
Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 1

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2004

CMPUT 391: Transactions Models

Chapter 21 of
Textbook

Lecture 7

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 2

Objectives of Lecture 7
Transactions ModelsTransactions Models

• Illustrate how single tasks may be broken
up into several transactions

• Describe some transaction structuring
mechanisms

• Hint on issues related to distributed
transactions

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 3

Flat Transaction

• Consists of:
– Computation on local variables

– Access to DBMS using call or
statement level interface

• No internal structure

• Accesses a single DBMS

• Adequate for simple
applications

begin transaction

EXEC SQL …..

EXEC SQL …..

commit

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 4

Flat Transaction

• Abort causes the
execution of a program
that restores the
variables updated by the
transaction to the state
they had when the
transaction first accessed
them.

begin transaction

EXEC SQL …..

EXEC SQL …..

if condition then abort

commit

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 5

Some Limitations of Flat
Transactions

• Only total rollback (abort) is possible
– Partial rollback not possible

• All work lost in case of crash

• Limited to accessing a single DBMS

• Entire transaction takes place at a single
point in time

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 6

Providing Structure Within a
Single Transaction

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 7

Savepoints

• Problem: Transaction detects condition that
requires rollback of recent database changes
that it has made

• Solution 1: Transaction reverses changes
itself

• Solution 2: Transaction uses the rollback
facility within DBMS to undo the changes

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 8

Savepoints

• Rollback to spi causes database updates subsequent
to creation of spi to be undone

• Program counter and local variables are not rolled
back (why not?)

• Savepoint creation does not make prior database
changes durable (abort rolls all changes back)

begin transaction
S1;
sp1 := create_savepoint();
S2;
sp2 := create_savepoint();
S3;
if (condition) {rollback (sp1); S5};
S4;

commit

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 9

Integration of Applications

• Problem: Many enterprises consist of
multiple legacy systems doing separate
tasks. Increasing automation requires that
these systems be integrated

Billing
Application

Inventory
Application

DBMS 2

DBMS 1
withdraw part
return part
stock level

order part
payment

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 10

Distributed Transactions

• Incorporate (legacy) transactions at multiple
servers into a single (distributed) transaction

tx_begin;
order_part;
withdraw_part;
payment;

tx_commit;

DBMS 1

DBMS 2

Inventory
Application

Billing
Application

Site A

Site B

Site C

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 11

Distributed Transactions

• Goal: distributed transaction should be ACID
– Each subtransaction is locally ACID (e.g., local

constraints maintained, locally serializable)
– In addition the transaction should be globally ACID

• A: Either all subtransactions commit or all abort
• C: Global integrity constraints are maintained
• I: Concurrently executing distributed transactions are

globally serializable
• D: Each subtransaction is durable

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 12

Banking Example

• Global atomicity - funds transfer
– Either both subtransactions commit or neither does

tx_begin;

withdraw(acct1);

deposit(acct2);

tx_commit;

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 13

Banking Example (con’t)

• Global consistency -
– Sum of all account balances at bank branches =

total assets recorded at main office

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 14

Banking Example (con’t)
• Global isolation - local serializability at each site

does not guarantee global serializability
– post_interest subtransaction is serialized after audit

subtransaction in DBMS at branch 1 and before audit
in DBMS at branch 2 (local isolation), but

– there is no global order

post_interest audit
time
↓ sum balances at branch 1;

post interest at branch 1;
post interest at branch 2;

sum balances at branch 2;

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 15

Multidatabase

• Set of databases accessed by a distributed
transaction is referred to as a multidatabase (or
federated database)
– Each local database retains its local autonomy and

might execute local (non-distributed) transactions

• Multidatabase might have global integrity
constraints
– e.g., Sum of balances of individual bank accounts at all

branch offices = total assets stored at main office

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 16

Transaction Hierarchy
• A distributed transaction invokes

subtransactions.

• General model: hierarchy of subtransactions.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 17

Models of Distributed Transactions

• Can siblings execute concurrently?

• Can parent execute concurrently with
children? If yes, can parent
communicate with child?

• Who initiates commit?

Hierarchical Model: No concurrency (hence no communication
between subtransactions), root initiates commit

Peer Model: Concurrency among siblings and between parent and
children, concurrent subtransactions can communicate, any
subtransaction can initiate commit

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 18

Distributed Transactions

• Transaction designer has little control over
the structure. Decomposition fixed by
distribution of data and/or exported
interfaces

• Essentially a bottom-up design

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 19

Nested Transactions

• Problem: Lack of mechanisms that allow:
– a top-down, functional decomposition of a

transactional application into subtransactions

– individual subtransactions to abort without aborting
the entire transaction

• Although a nested transaction looks similar to a
distributed transaction, it is not conceived of as
a tool for accessing a multidatabase

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 20

Characteristics of Nested Transactions

• (1) Parent can create a set of children
that execute concurrently; parent
waits until all children complete (no
communication between parent and
children).

• (2) Each subtransaction (together with its descendants) is
isolated with respect to each sibling (and its descendants).
Hence, siblings are serializable, but order is not determined
and nested transaction is non-deterministic.
• (3) Concurrent nested transactions are serializable.

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 21

Characteristics of Nested Transactions

• (4) A subtransaction is atomic. It can
abort or commit independently of other
subtransactions. Commitment is
conditional on commitment of parent.
Abort causes abort of all its children.

• (5) Nested transaction commits when root commits. At
that point updates of committed subtransactions are made
durable.
(6) Individual subtransactions are not necessarily
consistent, but nested transaction as a whole is consistent

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 22

Nested Transaction - Example

Booking a flight from
London to Des Moines C

C C

A

C/A A

C

C C

L -- DM

L -- NY NY -- DM

NY -- Chic -- DM NY -- StL -- DM

NY -- Chic Chic -- DM NY -- StL StL -- DM

concurrent

sequential

concurrent

C = commit
A = abort

stop in Chicago stop in St. Louis
concurrent

Database Management Systems University of Alberta Dr. Osmar R. Zaïane, 2001-2004 23

Nested Transactions

isolation
isolation

parent of all
nested transactions

isolation

concurrent

