Database Management
Systems

Winter 2004
CMPUT 391: Transactions Models

Dr. Osmar R. Zaiane

Lecture7

Chapter 21 of
Textbook

Objectivesof Lecture?

Transactions Models
* |llustrate how single tasks may be broken
up into several transactions

 Describe some transaction structuring
mechanisms

» Hint on issues related to distributed
transactions

Flat Transaction

Consists of:
— Computation on local variables

— Accessto DBMS using call or
statement level interface

No internal structure

EXEC SOL

» Accessesasingle DBMS

o Adequate for simple :
applications commit

EXEC SQL

begin transaction

Flat Transaction

» Abort causes the

begin transaction
execution of a program :

that restores the EXECSQL ...
variables updated by the EXEC SQL ...
transaction to the state :

they had when the if condi:tion then abort
transaction first accessed  commit

them.




Some Limitations of Flat

Transactions
« Only total rollback (abort) is possible Providing Structure Within a
— Partial rollback not possible SI ng| e Transacti on

All work lost in case of crash

» Limited to accessing asingle DBMS
 Entire transaction takes place at asingle
point in time

SavepOi ntS begin transaction

S1;

SavepOi n t S Ssgl := create_savepoint();
Sp, := create_savepoint();
3

* Problem: Transaction detects condition that y (’Conditi on) {rollback (sp,): S5}

requires rollback of recent database changes s
that it has made commit
« Solution 1: Transaction reverses changes » Rollback to sp, cawses database updates subsequent

to creation of sp; to be undone
* Program counter and local variables are not rolled

itself

« Solution 2: Transaction uses the rollback back (why not?)

facility within DBMS to undo the changes « Savepoint creation does not make prior database

changes durable (abort rolls all changes back




Integration of Applications

* Problem: Many enterprises consist of
multiple legacy systems doing separate
tasks. Increasing automation requires that
these systems be integrated

withdraw part —
return part ——» Inventory J DBMS 1
stock level ————1{__Application
orderpat ———  Billing

» DBMS 2
payment  ———— Application

Distributed Transactions

* Incorporate (legacy) transactions at multiple
serversinto asingle (distributed) transaction

tx_begin; Inventory
! : .7 ——» DBMS1
order_part; Application
withdraw_part;
tx_commit; Application
Ste A

SteB

SteC

Distributed Transactions

e Goal: distributed transaction should be ACID

— Each subtransaction islocally ACID (e.g., local
constraints maintained, locally serializable)
— In addition the transaction should be globally ACID
* A: Either all subtransactions commit or all abort

e C: Global integrity constraints are maintained

« |: Concurrently executing distributed transactions are
globally serializable

* D: Each subtransaction is durable

Banking Example

» Global atomicity - funds transfer

— Either both subtransactions commit or neither does

tx_begin;
withdraw(acctl);
deposit(acct?);

tx_commit;




Banking Example (con't)

» Global consistency -

— Sum of all account balances at bank branches =
total assets recorded at main office

Banking Example (con't)
* Global isolation - local serializability at each site

does not guarantee global serializability

— post_interest subtransaction is serialized after audit
subtransaction in DBMS at branch 1 and before audit
in DBMS at branch 2 (local isolation), but

— thereisno global order

post_interest audit

time

! sum balances at branch 1;
post interest at branch 1,
post interest at branch 2;

sum balances at branch 2;

Multidatabase

» Set of databases accessed by a distributed
transaction is referred to as a multidatabase (or
federated database)

— Each local database retainsits local autonomy and
might execute local (non-distributed) transactions

» Multidatabase might have global integrity
constraints

— e.g., Sum of balances of individual bank accounts at all
branch offices = total assets stored at main office

Transaction Hierarchy

e A distributed transaction invokes
subtransactions.

» General model: hierarchy of subtransactions.

Q
3 R

Database Management Systems University of Alberta g 16

0 Dr. Osmar R. Zaiane, 2001-2004




Models of Distributed Transactions

 Can siblings execute concurrently?
» Can parent execute concurrently with

children? If yes, can parent
communicate with child?
Q Q e Who initiates commit?

Hierarchical Model: No concurrency (hence no communication
between subtransactions), root initiates commit

Peer Model: Concurrency among siblings and between parent and
children, concurrent subtransactions can communicate, any
subtransaction can initiate commit

Distributed Transactions

» Transaction designer has little control over
the structure. Decomposition fixed by
distribution of data and/or exported
interfaces

o Essentially a bottom-up design

Nested Transactions

* Problem: Lack of mechanismsthat allow:

— atop-down, functional decomposition of a
transactional application into subtransactions

— individual subtransactions to abort without aborting
the entire transaction
 Although a nested transaction looks similar to a
distributed transaction, it is not conceived of as
atool for accessing a multidatabase

Characteristics of Nested Transactions

* (1) Parent can create a set of children
that execute concurrently; parent
waits until al children complete (no
communication between parent and

Q Q children).

« (2) Each subtransaction (together with its descendants) is
isolated with respect to each sibling (and its descendants).
Hence, siblings are serializable, but order is not determined
and nested transaction is non-deterministic.

« (3) Concurrent nested transactions are serializable.




Characteristics of Nested Transactions

p\ * (4) A subtransaction is atomic. It can

abort or commit independently of other
Q Q subtransactions. Commitment is
>/ 2 conditional on commitment of parent.

Abort causes abort of all its children.

* (5) Nested transaction commits when root commits. At
that point updates of committed subtransactions are made

durable.
(6) Individual subtransactions are not necessarily

Nested Transaction - Example

Booking aflight from
London to Des Moines

/ 77777777 C = commit
A = abort

NY -- StL -- DM

concurrent
—--concurrent

Nested Transactions

. paentofal
[ nested transactions

eeeeeee 8
1O

isolation

isolation ) .
isolation




