
University of AlbertaDr. Osmar Zaïane, 2004 1CMPUT 391 – Database Management Systems

Database Management
Systems

Dr. Osmar R. Zaïane

University of Alberta

Winter 2004

CMPUT 391: Implementing Isolation

Chapter 23
of Textbook

Based on slides by Lewis, Bernstein and Kifer.

Lecture 7

University of AlbertaDr. Osmar Zaïane, 2004 2CMPUT 391 – Database Management Systems

Isolation
• Serial execution:

– Since each transaction is consistent and isolated from all
others, schedule is guaranteed to be correct for all
applications

– Inadequate performance
• Since system has multiple asynchronous resources and

transaction uses only one at a time

• Concurrent execution:
– Improved performance (multiprogramming)
– Some interleavings produce incorrect result
– We are interested in concurrent schedules that are

equivalent to serial schedules. These are referred to as
serializable schedules.

University of AlbertaDr. Osmar Zaïane, 2004 3CMPUT 391 – Database Management Systems

Transaction Schedule

• Consistent - performs correctly when executed in
isolation starting in a consistent database state
– Preserves database consistency
– Moves database to a new state that corresponds to

new real-world state

T1: begin_transaction();
….
p1,1;

….
p1,2;

….
p1,3;

commit();
local

variables

Transaction schedule
p1,3 p1,2 p1,1

To db
server

University of AlbertaDr. Osmar Zaïane, 2004 4CMPUT 391 – Database Management Systems

Schedule

T1

T2

T3
transaction
schedules

Concurrency
Control

Arriving schedule
(merge of transaction
schedules)

Schedule in which
requests are serviced

To database

Database server

University of AlbertaDr. Osmar Zaïane, 2004 5CMPUT 391 – Database Management Systems

Schedule
• Representation 1:

• Representation 2:

T1: p1 p2 p3 p4

T2: p1 p2

p1,1 p1,2 p2,1 p1,3 p2,2 p1,4

time →

time →

University of AlbertaDr. Osmar Zaïane, 2004 6CMPUT 391 – Database Management Systems

Concurrency Control
• Transforms arriving schedule into a correct

interleaved schedule to be submitted to the
DBMS
– Delays servicing a request (reordering) - causes

a transaction to wait
– Refuses to service a request - causes transaction

to abort

• Actions taken by concurrency control have
performance costs
– Goal is to avoid delaying servicing a request

University of AlbertaDr. Osmar Zaïane, 2004 7CMPUT 391 – Database Management Systems

The Inconsistent Analysis Problem
• Occurs when a transaction reads several values

from a database while a second transaction
updates some of them.

T1
sum=0
R(A)
sum=sum+A
R(B)
sum=sum+B

R(C)
sum=sum+C

T2

R(A)
A=A-10
W(A)
R(C)
C=C+10
W(C)

A B C sum
$100 $50 $25 0
$100 $50 $25 0
$100 $50 $25 100
$90 $50 $25 100
$90 $50 $25 150
$90 $50 $25 150
$90 $50 $35 150
$90 $50 $35 150
$90 $50 $35 185

Should be
175

University of AlbertaDr. Osmar Zaïane, 2004 8CMPUT 391 – Database Management Systems

Correct Schedules

• Interleaved schedules equivalent to serial
schedules are the only ones guaranteed to be
correct for all applications

• Equivalence based on commutativity of operations
• Definition: Database operations p1 and p2

commute if, for all initial database states, they
return the same results and leave the database in
the same final state when executed in either order.

University of AlbertaDr. Osmar Zaïane, 2004 9CMPUT 391 – Database Management Systems

Commutativity of Conventional
Operations

• Read
– r(x, X) - copy the value of database variable x to

local variable X

• Write
– w(x, X) - copy the value of local variable X to

database variable x

• We use r1(x) and w1(x) to mean a read or
write of x by transaction T1

University of AlbertaDr. Osmar Zaïane, 2004 10CMPUT 391 – Database Management Systems

Commutativity of Read and
Write Operations

• p1 commutes with p2 if
– They operate on different data items

• w1(x) commutes with w2(y) and r2(y)

– Both are reads
• r1(x) commutes with r2(x)

• Operations that do not commute conflict
• w1(x) conflicts with w2(x)

• w1(x) conflicts with r2(x) Read(x) Write(x)
Read(x) No Yes
Write(x) Yes Yes

University of AlbertaDr. Osmar Zaïane, 2004 11CMPUT 391 – Database Management Systems

Equivalence of Schedules

• An interchange of adjacent operations of
different transactions in a schedule creates an
equivalent schedule if the operations commute

S1 : S1,1, pi,j, pk,l, S1,2 where i ≠ k
S2 : S1,1, pk,l, pi,j, S1,2

• Equivalence is transitive: If S1 is equivalent to
S2 (by a series of such interchanges), and S2 is
equivalent to S3, then S1 is equivalent to S3

University of AlbertaDr. Osmar Zaïane, 2004 12CMPUT 391 – Database Management Systems

Example of Equivalence
S1: r1(x) r2(x) w2(x) r1(y) w1(y)

S2: r1(x) r2(x) r1(y) w2(x) w1(y)

S3: r1(x) r1(y) r2(x) w2(x) w1(y)

S4: r1(x) r1(y) r2(x) w1(y) w2(x)

S5: r1(x) r1(y) w1(y) r2(x) w2(x)

S1 is equivalent to S5

S5 is the serial schedule T1, T2

S1 is serializable
S1 is not equivalent to the serial schedule T2, T1

conflict

conflicting operations
ordered in same way

University of AlbertaDr. Osmar Zaïane, 2004 13CMPUT 391 – Database Management Systems

Example of Equivalence
T1: begin transaction

read (x, X);
X = X+4;
write (x, X);

commit;

T2: begin transaction
read (x,Y);
write (y,Y);

commit;

r1(x) r2(x) w2(y) w1(x)
x=1, y=3 x=5, y=1

x=5, y=1
r2(x) w2(y) r1(x) w1(x)

T2 T1

r1(x) r2(x) w2(y) w1(x)
x=1, y=3 x=5, y=1

x=5, y=5
r1(x) w1(x) r2(x) w2(y)

T1 T2

Interchange
commuting operations

Interchange
conflicting operations

University of AlbertaDr. Osmar Zaïane, 2004 14CMPUT 391 – Database Management Systems

Serializable Schedules

• S is serializable if it is equivalent to a serial
schedule

• Transactions are totally isolated in a serializable
schedule

• A schedule is correct for any application if it is a
serializable schedule of consistent transactions

• The schedule :
r1(x) r2(y) w2(x) w1(y)

is not serializable

University of AlbertaDr. Osmar Zaïane, 2004 15CMPUT 391 – Database Management Systems

Isolation Levels

• Serializability provides a conservative definition of
correctness

– For a particular application there might be many
acceptable non-serializable schedules

– Requiring serializability might degrade performance

• DBMSs offer a variety of isolation levels:

– SERIALIZABLE is the most stringent

– Lower levels of isolation give better performance
• Might allow incorrect schedules

• Might be adequate for some applications

University of AlbertaDr. Osmar Zaïane, 2004 16CMPUT 391 – Database Management Systems

Serializable

• Theorem - Schedule S1 can be derived from S2

by a sequence of commutative interchanges if
and only if conflicting operations in S1 and S2

are ordered in the same way
If: A sequence of commutative interchanges can be

determined that takes S1 to S2 since conflicting
operations do not have to be reordered

Only if: Commutative interchanges do not reorder
conflicting operations

University of AlbertaDr. Osmar Zaïane, 2004 17CMPUT 391 – Database Management Systems

Conflict Equivalence

• Definition- Two schedules, S1 and S2, of the
same set of operations are conflict equivalent if
conflicting operations are ordered in the same
way in both
– Or (using theorem) if one can be obtained from the

other by a series of commutative interchanges

University of AlbertaDr. Osmar Zaïane, 2004 18CMPUT 391 – Database Management Systems

Conflict Equivalence

• Result- A schedule is serializable if it is conflict
equivalent to a serial schedule

• If in S transactions T1 and T2 have several pairs of
conflicting operations (p1,1 conflicts with p2,1 and
p1,2 conflicts with p2,2) then p1,1 must precede p2,1

and p1,2 must precede p2,2 (or vice versa) in order
for S to be serializable.

r1(x) w2(x) w1(y) r2(y) → r1(x) w1(y) w2(x) r2(y)

conflict conflict

University of AlbertaDr. Osmar Zaïane, 2004 19CMPUT 391 – Database Management Systems

Conflict Equivalence and
Serializability

• Serializability is a conservative notion of
correctness and conflict equivalence
provides a conservative technique for
determining serializability

• However, a concurrency control that
guarantees conflict equivalence to serial
schedules ensures correctness and is easily
implemented

University of AlbertaDr. Osmar Zaïane, 2004 20CMPUT 391 – Database Management Systems

Serialization Graph of a
Schedule, S

• Nodes represent transactions

• There is a directed edge from node Ti to node
Tj if Ti has an operation pi,k that conflicts with
an operation pj,r of Tj and pi,k precedes pj,r in S

• Theorem - A schedule is conflict serializable
if and only if its serialization graph has no
cycles

University of AlbertaDr. Osmar Zaïane, 2004 21CMPUT 391 – Database Management Systems

Example

T1

T2

T3

T4

T5 T6 T7

T1

T2

T3

T4

T5 T6 T7

S is serializable in order
T1 T2 T3 T4 T5 T6 T7

S is not serializable due
to cycle T2 T6 T7 T2

S: … p1,i, …, p2,j, ...

Conflict (*)

*

University of AlbertaDr. Osmar Zaïane, 2004 22CMPUT 391 – Database Management Systems

Intuition: Serializability and
Nonserializability

• Consider the nonserializable schedule
r1(x) w2(x) r2(y) w1(y)

• Two ways to think about it:
– Because of the read and write conflicts, the

operations of T1 and T2 cannot be interchanged
to make an equivalent serial schedule

– Because T1 read x before T2 wrote it, T1 must
precede T2 in any ordering, and because T1
wrote y after T2 read it, T1 must follow T2 in
any ordering --- clearly an impossibility

T1 T2

University of AlbertaDr. Osmar Zaïane, 2004 23CMPUT 391 – Database Management Systems

Recoverability: Schedules with
Aborted Transactions

• T2 has aborted but has had an indirect effect on the
database – schedule is unrecoverable

• Problem: T1 read uncommitted data - dirty read
• Solution: A concurrency control is recoverable if it

does not allow T1 to commit until all other
transactions that wrote values T1 read have committed

T1 : r (x) w(y) commit
T2: w(x) abort

T1 : r (x) w(y) req_commit abort
T2: w(x) abort

University of AlbertaDr. Osmar Zaïane, 2004 24CMPUT 391 – Database Management Systems

Cascaded Abort

• Recoverable schedules solve abort problem
but allow cascaded abort: abort of one
transaction forces abort of another

• Better solution: prohibit dirty reads

T1: r (y) w(z) abort
T2: r (x) w(y) abort
T3: w(x) abort

University of AlbertaDr. Osmar Zaïane, 2004 25CMPUT 391 – Database Management Systems

Dirty Write
• Dirty write: A transaction writes a data item

written by an active transaction

• Dirty write complicates rollback:

T1: w(x) abort
T2 : w(x) abort

no rollback necessary

what value of x
should be restored?

University of AlbertaDr. Osmar Zaïane, 2004 26CMPUT 391 – Database Management Systems

Strict Schedules

• Strict schedule: Dirty writes and dirty reads
are prohibited

• Strict and serializable are two different
properties
– Strict, non-serializable schedule:

r1(x) w2(x) r2(y) w1(y) c1 c2

– Serializable, non-strict schedule:
w2(x) r1(x) w2(y) r1(y) c1 c2

University of AlbertaDr. Osmar Zaïane, 2004 27CMPUT 391 – Database Management Systems

Concurrency Control

• Concurrency control cannot see entire schedule:

– It sees one request at a time and must decide
whether to allow it to be serviced

• Strategy: Do not service a request if:

– It violates strictness or serializability, or

– There is a possibility that a subsequent arrival
might cause a violation of serializability

Concurrency Control
Arriving schedule

(from transactions)

Serializable schedule

(to processing engine)

University of AlbertaDr. Osmar Zaïane, 2004 28CMPUT 391 – Database Management Systems

Models of Concurrency Controls
• Immediate Update

– A write updates a database item

– A read copies value from a database item

– Commit makes updates durable

– Abort undoes updates

• Deferred Update – (we will likely not discuss this)
– A write stores new value in the transaction’s intentions list

(does not update database)

– A read copies value from database or transaction’s
intentions list

– Commit uses intentions list to durably update database

– Abort discards intentions list

University of AlbertaDr. Osmar Zaïane, 2004 29CMPUT 391 – Database Management Systems

Immediate vs. Deferred Update

database

Transaction
T

database

Transaction
T

T’s
intentions

list

read/write

read/write
read

commit

Deferred UpdateImmediate Update

University of AlbertaDr. Osmar Zaïane, 2004 30CMPUT 391 – Database Management Systems

Models of Concurrency Controls

• Pessimistic –

– A transaction requests permission for each database
(read/write) operation

– Concurrency control can:
• Grant the operation (submit it for execution)

• Delay it until a subsequent event occurs (commit or abort of another
transaction), or

• Abort the transaction

– Decisions are made conservatively so that a commit request
can always be granted

• Takes precautions even if conflicts do not occur

University of AlbertaDr. Osmar Zaïane, 2004 31CMPUT 391 – Database Management Systems

Models of Concurrency Controls

• Optimistic -
– Request for database operations (read/write) are

always granted

– Request to commit might be denied
• Transaction is aborted if it performed a non-serializable

operation

• Assumes that conflicts are not likely

– The earlier it can aborted the better

University of AlbertaDr. Osmar Zaïane, 2004 32CMPUT 391 – Database Management Systems

Deadlock

• Problem: Controls that cause transactions to
wait can cause deadlocks

w1(x) w2(y) request_r1(y) request_r2(x)

• Solution: Abort a transaction in the cycle
– Use wait-for graph to detect cycle when a request is

delayed or

– Assume a deadlock when a transaction waits longer
than some time-out period

University of AlbertaDr. Osmar Zaïane, 2004 33CMPUT 391 – Database Management Systems

Deadlock Prevention
• Assign priorities based on timestamps (i.e. The oldest

transaction has higher priority).
• Assume Ti wants a lock that Tj holds. Two policies

are possible:
– Wait-Die: If Ti has higher priority, Ti allowed to wait for

Tj; otherwise (Ti younger) Ti aborts
– Wound-wait: If Ti has higher priority, Tj aborts; otherwise

(Ti younger) Ti waits

• If a transaction re-starts, make sure it has its original
timestamp

University of AlbertaDr. Osmar Zaïane, 2004 34CMPUT 391 – Database Management Systems

Deadlock and Timeouts
• A simple approach to deadlock prevention (and

pseudo detection) is based on lock timeouts

• After requesting a lock on a locked data object, a
transaction waits, but if the lock is not granted within
a period (timeout), a deadlock is assumed and the
waiting transaction is aborted and re-started.

• Very simple practical solution adopted by many
DBMSs.

University of AlbertaDr. Osmar Zaïane, 2004 35CMPUT 391 – Database Management Systems

Deadlock Detection

• Create a waits-for graph:
– Nodes are transactions

– There is an edge from Ti to Tj if Ti is waiting for
Tj to release a lock

• Deadlock exists if there is a cycle in the graph.

• Periodically check for cycles in the waits-for
graph.

University of AlbertaDr. Osmar Zaïane, 2004 36CMPUT 391 – Database Management Systems

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T3 T3

University of AlbertaDr. Osmar Zaïane, 2004 37CMPUT 391 – Database Management Systems

Locking Implementation of an
Immediate-Update Pessimistic Control

• A transaction can read a database item if it
holds a read (shared) lock on the item

• It can read or update the item if it holds a
write (exclusive) lock

• If the transaction does not already hold the
required lock, a lock request is automatically
made as part of the access

University of AlbertaDr. Osmar Zaïane, 2004 38CMPUT 391 – Database Management Systems

Locking

• Request for read lock granted if no transaction
currently holds write lock on item
– Cannot read an item written by an active transaction

• Request for write lock granted if no transaction holds
any lock on item
– Cannot write an item read/written by an active transaction

Granted mode
Requested mode read write

read x
write x x

University of AlbertaDr. Osmar Zaïane, 2004 39CMPUT 391 – Database Management Systems

Locking
• All locks held by a transaction are released

when the transaction completes (commits or
aborts)

University of AlbertaDr. Osmar Zaïane, 2004 40CMPUT 391 – Database Management Systems

Locking

• Result: A lock is not granted if the requested
access conflicts with a prior access of an active
transaction; instead the transaction waits. This
enforces the rule:
– Do not grant a request that imposes an ordering

among active transactions (delay the requesting
transaction)

• Resulting schedules are serializable and strict

University of AlbertaDr. Osmar Zaïane, 2004 41CMPUT 391 – Database Management Systems

Locking Implementation
• Associate a lock set, L(x), and a wait set, W(x), with

each active database item, x
– L(x) contains an entry for each granted lock
– W(x) contains an entry for each pending request
– When an entry is removed from L(x) (due to

transaction termination), promote (non-conflicting)
entries from W(x) using some scheduling policy
(e.g., FCFS)

• Associate a lock list, Li , with each transaction, Ti.
– Li links Ti’s elements in all lock and wait sets
– Used to release locks on termination

University of AlbertaDr. Osmar Zaïane, 2004 42CMPUT 391 – Database Management Systems

Locking Implementation

r r

w

w

r w

x

y

Li

L

W

L

W Ti holds an r lock on
x and waits for a w
lock on y

University of AlbertaDr. Osmar Zaïane, 2004 43CMPUT 391 – Database Management Systems

Two-Phase Locking
• Transaction does not release a lock until it has all

the locks it will ever require.
• Transaction, T, has a locking phase followed by an

unlocking phase

• Guarantees serializability when locking is done
manually

Number
of locks
held by T Phase1 Phase2 Phase1

Objects
Are used

2-phase locking (2PL) Strict 2-phase locking (strict 2PL)

growing phase
shrinking phase

In strict-2PL
all locks are
released at one
before the
transaction
commits

University of AlbertaDr. Osmar Zaïane, 2004 44CMPUT 391 – Database Management Systems

Two-Phase Locking
• Theorem: A concurrency control that uses two

phase locking produces only serializable schedules.
– Proof: Consider two transactions T1 and T2 in schedule S

produced by a two-phase locking control and assume T1’s
first unlock precedes T2’s first unlock.

• If they do not access common data items, then all operations
commute and S is serializable.

• Suppose they do. For each common item x, all of T1’s accesses to x
precede all of T2’s. If this were not the case, T2’s first unlock must
precede a lock request of T1. Since both transactions are two-
phase, this implies that T2’s first unlock precedes T1’s first unlock,
contradicting the assumption.

• Thus S is serializable.

University of AlbertaDr. Osmar Zaïane, 2004 45CMPUT 391 – Database Management Systems

Two-Phase Locking

• A schedule produced by a two-phase locking control
is:
– Equivalent to a serial schedule in which

transactions are ordered by the time of their first
unlock operation

– Not necessarily recoverable (dirty reads and
writes are possible)

T1: l(x) r(x) l(y) w(y) u(y) abort
T2: l(y) r(y) l(z) w(z) u(z) u(y) commit

University of AlbertaDr. Osmar Zaïane, 2004 46CMPUT 391 – Database Management Systems

Two-Phase Locking

• A two-phase locking control that holds write locks
until commit produces strict serializable schedules

• A strict two-phase locking control holds all locks until
commit and produces strict serializable schedules

– This is automatic locking

– Equivalent to a serial schedule in which transactions
are ordered by their commit time

• “Strict” is used in two different ways: a control that
releases read locks early guarantees strictness, but is
not strict two-phase locking control

University of AlbertaDr. Osmar Zaïane, 2004 47CMPUT 391 – Database Management Systems

Lock Granularity
• Data item: variable, record, row, table, file
• When an item is accessed, the DBMS locks an entity

that contains the item. The size of that entity
determines the granularity of the lock
– Coarse granularity (large entities locked)

• Advantage: If transactions tend to access multiple items
in the same entity, fewer lock requests need to be
processed and less lock storage space required

• Disadvantage: Concurrency is reduced since some
items are unnecessarily locked

– Fine granularity (small entities locked)
• Advantages and disadvantages are reversed

University of AlbertaDr. Osmar Zaïane, 2004 48CMPUT 391 – Database Management Systems

Lock Granularity
• Table locking (coarse)

– Lock entire table when a row is accessed.

• Row (tuple) locking (fine)
– Lock only the row that is accessed.

• Page locking (compromise)
– When a row is accessed, lock the containing

page

University of AlbertaDr. Osmar Zaïane, 2004 49CMPUT 391 – Database Management Systems

Timestamp-Ordered Concurrency
Control

• Each transaction given a (unique) timestamp
(current clock value) when initiated

• Uses the immediate update model

• Guarantees equivalent serial order based on
timestamps (initiation order)
– Control is static (as opposed to dynamic, in which

the equivalent serial order is determined as the
schedule progresses)

University of AlbertaDr. Osmar Zaïane, 2004 50CMPUT 391 – Database Management Systems

Timestamp-Ordered Concurrency
Control

• Associated with each database item, x, are
two timestamps:
– wt(x), the largest timestamp of any transaction

that has written x,

– rt(x), the largest timestamp of any transaction
that has read x,

– and an indication of whether or not the last write
to that item is from a committed transaction

University of AlbertaDr. Osmar Zaïane, 2004 51CMPUT 391 – Database Management Systems

Timestamp-Ordered Concurrency
Control

• If T requests to read x:
– R1: if TS(T) < wt(x), then T is too old; abort T

– R2: if TS(T) > wt(x), then
• if the value of x is committed, grant T’s read and if

TS(T) > rt(x) assign TS(T) to rt(x)

• if the value of x is not committed, T waits (to avoid
a dirty read)

University of AlbertaDr. Osmar Zaïane, 2004 52CMPUT 391 – Database Management Systems

Timestamp-Ordered Concurrency
Control

• If T requests to write x :
– W1: If TS(T) < rt(x), then T is too old; abort T

– W2: If rt(x) < TS(T) < wt(x), then no transaction that
read x should have read the value T is attempting to write
and no transaction will read that value (R1)

• If x is committed, grant the request but do not do the write

• If x is not committed, T waits to see if newer value will commit.
If it does, discard T’s write, else perform it

– W3: If wt(x), rt(x) < TS(T), then if x is committed, grant
the request and assign TS(T) to wt(x), else T waits

University of AlbertaDr. Osmar Zaïane, 2004 53CMPUT 391 – Database Management Systems

Example
• Assume TS(T1) < TS(T2), at t0 x and y are committed,

and x’s and y’s read and write timestamps are less
than TS(T1)

t1: (R2) TS(T1) > wt(y); assign TS(T1) to rt(y)
t2: (W3) TS(T2) > rt(y), wt(y); assign TS(T2) to wt(y)
t3: (W3) TS(T2) > rt(x), wt(x); assign TS(T2) to wt(x)
t4: (W2) rt(x) < TS(T1) < wt(x); grant request, but don’t

do the write

T1 : r(y) w(x) commit
T2: w(y) w(x) commit

t0 t1 t2 t3 t4

University of AlbertaDr. Osmar Zaïane, 2004 54CMPUT 391 – Database Management Systems

Timestamp-Ordered Concurrency
Control

• Control accepts schedules that are not conflict
equivalent to any serial schedule and would not
be accepted by a two-phase locking control
– Previous example equivalent to T1, T2

• But additional space required in database for
storing timestamps and time for managing
timestamps
– Reading a data item now implies writing back a new

value of its timestamp

University of AlbertaDr. Osmar Zaïane, 2004 55CMPUT 391 – Database Management Systems

Optimistic Concurrency Control
• No locking (and hence no waiting) means

deadlocks are not possible

• Rollback is a problem if optimistic
assumption is not valid: work of entire
transaction is lost
– With two-phase locking, rollback occurs only

with deadlock

– With timestamp-ordered control, rollback is
detected before transaction completes

