≥ 0

• Manual: Perform check in application code.
– Only necessary checks are performed
– Scatters references to constraint throughout application
– Difficult to maintain as transactions are modified/added

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 29

Atomicity

• A real-world event either happens or does
not happen
– Student either registers or does not register

• Similarly, the system must ensure that either
the corresponding transaction runs to
completion or, if not, it has no effect at all
– Not true of ordinary programs. A crash could

leave files partially updated on recovery

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 30

Commit and Abort

• If the transaction successfully completes it is said
to commit
– The system is responsible for preserving the

transaction’s results in spite of subsequent failures

• If the transaction does not successfully complete,
it is said to abort
– The system is responsible for undoing, or rolling back,

any changes the transaction has made

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 31

Reasons for Abort

• System crash

• Transaction aborted by system
– Execution cannot be made atomic (a site is down)

– Execution did not maintain database consistency
(integrity constraint is violated)

– Execution was not isolated

– Resources not available (deadlock)

• Transaction requests to roll back

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 32

API for Transactions

• DBMS and TP monitor provide commands for
setting transaction boundaries. For example:
– begin transaction
– commit
– rollback

• The commit command is a request
– The system might commit the transaction, or it might

abort it for one of the reasons on the previous slide

• The rollback command is always satisfied

ACID

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 33

Summary

• Application programmer is responsible for
creating consistent transactions

• DBMS and TP monitor are responsible for
creating the abstractions of atomicity,
durability, and isolation
– Greatly simplifies programmer’s task since he

or she does not have to be concerned with
failures or concurrency

