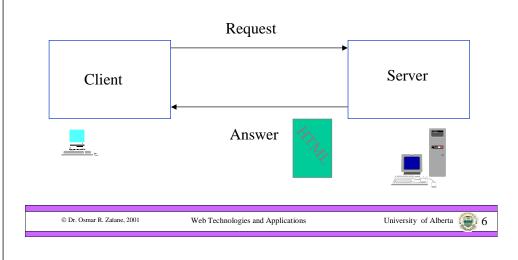
Web Technologies and Applications ^{Winter 2001} CMPUT 499: DBMS and WWW	 Introduction Internet and WW Protocols HTML and beyond Animation & WWW Web Mining
Dr. Osmar R. Zaïane	 Java Script Dynamic Pages Perl Intro. Java Applets Projects
© Dr. Osmar R. Zatiane, 2001 Web Technologies and Applications University of Alberta 😥 1	© Dr. Osmar R. Zaïane, 2001 Web Technologies and Applications University of Alberta
Objectives of Lecture 10	Outline of Lecture 10
 Objectives of Lecture 10 DBMS & WWW Students will be able to understand the different current methods used to access databases on the Web. Introduce the basic database access techniques. Understand the benefits and trade-offs for 	 Outline of Lecture 10 Introduction Off-line access to databases Static and dynamic Web pages SQL embedded in HTML (server side includes) CGI and servlet solution to database gateways Internet database connector: Microsoft solution JDBC: databases the Java way Solutions from database vendors

Introduction

Motivation

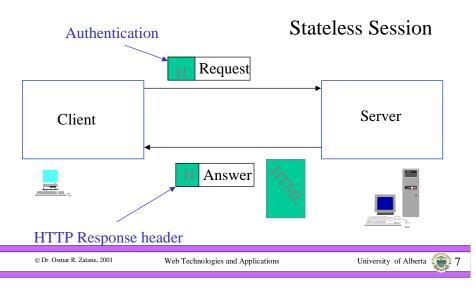
• WWW

© Dr. Osmar R. Zaïane, 2001

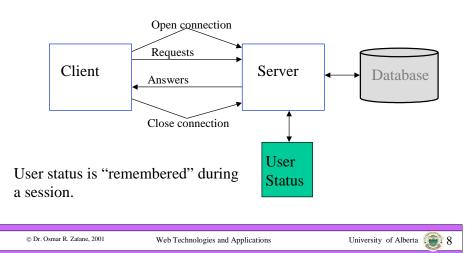

- user friendly
- popular
- accessible
- cost effective

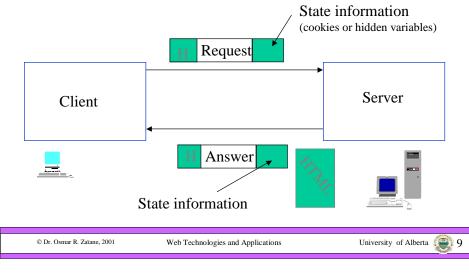
- Databases
 - structured and organized
 - secure/ reliable
 - most up-to-date information

University of Alberta


- scalable
- high availability
- automatic recovery
- data integrity

HTTP Client-Server Architecture



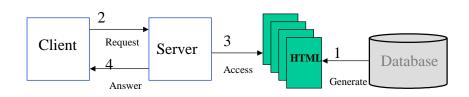

HTTP Client-Server Architecture

Web Technologies and Applications

Database Client-Server Architecture

Simulation of status in stateless session

Outline of Lecture 10



- Introduction
- Off-line access to databases
- Static and dynamic Web pages
- SQL embedded in HTML (server side includes)
- CGI and servlet solution to database gateways
- Internet database connector: Microsoft solution
- JDBC: databases the Java way
- Solutions from database vendors
- Association Rule Mining

Off-line access to databases

- Periodically extract data from database and generate static pages based on common usage and requests
- Navigation between pages is done through static links generated in the HTML pages

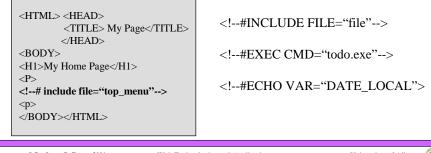
Off-line access to databases

© Dr. Osmar R. Zaïane, 2001

Off-line access to databases

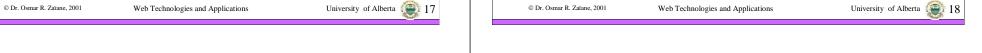
- Can be indexed by search engines
- Easy to implement
- Can be cached by client and accessed off-line
- Limited navigation
- Can not access data unless page has been generated
- Data not up-to-date

Outline of Lecture 10



- Introduction
- Off-line access to databases
- Static and dynamic Web pages
- SQL embedded in HTML (server side includes)
- CGI and servlet solution to database gateways
- Internet database connector: Microsoft solution
- JDBC: databases the Java way
- Solutions from database vendors
- Association Rule Mining

© Dr. Osmar R. Zaïane, 2001 Web Technologies and Applications University of Alberta 😥 13	© Dr. Osmar R. Zaïane, 2001 Web Technologies and Applications University of Alberta 😥 14
Static vs. Dynamic	Outline of Lecture 10 • Introduction • Off-line access to databases
Client Server Fetch Fetch Generate	 Static and dynamic Web pages SQL embedded in HTML (server side includes) CGI and servlet solution to database gateways Internet database connector: Microsoft solution
An HTML document stored in a file is a static Web page. Unless the file is edited, its content does not change.A dynamic Web page is generated or partially generated each time it is accessed.	 JDBC: databases the Java way Solutions from database vendors Association Rule Mining


Server Side Includes

A server side include is a simple HTML-like tag. The Web server parses HTML files and replaces the included tags with their value or output in the HTML file.

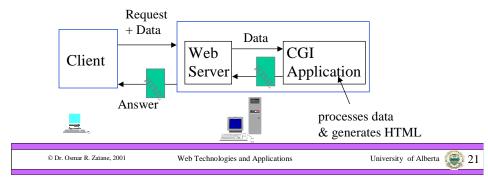
Server Side Includes

- Results generated on the fly
- Pages easy to maintain
- Personalized pages for each user
- All files need to be parsed
- Slow

SQL database connectivity using server side includes

- W3-msql (Hughes Technologies)
- <! msql connect www.cs.sfu.ca>
- <! msql database students>
- <! msql query "select studid, name, firstname from students" q1>
- <! msql print "Student:@q1.0 Name: @q1.2 @q1.1
">
- <! msql fetch q1>
- <! msql free q1>
- CompuServe Internet Office Webserver
- <!--#SQL SQL="select studid, firstname, name from students" format="Student: %s Name: %s %s"-->
- Connectivity to miniSQL, Sybase, Oracle, Informix and any ODBC compliant

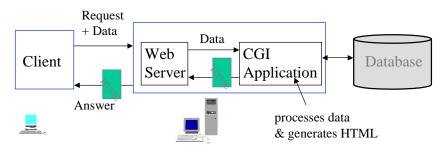
Outline of Lecture 10


- Introduction
- Off-line access to databases
- Static and dynamic Web pages
- SQL embedded in HTML (server side includes)
- CGI and servlet solution to database gateways
- Internet database connector: Microsoft solution
- JDBC: databases the Java way
- Solutions from database vendors
- Association Rule Mining

Common Gateway Interface

CGI is a set of specification for passing information between a client Web browser, a Web server and an application (CGI application).

- Filling out an HTML form
- Clicking on a link in an HTML page



Common Gateway Interface

- Client sends request (GET or POST)
- Server receives request (name of CGI + data)
- Server launches CGI application and passes request to it by means of environment variables
- CGI application returns data to server (STDOUT). First line contains the MIME content-type
- Server adds standard HTTP header and returns data to client.

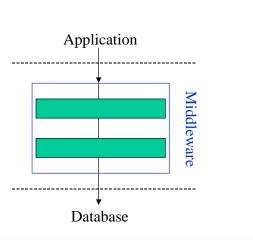
Web Technologies and Applications

\sim	\sim	T 0
'ommon	(tateway	Interface
	Uall way	murace

- Embed SQL in CGI application to access database
- Use hidden state information and user supplied data to build database queries
- Generate HTML based on query results

Common Gateway Interface

• Executed on the server

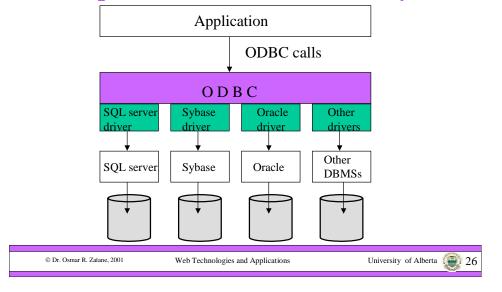

© Dr. Osmar R. Zaïane. 2001

- Implemented in any programming or scripting language
- Started by server upon client request
- Generated HTML are not indexed by search engines
- New application process for each request
- Does not scale well because of the overhead of spawning new application process for each request

University of Alberta

22

Multi-tier



- Modularity: specialized layers
- Scalability: replicated layers
- Flexibility: interchange layers
- Can be slow, excessive overhead
- Appropriate for standard interfaces

University of Alberta

• Fault-tolerant

Open DataBase Connectivity

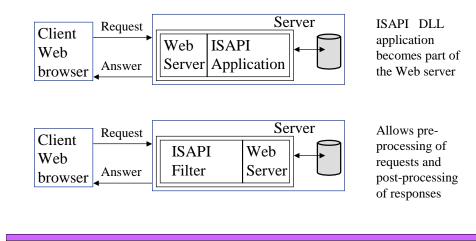
Outline of Lecture 10

Web Technologies and Applications

• Introduction

© Dr. Osmar R. Zaïane, 2001

- Off-line access to databases
- Static and dynamic Web pages
- SQL embedded in HTML (server side includes)
- CGI and servlet solution to database gateways
- Internet database connector: Microsoft solution
- JDBC: databases the Java way
- Solutions from database vendors
- Association Rule Mining



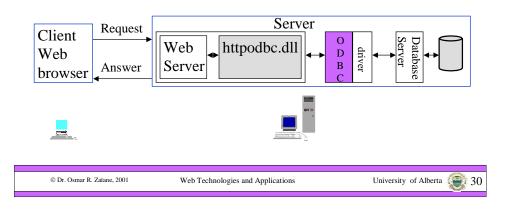
Microsoft Internet Information Server

Internet Server API

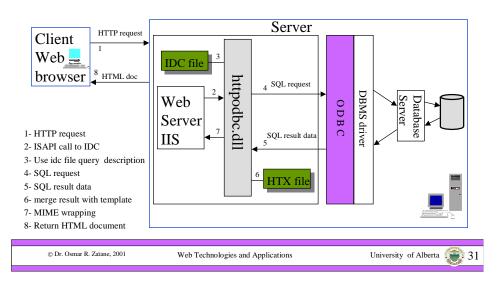
- Used to create applications activated by Web users
- ISAPI used to create applications that run as DLLs on Web server
- Better performance than CGI because DLLs are loaded into memory at server run-time
- Less overhead because each request does not start a separate process
- Unstable: if ISAPI DLL application has bugs, it may crash the entire server
- Proprietary API

Internet Server API

Web Technologies and Applications


University of Alberta

29


© Dr. Osmar R. Zaïane, 2001

Internet Database Connector

Access to databases is accomplished through a component of the Internet information server called the Internet Database Connector (IDC). The IDC is an ISAPI DLL (httpodbc.dll) that uses ODBC to gain access to databases.

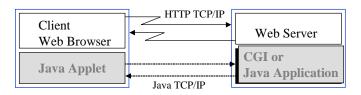
Internet Database Connector

Internet Database Connector

IDC merges the data being returned with the HTML extension template

IDC file contains:

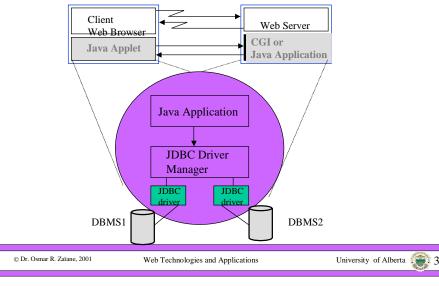
- data source name
- link to template htx file
- SQL statement


HTX file contains:

- HTML document
- additional tags to format data returned

Outline of Lecture 10

- Introduction
- Off-line access to databases
- Static and dynamic Web pages
- SQL embedded in HTML (server side includes)
- CGI and servlet solution to database gateways
- Internet database connector: Microsoft solution
- JDBC: databases the Java way
- Solutions from database vendors
- Association Rule Mining


Databases the Java Way

- HTTP TCP/IP connection is stateless
- Java connection can have an application session and store state information
- Java applets run on client side and can bypass Web browser-Web server connection
- Java is multi-threaded (multi-threaded socket server)

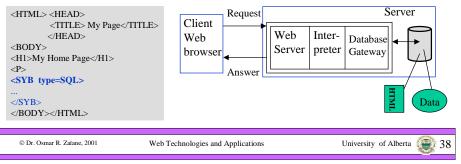
© Dr. Osmar R. Zaïane, 2001	Web Technologies and Applications	University of Alberta 🛞 33	© Dr. Osmar R. Zaïane, 2001	Web Technologies and Applications	University of Alberta 🛞 34

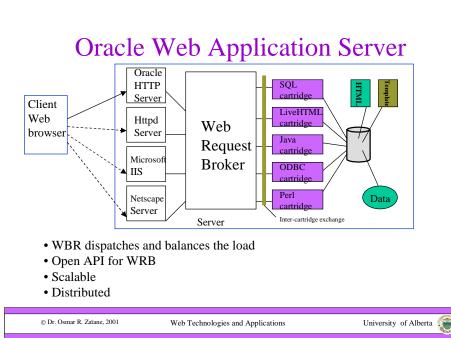
Java DataBase Connectivity

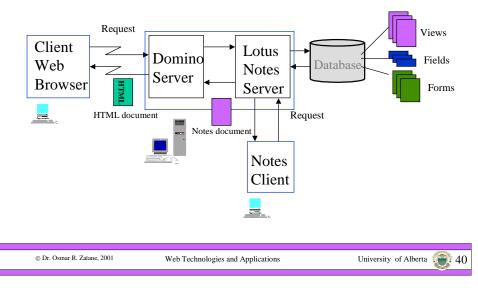
Java Application JDBC calls JDBC Driver Manager JDBC-ODBC bridge **ODBC** calls **ODBC** Driver Manager ODBC ODBC driver driver DBMS1 DBMS2 © Dr. Osmar R. Zaïane, 2001 Web Technologies and Applications

- JDBC ODBC Bridge
 - A sophisticated JDBC driver
 - Allows developers to use existing ODBC drivers when DBMS vendors only provide ODBC driver and no JDBC driver
 - Once JDBC driver is provided, changes in Java code are minimal

University of Alberta 📻 36


Outline of Lecture 10


- Introduction
- Off-line access to databases
- Static and dynamic Web pages
- SQL embedded in HTML (server side includes)
- CGI and servlet solution to database gateways
- Internet database connector: Microsoft solution
- JDBC: databases the Java way
- Solutions from database vendors
- Association Rule Mining


Sybase NetImpact Dynamo

- Proprietary server has built in interpreter for carrying out embedded instructions (SQL, javascript, Perl)
- in-line scripting
- web.sql
- SQL Remote replicates static and dynamic HTML documents as well as data for disconnected mobile users

Lotus Notes Domino Server

Recapitulation

- Stateless HTTP client-server architecture
- Off-line access to databases becomes stale
- Dynamic Web pages can access up-to-date data
 - SQL embedded in HTML (server side includes)
 - CGI application (database gateways)
- Windows NT/IIS = idc file with SQL + htx template
- Java DBC client side connection to databases
- Sybase, Oracle and others (middleware + templates)

Outline of Lecture 10

- Introduction
- Off-line access to databases
- Static and dynamic Web pages
- SQL embedded in HTML (server side includes)
- CGI and servlet solution to database gateways
- Internet database connector: Microsoft solution
- JDBC: databases the Java way
- Solutions from database vendors
- Association Rule Mining

Basic Concepts
transaction is a set of items: $T = \{i_a, i_b, \dots, i_t\}$
$T \subset I$, where <i>I</i> is the set of all possible items $\{i_1, i_2, \dots i_n\}$
), the task relevant data, is a set of transactions.
n association rule is of the form:
In association rule is of the form: →Q, where P ⊂ I, Q ⊂ I, and P∩Q =Ø

Basic Concepts (con't)

P→Q holds in *D* with support s and P→Q has a confidence c in the transaction set *D*.

Web Technologies and Applications

Support($P \rightarrow Q$) = Probability($P \cup Q$) Confidence($P \rightarrow Q$)=Probability(Q/P)

University of Alberta

A set of items is referred to as *itemset*.

An itemset containing k items is called k-itemset.

An items set can also be seen as a conjunction of items (or a predicate)

Web Technologies and Applications

Support and Confidence

- Support of P = P₁ ∧ P₂ ∧ ... ∧ P_n in D
 σ(P/D) is the percentage of transactions T in D satisfying P. (number of T by cardinality of D).
- **Confidence** of a rule $P \rightarrow Q$ - $\phi(P \rightarrow Q/D)$ ratio $\sigma((P \land Q)/D)$ by $\sigma(P/D)$
- Thresholds:

© Dr. Osmar R. Zaïane, 2001

- minimum support σ '
- minimum confidence ϕ^{\prime}

University of Alberta

Strong Rules

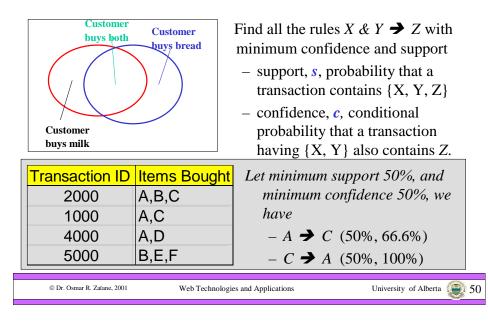
• Frequent (or large) predicate P in set D

- support of P larger than minimum support,

- Rule $P \rightarrow Q$ (c%) is strong
 - predicate $(P \land Q)$ is frequent (or large),
 - -c is larger than minimum confidence.

© Dr. Osmar R. Zaïane, 2001

How do we Mine Association Rules?


- Input
 - A database of transactions
 - Each transaction is a list of items (Ex. purchased by a customer in a visit)
- Find <u>all</u> rules that associate the presence of one set of items with that of another set of items.
 - Example: 98% of people who purchase tires and auto accessories also get automotive services done
 - There are no restrictions on the number of items in the head or body of the rule.

_			
	© Dr. Osmar R. Zaïane, 2001	Web Technologies and Applications	Uni
t			

Mining Association Rules

Transaction ID	Items Bought	Min. support 50%			
2000	A,B,C	Min. confidence 50%	6		
1000	A,C				
4000	A,D		Cupport		
5000	B,E,F	Frequent Itemset			
0000	0, , , ,	l {A}	75%		
		→{B}	50%		
	9	{C}	50%		
For rule $A \rightarrow$	· C:	{A,C}	50%		
support = support($\{A, C\}$) = 50%					
confidence = support($\{A, C\}$)/support($\{A\}$) = 66.6%					
The Apriori principle:					
Any subset of a frequent itemset must be frequent.					

Rule Measures: Support and Confidence

Mining Frequent Itemsets: the Key Step

- ① Find the *frequent itemsets*: the sets of items that have minimum support
 - ◆ A subset of a frequent itemset must also be a frequent itemset, i.e., if {*AB*} is a frequent itemset, both {*A*} and {*B*} should be frequent itemsets
 - ◆ Iteratively find frequent itemsets with cardinality from 1 to *k* (*k*-itemsets)
- ⁽²⁾ Use the frequent itemsets to generate association rules.

```
© Dr. Osmar R. Zaïane, 2001
```

University of Alberta 💽 51

The Apriori Algorithm

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

```
L_{I} = \{ \text{frequent items} \};
for (k = 1; L_{k} !=\emptyset; k++) do begin

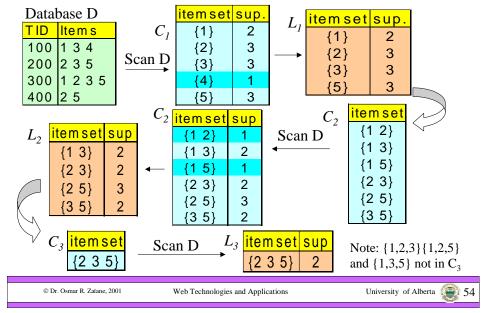
C_{k+1} = \text{candidates generated from } L_{k};
for each transaction t in database do

increment the count of all candidates in

C_{k+1} that are contained in t

L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support}

end


return \bigcup_{k} L_{k};
```

© Dr. Osmar R. Zaïane, 2001

Web Technologies and Applications

University of Alberta 📵 53

The Apriori Algorithm -- Example

Generating Association Rules from Frequent Itemsets

Only strong association rules are generated.Frequent itemsets satisfy minimum support threshold.Strong AR satisfy minimum confidence threshold.

•Confidence($A \rightarrow B$) = Prob(B/A) = $\frac{Support(A \cup B)}{Support(A)}$

For each frequent itemset, **f**, generate all non-empty subsets of **f**. For every non-empty subset **s** of **f** do

output rule $s \rightarrow (f-s)$ if $support(f)/support(s) \ge min_confidence$ end

Recommender with Association Rules

- There exist recommender systems using statistical correlations, neural networks etc.
- Assocition rule based recommenders need to be trained. → training set → updated often
- Based on transactions user_ibought $\langle i_1, i_2, ... \rangle$
- If User_x buys i_a and <i_a, i_b> is frequent itemset and user x never bought i_b then suggest i_b