

Assignment 1 CMPUT 391 sections B1 & B2 Winter 2004

Assignment due in class on January 23, 2004.

Penalties for late submission: 20% off per late day. Assignment counts for 5% overall

Question 1

- A) The definition of functional dependencies does not preclude the case in which the left-hand side is empty-that is, it allows FDs of the form $\{\} \rightarrow A$. Explain the meaning of such dependencies. Give an example of such a table.
- B) Assume a table with only one attribute A and the functional dependency $\{\} \rightarrow A$, what would be the key of such a relation? Give a concrete example of such a table.

Question 2

Prove the following generalized transitivity rule: If $Z \subseteq Y$, then $(X \rightarrow Y \text{ and } Z \rightarrow W)$ entail $X \rightarrow W$. Prove this rule in two ways:

- Using the argument that directly appeals to the definition of FDs, as in Section 8.4
- By deriving $X \rightarrow W$ from $X \rightarrow Y$ and $Z \rightarrow W$ via a series of steps using Armstrong's axioms.

Question 3

Given the relation R with attributes A, B, C, D, and E, and given the following functional dependencies: $F = \{A \rightarrow CD, BC \rightarrow E, C \rightarrow A\}$, Find all the candidate keys. Justify that they are candidate keys and the only candidate keys.

Question 4

Consider a database schema with attributes A, B, C, D, and E and functional dependencies $B \rightarrow E, E \rightarrow A, A \rightarrow D$, and $D \rightarrow E$. Prove that the decomposition of this schema into AB, BCD, and ADE is lossless. Is it dependency preserving?

Question 5

Consider the following functional dependencies over the attribute set ABCDEFGH:

$A \rightarrow E$	$BE \rightarrow D$
AD →BE	$BDH \rightarrow E$
$AC \rightarrow E$	$F \rightarrow A$
$E \rightarrow B$	D→H
$BG \rightarrow F$	$CD \rightarrow A$

Find a minimal cover, then decompose into lossless 3NF. After that, check if all the resulting relations are in BCNF. If you find a schema that is not, decompose it into a lossless BCNF. Explain all steps.