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| solation

» Seria execution:

— Since each transaction is consistent and isolated from all
others, schedule is guaranteed to be correct for all
applications

— Inadequate performance

* Since system has multiple asynchronous resources and
transaction uses only one at atime

» Concurrent execution:
— Improved performance (multiprogramming)
— Some interleavings produce incorrect result

— We areinterested in concurrent schedules that are
equivalent to serial schedules. These arereferred to as
serializable schedules.
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Transaction Schedule

T1: begin_transaction();

pl,.l; , Transaction schedule
P13 P12 P11 R
P12: . > Todb
server
P13 local

commit(); ™ variables

» Consistent - performs correctly when executed in
isolation starting in a consistent database state

— Preserves database consistency

— Moves database to a new state that corresponds to
new real-world state

Schedule

Arriving schedule
(merge of transaction

Schedule in which

T1 requests are serviced
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schedules), ‘
» | Concurrency v
3
T3
transaction
schedules Database server
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Schedule

* Representation 1.

L O Ps P4
Ty P1 P,

time -
* Representation 2:
P11 P12 P21 P13 P22 Pra

Concurrency Control
» Transforms arriving schedule into a correct
interleaved schedul e to be submitted to the
DBMS
— Delays servicing arequest (reordering) - causes
atransaction to wait

— Refuses to service arequest - causes transaction
to abort

 Actions taken by concurrency control have

time performance costs
— Goal isto avoid delaying servicing a request
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The Inconsistent Analysis Problem Correct Schedules

» Occurs when atransaction reads several values
from a database while a second transaction
updates some of them.

T1 T2 A B C sum
sum=0 $100 | $50 $25 0
R(A) R(A) | $100 | $50 | $25 | ©
sum=sum+A A=A-10| $100 | $50 $25 100
R(B) W(A) | $90 | $50 | $25 | 100

sum=sum+B  R(C) $90 $50 $25 150
C=C+10, $90 $50 $25 150
W(C) $90 | $50 | $35 150 | should be
R(C) $90 $50 $35 150 175
sum=sum+C $90 | $50 | $35 | 1854

* Interleaved schedules equivalent to serial
schedules are the only ones guaranteed to be
correct for all applications

» Equivalence based on commutativity of operations

 Definition: Database operations p, and p,
commute if, for all initial database states, they
return the same results and leave the database in
the same final state when executed in either order.
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Commuitativity of Conventional

. Read Operations
— r(x, X) - copy the value of database variable x to
local variable X
» Write

—W(X, X) - copy the value of local variable X to
database variable x

* Weuser,(x) and w,;(X) to mean aread or
write of x by transaction T,

Commutativity of Read and
Write Operations

* p, commutes with p, if
— They operate on different dataitems
* w;(x) commutes with w,(y) and r,(y)
— Both are reads
* 1,(X) commutes with r,(X)

» Operations that do not commute conflict
* W, (X) conflicts with w,(X)

o W, (x) conflicts with r,(x) Read(x) \Write(x)
Read(x) No Yes
Write(x) | Yes Yes
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Equivalence of Schedules

» Aninterchange of adjacent operations of
different transactions in a schedule creates an
equivalent schedule if the operations commute

Sii S P Pe S, Wherei Zk
S0 Sy P Pijr Sz
» Equivalenceistransitive: If S; isequivalent to
S, (by aseries of such interchanges), and S, is
equivalentto S;, then S, isequivalent to S;

Example of Equivalence

ey conflict

Sy: 10 140 09 i) WO)
S (X I‘er(y) Wo(X) Wi(Y)
S3t 11(X) re(y) raX) WZ(Q‘Wl(y)
Syt 11(X) r4(Y) ra(x) wyy) wa(x)
S rAl(X) ri(y) wy(y) ry(x) WAz(X)

" conflicting operations
ordered in same way

S, isequivalentto’S;
S;isthe serial schedule T,, T,
S, isserializable

S, isnot equivalent to the serial schedule T,, T,
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Example of Equivaence

T,: begin transaction T,: begin transaction

Serializable Schedules

o Sisseridizableif itisequivaent to aserial
schedule

» Transactions are totally isolated in a serializable
schedule

* A scheduleis correct for any application if itisa
serializable schedule of consistent transactions
e Theschedule:

r1(%) ra(y) Wa(X) wy(y)
Is not seridizable

read (x, X); read (x,Y);
X=X+4, write (y,Y);
write (X, X); commit;
commit;
109 1200 Waly) Wix) 5
Interchange x=1,y=3 x=5,y=1
commuting operations ¢x= 5, y=1
r(0 Woly) ry(x) wy(x)
T, T,
F09 1200 Waly) wix) 5
Interchange x=1,y=3 x=5,y=1
conflicting operations R 5,y=5
09 Wi(X) ry(x) wy(y)
T, T,
Dr. Osmar Zaiane, 2004 CMPUT 391 — Database Management Systems University of Alberta @ 13

Dr. Osmar Zaiane, 2004 CMPUT 391 — Database Management Systems University of Alberta % 14
&&F

|solation Levels

» Serializability provides a conservative definition of
correctness

— For a particular application there might be many
acceptable non-serializable schedules

— Requiring serializability might degrade performance
» DBMSsoffer avariety of isolation levels:
— SERIALIZABLE isthe most stringent

— Lower levels of isolation give better performance
» Might allow incorrect schedules
» Might be adequate for some applications

Serializable

Theorem - Schedule S, can be derived from S,
by a sequence of commutative interchanges if
and only if conflicting operationsin S, and S,
are ordered in the same way

If: A sequence of commutative interchanges can be

determined that takes S, to S, since conflicting
operations do not have to be reordered

Only if: Commutative interchanges do not reorder
conflicting operations
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Conflict Equivalence

Definition- Two schedules, S, and S,, of the
same set of operations are conflict equivalent if
conflicting operations are ordered in the same
way in both
— Or (using theorem) if one can be obtained from the
other by a series of commutative interchanges

Conflict Equivalence

* Result- A scheduleis seridizableif it isconflict
equivalent to a serial schedule
Iflﬁ(X) W%(X) W1SY) r%(Y) = 11(X) W(y) Wy(X) r5(y)

conflict conflict

 If in Stransactions T, and T, have severa pairs of
conflicting operations (p, ; conflictswith p, , and
P, , conflicts with p, ,) then p; ; must precede p,
and p; , must precede p, , (or vice versa) in order
for Sto be serializable.
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Conflict Equivalence and
Serializability

o Seridlizability is aconservative notion of
correctness and conflict equivalence
provides a conservative technique for
determining serializability

* However, a concurrency control that
guarantees conflict equivalence to seria

schedules ensures correctness and is easily
implemented

Serialization Graph of a
Schedule, S

» Nodes represent transactions

» Thereisadirected edge from node T; to node
T; If T, has an operation p; that conflicts with
an operation p;, of T, and p;  precedesp,, in S

e Theorem - A scheduleis conflict serializable
if and only if its serialization graph has no
cycles
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Conflict (*)
Example — cemal
St Py e Pojy e

. 4 Sisseridizablein order
/ \ T, T, T, T Ts T,

Intuition: Serializability and
Nonserializability
e Consider the nonserializable schedule

ROWM L) W) f U,

Ty ~ Ts T T, » Two ways to think about it: g
T / — Because of the read and write conflicts, the
° _ o operationsof T,and T, cannot be interchanged
T, =T, Sisnot serializable due to make an equivalent serial schedule
/' wﬁ Tt — Because T, read x before T, wroteit, T, must
- T T T precede T, in any ordering, and because T,
1\ / ° 6 ! wrotey after T, read it, T, must follow T, in
. / any ordering -—- clearly an impossibility
3
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Recoverability: Schedules with
Aborted Transactions Cascaded Abort
T,: r(x) w(y) commit » Recoverable schedules solve abort problem
Tor Wi abort but allow cascaded abort: abort of one

* T, has aborted but has had an indirect effect on the
database — schedule is unrecoverable

* Problem: T, read uncommitted data - dirty read

» Solution: A concurrency control isrecoverableif it
does not allow T, to commit until al other
transactions that wrote values T, read have committed

T,: r(x) w(y) req commit abort
T, wW(X) abort

transaction forces abort of another

T r(y) w2 abort
T, r(x) w(y) abort
T3 w(X) abort

 Better solution: prohibit dirty reads
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Dirty Write
» Dirty write: A transaction writes a data item
written by an active transaction

 Dirty write complicates rollback:

no rollback necessary

T wW(X) aéort
T,: W(X) abort

what value of x
should be restored?

Strict Schedules

« Srict schedule: Dirty writes and dirty reads
are prohibited
 Strict and serializable are two different
properties
— Strict, non-serializable schedule:
(%) Wa(X) ro(y) wy(y) ¢, ¢,
— Seridizable, non-strict schedule:
W(X) 11(X) Wy(Y) r1(Y) €, C;
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Concurrency Control
Serializable schedule

Arriving schedule

Concurrency Control

(from transactions) (to processing engine)

» Concurrency control cannot see entire schedule:

— It sees one request at atime and must decide
whether to alow it to be serviced

» Strategy: Do not service arequest if:
— It violates strictness or serializability, or

— Thereisapossibility that a subsequent arrival
might cause a violation of serializability

Models of Concurrency Controls

* Immediate Update
— A write updates a database item
— A read copies value from a database item
— Commit makes updates durable
— Abort undoes updates

» Deferred Update— (we will likely not discuss this)

— A write stores new value in the transaction’ s intentions list
(does not update database)

— A read copies value from database or transaction’s
intentions list

— Commit uses intentions list to durably update database
— Abort discards intentions list
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Immediate vs. Deferred Update

. Ts
database database commit intentions

list

read/write read
read/write

Transaction

T
Immediate Update Deferred Update

Models of Concurrency Controls

* Pessimistic-
— A transaction requests permission for each database
(read/write) operation
— Concurrency control can:

e Grant the operation (submit it for execution)

< Delay it until a subsequent event occurs (commit or abort of another
transaction), or

e Abort the transaction
— Decisions are made conservatively so that a commit request
can always be granted
e Takes precautions even if conflicts do not occur
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Models of Concurrency Controls

o Optimistic -
— Request for database operations (read/write) are
always granted

— Request to commit might be denied

 Transaction is aborted if it performed a non-serializable
operation
» Assumesthat conflicts are not likely

— The earlier it can aborted the better

Deadlock

e Problem: Controlsthat cause transactions to
wait can cause deadlocks
W, (X) Wy(y) request_r,(y) request_r,(x)
« Solution: Abort atransaction in the cycle

— Use wait-for graph to detect cycle when arequest is
delayed or

— Assume a deadlock when a transaction waits longer
than some time-out period
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Deadlock Prevention

» Assign priorities based on timestamps (i.e. The oldest
transaction has higher priority).
 Assume T; wants alock that T; holds. Two policies
are possible:
- Wait-Die: If T, has higher priority, T; alowed to wait for
T;; otherwise (T; younger) T; aborts
- Wound-wait: If T; has higher priority, T; aborts; otherwise
(T, younger) T, waits
 If atransaction re-starts, make sure it hasits original
timestamp

Deadlock and Timeouts

"« A simple approach to deadlock prevention (and
pseudo detection) is based on lock timeouts

» After requesting alock on alocked data object, a
transaction waits, but if the lock is not granted within
aperiod (timeout), a deadlock is assumed and the
waiting transaction is aborted and re-started.

» Very simple practical solution adopted by many
DBMSs.

Deadlock Detection

» Create awaits-for graph:
- Nodes are transactions

- Thereisan edge from T; to T; if T; iswaiting for
T; to release alock

» Deadlock existsif thereisacyclein the graph.
 Periodically check for cyclesin the waits-for
graph.

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)

T2: X(B),W(B) X(C)

T3: S(C), R(C) X(A)
T4 X(B)

) (A




L ocking Implementation of an
|mmediate-Update Pessimistic Control

» A transaction can read a database item if it
holds aread (shared) lock on the item

* |t canread or update theitemif it holdsa
write (exclusive) lock

* |f the transaction does not already hold the

L ocking

* Request for read lock granted if no transaction
currently holds write lock on item
— Cannot read an item written by an active transaction

* Request for write lock granted if no transaction holds
any lock onitem
— Cannot write an item read/written by an active transaction

. _ _ Granted mode
required lock, alock request is automatically Requested mode  read  write
made as part of the access read X
write X X
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L ocking L ocking

» All locks held by atransaction are released

when the transaction completes (commits or
aborts)

* Result: A lock isnot granted if the requested
access conflicts with a prior access of an active
transaction; instead the transaction waits. This
enforcestherule:

— Do not grant arequest that imposes an ordering

among active transactions (delay the requesting
transaction)

 Resulting schedules are serializable and strict
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L ocking Implementation

» Associate alock set, L(X), and await set, W(X), with
each active database item, x
— L(X) contains an entry for each granted lock
— W(X) contains an entry for each pending request
— When an entry is removed from L(x) (dueto
transaction termination), promote (non-conflicting)
entries from W(X) using some scheduling policy
(e.g., FCF9S)
» Associate alock list, £ , with each transaction, T;.
- $links T;selementsin all lock and wait sets

— Used to release locks on termination

L ocking Implementation
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X A
W™ w T, holdsanr lock on
X and waits for aw
lock ony
L w
y §
r > W
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&
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Two-Phase Locking

» Transaction does not release alock until it has all
the locksit will ever require.

» Transaction, T, has alocking phase followed by an
unlocking phase

In strict-2PL
) all locks are
Number :: released at one
f locks ! before the
0 Obj ects transaction
held by T Phasel Are used :: commits

2-phaselocking (2PL)  Strict 2-phase locking (strict 2PL)

» Guarantees serializability when locking is done
manually

Two-Phase Locking

* Theorem: A concurrency control that usestwo
phase locking produces only serializable schedules.

— Proof: Consider two transactions T, and T, in schedule S
produced by a two-phase locking control and assume T,’s
first unlock precedes T, sfirst unlock.

« |If they do not access common data items, then al operations
commute and Sis serializable.

* Suppose they do. For each common item x, al of T,’s accesses to x
precedeall of T,’'s. If thiswerenot the case, T, s first unlock must
precede alock request of T,. Since both transactions are two-
phase, thisimpliesthat T, sfirst unlock precedes T,’ sfirst unlock,
contradicting the assumption.

e ThusSisseridizable.
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Two-Phase Locking

A schedule produced by atwo-phase locking control
IS
— Equivalent to a serial schedulein which
transactions are ordered by the time of their first
unlock operation

— Not necessarily recoverable (dirty reads and
writes are possible)

T1: 1(X) r(X) 1(y) w(y) u(y) abort
T2 [(y) r(y) 1(2) W(2) u(2) u(y) commit

Two-Phase Locking

» A two-phase locking control that holds write locks
until commit produces strict serializable schedules

A dtrict two-phase locking control holds al locks until
commit and produces strict serializable schedules
— Thisis automatic locking
— Equivalent to a serial schedule in which transactions
are ordered by their commit time

o “Strict” isused in two different ways: a control that
releases read locks early guarantees strictness, but is
not strict two-phase locking control
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Lock Granularit
» Dataitem: variable, record, row, table, file
» When anitem is accessed, the DBM S locks an entity
that contains the item. The size of that entity
determines the granularity of the lock
— Coarse granularity (large entities locked)

» Advantage: If transactions tend to access multiple items
in the same entity, fewer lock requests need to be
processed and less lock storage space required

» Disadvantage: Concurrency is reduced since some
items are unnecessarily locked

— Fine granularity (small entities locked)
» Advantages and disadvantages are reversed

Lock Granularity

» Tablelocking (coarse)

— Lock entire table when arow is accessed.
* Row (tuple) locking (fine)

— Lock only the row that is accessed.
 Page locking (compromise)

—When arow is accessed, lock the containing

page
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Timestamp-Ordered Concurrency
Control

» Each transaction given a (unique) timestamp
(current clock value) when initiated

» Uses the immediate update model

» Guarantees equivalent serial order based on
timestamps (initiation order)
— Control is static (as opposed to dynamic, in which

the equivalent serial order is determined as the
schedul e progresses)

Timestamp-Ordered Concurrency
Control

» Associated with each database item, x, are
two timestamps:
— wt(x), the largest timestamp of any transaction
that has written X,
— rt(x), the largest timestamp of any transaction
that has read x,
— and an indication of whether or not the last write
to that item is from a committed transaction
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Timestamp-Ordered Concurrency
Control

o If T requeststo read x:
—R1:if TYT) < wt(x), then T istoo old; abort T

— R2: if TY(T) > wt(x), then
« if the value of x is committed, grant T'sread and if
TYT) > rt(x) assign TYT) to rt(x)
* if the value of x is not committed, T waits (to avoid
adirty read)

Timestamp-Ordered Concurrency
Control

o If T requeststo writex:
— W21 If TYT) < rt(x), then T istoo old; abort T
— W2: If rt(x) < TYT) < wit(x), then no transaction that
read x should have read the value T is attempting to write
and no transaction will read that value (R1)
« If x iscommitted, grant the request but do not do the write
e If xisnot committed, T waits to seeif newer value will commit.
If it does, discard T’ swrite, else perform it
— W3 If wi(x), rt(x) < TYT), then if x is committed, grant
the request and assign TY(T) to wt(x), else T waits
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Example

e Assume TY(T,) < TYT,), a t, x and y are committed,
and X' sand y’ s read and write timestamps are less
than TY(T,)

Ty: r(y) w(x) commit
T, w(y)  w(x) commit
ty t, t ty t,

t;: (R2) TY(Ty) > wi(y); assign TY(T,) to ri(y)

ty: (W3) TY(T2) > ri(y), wi(y); assign TX(T,) to wi(y)

ts: (W3) TYT2) > rt(x), wt(x); assign TYT,) to wt(x)

t,: (W2) rt(x) < TYT1) < wi(x); grant request, but don’t
do the write

Timestamp-Ordered Concurrency

Control

Control accepts schedules that are not conflict
equivalent to any serial schedule and would not
be accepted by a two-phase locking control
— Previous example equivalentto T,, T,
But additional space required in database for
storing timestamps and time for managing
timestamps
— Reading a dataitem now implies writing back a new

value of its timestamp
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Optimistic Concurrency Control

* No locking (and hence no waiting) means
deadlocks are not possible

* Rollback isaproblem if optimistic
assumption is not valid: work of entire
transaction is lost

— With two-phase locking, rollback occurs only
with deadlock

— With timestamp-ordered control, rollback is
detected before transaction compl etes
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