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ABSTRACT
Structural similarity search among small molecules is a stan-
dard tool used in molecular classification and in-silico drug
discovery. The effectiveness of this general approach de-
pends on how well the following problems are addressed.
The notion of similarity should be chosen for providing the
highest level of discrimination of compounds with respect to
the bioactivity of interest. The data structure for perform-
ing search should be very efficient as the molecular databases
of interest include several millions of compounds.

In this paper we summarize the recent applications of k-
nearest-neighbor search method for small molecule classifi-
cation. The k-nn classification of small molecules is based on
selecting the most relevant set of chemical descriptors which
are then compared under standard Minkowski distance Lp.
Here we describe how to computationally design the opti-
mal weighted Minkowski distance wLp for maximizing the
discrimination between active and inactive compounds wrt
bioactivities of interest. k-nn classification requires fast sim-
ilarity search for predicting bioactivity of a new molecule.
We then focus on construction of pruning based k-nn search
data structures for any wLp distance that minimizes simi-
larity search time.
The accuracy achieved by k-nn classifier is better than the
alternative LDA and MLR approaches and is comparable to
the ANN methods. In terms of running time, k-nn classi-
fier is considerably faster than the ANN approach especially
when large data sets are used. Furthermore, k-nn classifier
is capable of quantification of the level of bioactivity rather
than returning a binary decision and can bring more insight
to the nature of the activity via eliminating unrelated de-
scriptors of the compounds with respect to the activity in
question.

1. INTRODUCTION
Small chemical molecules (with molecular weights ≤ 500)
are very important to the exploration of molecular and cel-
lular functions. They also play key roles in treating diseases:
almost all medicines available today are small molecules.
One of the fundamental research challenges we are facing
today is the identification of small molecules that play an
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active role in regulation of a given biological process or dis-
ease state.

Recent developments in the chemistry have given researchers
the ability to efficiently synthesize and screen large num-
ber of related small molecules, a capability previously avail-
able only to pharmaceutical companies. As a result of these
developments, public small chemical compound databases
started to emerge with exponentially increasing number of
compounds. The Molecular Libraries Roadmap of NIH,
PubChem, is one of the largest public databases which aims
to offer access to the large number of chemical compounds
and their functions. Currently PubChem contains 100,000
compounds with known bioactivities and a total of 10 mil-
lion unique small chemical compounds. This initiative is
expected to lead new data mining and machine learning
techniques to reveal the relationship between the structural
information of chemical compounds and their bioactivity. It
is anticipated that these projects will also facilitate the de-
velopment of new drugs by providing early stage chemical
compounds to validate new drug targets which could be then
move into drug-development pipeline.
Structural similarity search among small molecules is one
of the standard tools used in conventional in silico drug
discovery as structural similarity usually implies similar-
ity in physicochemical properties and/or biological activ-
ities [14]. Thus, it is common to query small molecules
databases with a probe compound possessing desirable bi-
ological activity (bioactivity) to discover chemically similar
database entries. It is also common to perform classification
of a compound with an unknown bioactivity level through a
similarity search among compounds whose bioactivity levels
are known. Clustering small molecules with similar bioac-
tivities can lead to better understanding of the underlying
chemical and structural properties related to the bioactiv-
ity. It is known that certain structural components of small
molecules can target other components via establishing sta-
ble chemical bonds. Identification of common characteristics
of a given biological function significantly reduces the num-
ber of compounds need to be tested for a particular drug
target.

This important ligand-based drug discovery methodology
and classification approach are associated with the follow-
ing two fundamental computational problems. (1) The no-
tion of similarity used in search determines the molecules
that are extracted from the database. A notion of similarity
which has the highest level of bioactivity discrimination is
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very desirable and needs to be determined computationally.
(2) It is desirable to have efficient algorithms for structural
and/or chemical similarity search as the molecular databases
of interest include several millions of compounds and lin-
ear/brute force search may take significant amount of time
(several days in certain large private databases).

In this summary, we describe frequently used computational
methods for addressing these two fundamental research prob-
lems. The first part of the paper focuses on the common
similarity/distance measures used in small chemical com-
pound databases and their application for classification of
compounds according to a given bioactivity. Typically small
chemical compounds are represented as a vector of descrip-
tors, that are extracted from the 2D/3D structure of chem-
ical compounds. The most common measures of similar-
ity/distance amongst sets of molecular descriptors are Tan-

imoto coefficient, standard L1 and L2 distances. These sim-
ilarity/distance measures are global and independent from
the bioactivity of the compounds. In order to capture the
similarity between compounds with better accuracy with re-
spect to a particular bioactivity more sophisticated measures
must be used.

Similarity/distance measure itself is not enough for classi-
fication of new compounds; it must be trained in order to
capture the bioactivity of interest. The most commonly used
classification techniques of chemical compounds include Mul-
tiple Linear Regression (MLR) [6], Linear Discriminant Anal-
ysis (LDA) [12] and machine-learning techniques such as
Support Vector Machines (SVM) [19] and Artificial Neu-
ral Networks(ANN) [21]. In this summary we focus on the
k-nearest neighbor (k-nn) classification, which deduces the
level of the bioactivity of a query molecule based on the num-
ber (and the bioactivity levels) of active elements among its
k nearest neighbors with respect to a distance measure of
choice. In order to determine the best similarity/distance
measure, we introduce use of the (more general) weighted
Minkowski distance of order 1, namely wL1. For each bioac-
tivity of interest, we determine real valued weights wi of the
wL1 distance so as to maximize the discrimination between
active and inactive compounds in a training set. We com-
pute the optimal values for weights wi via a linear optimiza-
tion procedure [10].

The second part of our summary focuses on the second
problem, efficient data structures for fast chemical similarity
search which is essential for k-nn classification. Space Cov-
ering Vantage Point (SCVP) tree is one of the well known
data structures for performing fast nearest neighbor search
in dimensional metric spaces via triangle inequality. In the
SCVP tree construction, the vantage points in each level
are chosen randomly until all search space is covered [15].
Clearly, it is desirable to minimize the number of vantage
points that cover the search space as a better space utiliza-
tion can be achieved, implying that more levels of the tree
can be fitted in the available memory. In this summary we
show how to approximate the minimum number of vantage
points and thus obtain the optimum allocation through a
simple polynomial time algorithm. The resulting data struc-
ture, which we call the deterministic multiple vantage point
tree (DMVP tree) [10], when built in full, is guaranteed to
have O(log ℓ) levels, where ℓ is the size of the data set. If
the maximum number of children of an internal node at level
i is ci, the query time guaranteed by our data structure is
O(

Plog ℓ
i=1

ci). Because ci is typically a small constant (ap-

proximately minimized for each level), the query time is only
O(log ℓ), a significant improvement over linear/brute force
search.
Due to redundant representation of data items, the mem-
ory usage of the DMVP tree can be super-polynomial. In
case the DMVP tree requires more memory than available,
lower levels of the DMVP trees could be cut out. In this
case, the pruning in the leaf nodes can be achieved by linear
search. We also show how to obtain the optimum cut so as
to minimize the expected query performance.

Our data structure is not only interesting for classification
purposes; similarity search among small molecules under
various notions of similarity is of independent interest. To
the best of our knowledge, this is the first application of an
efficient similarity search data structure to small molecule
data collections.

2. COMMONLY USED SIMILARITY MEA-
SURES FOR SMALL MOLECULES.

Given a notion of similarity among data points, it is usu-
ally possible to obtain a corresponding distance measure;
searching for structurally most similar molecules to a query
molecule in this context corresponds to searching for molecules
with the smallest distance to the query molecule. The key
premise of this approach is that the notion of a distance is
mathematically well defined and algorithms for handling dis-
tance based classification, clustering and search are better
understood. Under a given distance measure, the search for
the most similar molecule to a query compound becomes the
Nearest Neighbor Search (NN) problem. Thus, the above
two problems in structural similarity search, i.e. classifica-
tion and querying, can be mapped to corresponding prob-
lems in nearest neighbor search.

There are various ways to define the descriptors/parameters
for the chemical structures stored in electronic collections
conventionally used in the modern computer-aided drug dis-
covery [2; 1].

Such parameters either (1) merely reflect the structural or-
ganization of molecules in qualitative manner, such as those
used in the popular structural fingerprints (employed in NCBI’s
PubChem database), e.g. the existence of a doubly bonded
Carbon pair, a three membered ring, an aromatic atom etc.
[13] or (2) reflect various local and global physical-chemical
molecular features (chemical descriptors) which are quanti-
tative, such as atomic weight, aromaticity, hydrophobicity,
the number of specific atoms, charge, density, etc. These de-
scriptors serve as independent variables for modern QSAR

(Quantitative Structure-Activity Relationship) tools includ-
ing the structural similarity search engines in chemical com-
pound databases.

Given an adequate set of descriptors, it is desirable to have
a measure of similarity or alternatively a distance measure
under which functionally related molecules have a high level
of similarity or small distance, and non-related compounds
have a low level of similarity or large distance. The most
common measure of similarity amongst sets of molecular
descriptors is the so called Tanimoto coefficient [17]. Given
two descriptor sets (which can be organized in arrays) X
and Y , the Tanimoto coefficient is defined to be the ratio
of the number of descriptors that are identical in X and
Y and the total number of descriptors available for X and
Y . The Tanimoto coefficient is in the range [0, 1]; a value
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close to 1 implies similarity and a value close to 0 implies a
dissimilarity among the two descriptor sets compared.
Often a collection of descriptors are represented as a bit-
vector (e.g. structural fingerprints) where each one of the
n possible descriptors is assigned a dimension, i.e. natural
number between 1 and n (this is the representation used
by PubChem and other databases). Let B(x) represent the
bit-vector corresponding to a molecule x and let B(x)[i] rep-
resent its ith dimension. Given two compounds x and y, the
Tanimoto coefficient T (x, y) is then defined as T (x, y) =
(
Pn

i=1(B(x)[i] ∧ B(y)[i])) / (
Pn

i=1(B(x)[i] ∨ B(y)[i])). Al-
though the Tanimoto coefficient provides a measure of sim-

ilarity, it is possible to define a Tanimoto distance measure

as DT (x, y) = 1 − T (x, y).

The Tanimoto coefficient is very popular mostly due to its
simplicity. For real valued descriptor arrays (where each di-
mension has a real value) it is also quite common to use
the Minkowski distance of order p, denoted Lp for measur-
ing their similarity. Given two real valued n dimensional
descriptor arrays X and Y , their Minkowski distance of or-
der p, namely Lp, is defined as Lp(X, Y ) = (

Pn
i=1

|X[i] −

Y [i]|p)1/p. When comparing two structural fingerprints B(x)
and B(y), the Minkowski distance of order 1 is equivalent
to the well known Hamming distance (see for example [3]):
H(B(x),B(y)) =

Pn
i=1

|B(x)[i] − B(y)[i]|.

In order to capture the similarity between compounds with
respect to a particular bioactivity, it is possible to assign a
relative importance to each structural descriptor in the form
of a weight wi ∈ [0, 1]. The resulting weighted Minkowski
distance of order 1 can then be defined for two descriptor
arrays X and Y as wL1(X, Y ) =

Pn
i=1

wi · |X[i] − Y [i]|.1

3. CLASSIFICATION METHODS FOR
SMALL MOLECULES.

The descriptor arrays described above can be used for clas-
sification of compounds according to a given bioactivity.
One of the most popular classification techniques is the MLR
(Multiple Linear Regression) [6] method which quantifies
the activity level of a descriptor array X as: Activity(X) =
c +

Pn
i=1

σi · X[i] where c is a constant. If Activity(X) ≥ t
for a (user specified) threshold value t then it is likely that
the molecule is active with respect to the bioactivity of inter-
est. Notice that the MLR classifier is described by a planar
separator in the multi-dimensional descriptor array space;
those points on one side of the separator are classified as
active and those on the other side are classified as inactive.
The most widely used optimization criteria for determin-
ing the coefficients (which we used in our experiments) is
the partial least squares criteria [7], which suggests to min-
imize the sum of the squares of differences between actual
and predicted activity levels of the compounds in a training
set. The separator plane which satisfies this criteria is NP-
hard to compute deterministically but can be approximated
through genetic algorithms, local search heuristics, etc.

Another popular statistical classification method is Linear

1To the best of our knowledge all recent studies in this di-
rection show how to assign binary values to weights wi i.e.
how to choose the specific descriptors that are most relevant
for the application of interest (e.g. [20; 9]). As will become
clear later in the paper, we show how to compute optimal
real valued weights so as to improve the predictive power of
our classifier.

Discriminant Analysis(LDA) [12]. Given a set of descriptor
arrays, LDA computes a linear projection of the descriptor
array space into a Euclidean space with 2 or 3 dimensions
(i.e. each descriptor array is mapped to a point in the 2/3-D
Euclidean space). The projection aims to maximize the ra-
tio of between-class variance and within-class variance. The
projection of descriptor arrays to points in the Euclidean
space is followed by the computation of a line/plane which
best separates the active and inactive compounds, i.e. max-
imizes the accuracy of the classifier. For a given query com-
pound with unknown activity, its class is then simply de-
termined by checking to which subspace its projection falls
into; clearly this can be performed very fast.

It is also possible to perform compound classification via well
known machine-learning techniques such as SVM (Support
Vectors Machines) [19] and, more commonly, ANN (Artifi-
cial Neural Networks)[21].
Although k-nn classification is a conceptually simple ap-
proach and is applied to solve several chemistry and biology
problems, it was not considered for small molecule classi-
fication until recently [20; 9]. For each predefined number
of variables, it seeks to optimize (i) the number of nearest
neighbor k used to estimate the activity of each compound
(ideal case is where k=1) (ii) selection of variables from the
original set of all descriptors. The compounds are then com-
pared under the standard (unweighted) L1 or L2 distance.

4. DISTANCE MEASURES FOR SMALL
MOLECULES AND DISTANCE BASED
CLASSIFICATION

Given a chemical compound s, its descriptor array S is de-
fined to be an n dimensional vector in which each dimension
i, denoted by S[i], is a real value corresponding to the de-
scriptor associated with dimension i. For a given bioactivity,
it is of significant interest to come up with a distance mea-
sure D(S, R) between pairs of descriptor arrays S and R that
correspond to the similarity in the bioactivity levels of the
corresponding compounds s and r: if the bioactivity levels
are similar, the distance must be small and vice versa. Such
a distance measure could be very useful in the classification
of new chemical compounds in terms of the bioactivity of in-
terest: the bioactivity level of the new compound is likely to
be identical to the bioactivity level of its closest neighbors.

Metric distances are particular interesting candidates for
fast similarity search, due to the availability of efficient data
structures. A distance measure D forms a metric if the fol-
lowing conditions are satisfied. (i) D(S, S) = 0 for all S and
D(S, R) ≥ 0 for all S and R (non-negativity). (ii) D(S, R) =
D(R, S) (symmetry). (iii) D(S, R) ≤ D(S, Q) + D(Q, R)
(triangle inequality). Metric distance of interest include the
Hamming distance, Euclidean distance and the Tanimoto
distance.

The commonly used QSAR approach estimates the level of
bioactivity of a compound via a linear combination of its
descriptors. In distance based compound classification, it is
natural to consider a distance between two descriptor arrays
which is a linear combination of the differences in each one
of the dimensions.

More specifically one can define D(S, R) =
Pn

i=1
wi · |S[i]−

R[i]| where wi, the weight of the dimension i is a real value
in the range [0, 1]. It is easy to show that this distance,
which is usually called the weighted Minkowski distance of
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order 1 forms a metric.

In this paper we focus on classification of biomolecules ac-
cording to binary bioactivities. The biomolecular data sets
available usually do not specify the level of bioactivity of
interest but rather provide whether a compound is active
or inactive. Thus we only perform a binary classification of
compounds for each bioactivity, although our methods are
general to provide a real valued level of bioactivity.

Our classification method for a given bioactivity first com-
putes a distance measure for a training data set which sepa-

rates the subset of active compounds from those that are
inactive. Given a training set of descriptor arrays T =
{T1, T2, ..., Tℓ} (each of which belonging to a compound) we
determine the distance measure D, more specifically com-
pute the associated weights wi, through a combinatorial op-
timization approach.
Given the training set T , let T A = {T A

1 , T A
2 , ..., T A

m} denote
its subset of active compounds and T I = {T I

1 , T I
2 , ..., T I

ℓ−m}

denote its subset of inactive compounds. Clearly T = T I ∪
T A.

We obtain a linear program for determining each wi as fol-
lows. The objective function of the linear program which is
to be minimized is

f(T ) = (
m

X

h=1

m
X

j=1

n
X

i=1

wi · |T
A
h [i] − T A

j [i]|)/m2 (1)

+ (
ℓ−m
X

h=1

ℓ−n
X

j=1

n
X

i=1

wi · |T
I
h [i] − T I

j [i]|)/(ℓ − m)2 (2)

− (

m
X

h=1

ℓ−m
X

j=1

n
X

i=1

wi · |T
A
h [i] − T I

j [i]|)/(m · (ℓ − m)) (3)

subject to the following conditions

∀T A
h ∈ T A (

m
X

j=1

n
X

i=1

wi · |T
A
h [i] − T A

j [i]|)/m2

≤ (
ℓ−m
X

j=1

n
X

i=1

wi · |T
A
h [i] − T I

j [i]|)/(m · (ℓ − m)) (4)

∀i 0 ≤ wi ≤ 1 &

n
X

i=1

wi ≤ C (5)

where C is a user defined constant.
The objective function f(T ) has three components: Com-
ponent (1) is the average distance among active compounds
and component (2) is the average distance among the inac-
tive compounds; their sum provides the within-class average
distance. Component (3), on the other hand, is the average
distance between an active compound and an inactive one;
thus it stands for the between-class average distance. As
a result our linear programming formulation aims to max-
imize the difference between the average between-class dis-
tance and the average within-class distance. The distance
measure obtained will separate the typical active compound
from the typical inactive compound, while clustering all ac-
tive compounds and all inactive compounds as much as pos-
sible.

There are three types of constraints on the weights wi in
our linear programming formulation. Constraint (4) ensures
that the average distance among active compounds is no
more than the average distance between active and inactive
compounds.2 Constraints (5) impose bounds on the values
of weights wi and their sum.3

5. EFFICIENT DATA STRUCTURES FOR
K-NN SEARCH

A distance measure defined as above can be used for the clas-
sification of compounds with unknown levels of bioactivity
as the bioactivity level of a compound is likely to be similar
to the bioactivity levels of compounds within its close prox-
imity. Our k-nn classifier estimates the (binary) bioactivity
of a given compound by (1) either taking the majority of
the bioactivities of its k-nearest compounds w.r.t. the dis-
tance measure or by (2) checking whether sum of the binary
bioactivity levels of the k-nearest neighbors normalized by
their distances to the compound is above a threshold value.
Under each approach, it is possible to select the value of
k which maximizes the accuracy of the estimator, i.e. the
ratio of the sum of true positives and true negatives to the
size of the training data set.

Once the method of classification is determined, it is desir-
able to construct an efficient data structure for performing
k-nn search. In the remainder of the paper we focus on
constructing an efficient k-nn search data structure for the
metric distance we developed and provide some experimen-
tal results.

Efficient data structures for k-nn search
Typical similarity search methods for large collections of
data elements usually perform iterative partitioning of the
data set into smaller subsets so as to perform efficient query-
ing by pruning - which is achieved at each iteration by check-
ing out into which partition the query falls[16; 18]. The
pruning strategy can be made particularly effective on data
collections where similarity is measured with respect to a
metric distance. The partitions in such a metric space are
usually achieved with respect to simply defined planar cuts;
given a query element, it is quite simple to check into which
side of the planar cut it falls.

Given a set of data elements X = {X1, . . . , Xℓ} in a metric
space with distance D, similarity search for a query element
Y can be posed in two flavors. (1) Range query: retrieve all
items whose distance to Y is at most some user defined R.

2A more stringent set of constraints can be imposed on ac-
tive compounds such that the distance between a given ac-
tive compound T A

h and any other active compound is no
more than the distance between T A

h and any inactive com-
pound. Such a set of constraints can, in principle, can sep-
arate active and inactive compounds into tighter clusters.
Unfortunately, the number such constraints, m2 · (ℓ − m),
turns out to be impractical, even for the most advanced lin-
ear program solvers.
3The number of descriptors related to a specific bioactivity
is usually no more than a few, thus it is desirable to sim-
plify the distance measure by limiting the number of non-
zero weights. The final constraint aims to achieve this by
imposing an upper bound on the sum of the weights. Al-
though this constraint does not guarantee to upper bound
the number of non-zero weights, in practice, the number of
non-zero weights obtained is no more than 2C.
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(2) k-nn query: retrieve the k ≥ 1 items whose distances to
Y are as small as possible.
Efficient data structures for performing nearest neighbor
search in high dimensional metric spaces usually exploit the
triangle property satisfied by the metric distance measure.
One particularly efficient similarity search tool for perform-
ing range queries is the Vantage Point (VP) trees [16; 18].
In a VP tree, efficient similarity search in a large data set is
achieved through iterative pruning. Traditionally, a vantage
point tree is defined as a binary tree that recursively parti-
tions a data set into two equal size subsets according to a
randomly selected vantage point Xv as follows. Let M is the
median distance among the distances of the data elements
to Xv . The inner partition consists of the elements Y such
that D(Xv , Y ) < M and the outer partition consists of the
elements Z such that D(Xv , Z) ≥ M . The two subsets are
further partitioned via the iterative application of the above
procedure until each subset includes a single data element.
For a given query element Y , the set of data elements Xi

for which D(Y, Xi) ≤ R for the search radius R can be
computed as follows. Let Xv be the vantage point cho-
sen for the entire data set and let M be the median dis-
tance among the distances of the data elements to Xv . If
D(Xv , Y ) + R ≥ M then recursively search the outer par-

tition. If D(Xv , Y ) − R < M then recursively search the
inner partition. If both conditions are satisfied then both
partitions must be searched implying that no pruning has
been achieved. The correctness of the search routine follows
from the triangle inequality.

A natural extension to the traditional vantage point trees is
what we call the Space Covering VP trees (SCVP trees) first
described by Sahinalp et al [15]. At each level of the SCVP
trees, multiple vantage points are chosen so as to increase
the chance of inclusion of the query region in one of the
inner partition of the vantage points. This can be achieved
by selecting vantage points in a way that the union of the
inner partitions of these vantage points cover the entire data
set. In other words, each data element is included in at
least one of the inner partitions of a vantage point. Thus
a SCVP tree has multiple branches at each internal node,
each representing a vantage point and its inner partition. If
a query element is not close to any of the vantage points at a
given level, it is deduced that there are no similar items to it
in the data set. The original SCVP trees chose the vantage
points at each level randomly. Although this approach can
perform quite well for certain data collections, it can also
result in poor space utilization. The SCVP trees introduce
some redundancy in the representation of the data elements:
clearly each data element may be included in more than one
inner partition and thus need to be represented in more than
one subtree. Thus the memory requirements of the SCVP
tree can be fairly large.

Clearly it is desirable to cover the entire data collection by
the fewest number of (inner partitions of) vantage points.
However, the problem of minimizing the number of vantage
points for this purpose turns out to be an NP-hard prob-
lem under all distance measures of interest (i.e. weighted
Minkowski distance of any order p, wLp)[10]. Neverthe-
less it is possible to approximate the minimum number of
vantage points in any metric space through a simple poly-
nomial time algorithm as we show later. As a result we
obtain a data structure that deterministically picks the van-
tage points (whose inner partitions cover the entire data set)

which results in almost optimal redundancy; we call this
data structure Deterministic Multiple Vantage Point tree
(DMVP tree) [10].

An O(log ℓ) approximation to the optimal vantage
point selection
The variant of the optimal vantage point selection problem
(OVPS) for which we establish NP-hardness assumes a fixed
radius r for each neighborhood around a vantage point. One
can think of two natural variants of the OVPS problem: (1)
each neighborhood includes a fixed number of points (e.g.
ℓ/2 points as per the original VP Tree construction), (2)
each neighborhood has at least ℓ/k and at most ℓ/k′ points
for some k ≥ k′. It is not difficult to show that these variants
are NP-hard as well.

In the remainder of the paper we focus on variant (2) of the
OVPS problem and describe a polynomial time O(log ℓ) ap-
proximation algorithm for solving it. Such a solution will
also imply an O(log ℓ) approximation algorithm for vari-
ant (1) by setting k = k′. The approximation algorithm
is achieved by reducing the OVPS problem to the weighted
set cover problem as follows.

Consider each point Xi in S. We construct the following ℓ
sets for Xi named X1

i , X2
i , . . . , Xℓ

i . X1
i consists of only Xi.

X2
i consists of Xi and its nearest neighbor. In general, Xj

i

consists of Xi and its j − 1 nearest neighbors. Let the cost
of Xj

i be j.

Now given sets Xj
i , for all 1 ≤ i ≤ ℓ and k ≤ j ≤ k′, each

with cost j, if we can compute the minimum cost collection
of sets such that each Xh ∈ S is in at least one such set,
we would get a solution to the variant (2) of the OVPS
problem. This problem is equivalent to the weighted set
cover problem for which a simple greedy algorithm provides
an O(log ℓ) approximation (e.g. [5]). The greedy algorithm
works iteratively: each iteration simply picks a set where
the cost-per-uncovered-element is minimum possible. The
algorithm terminates when all elements are covered.

Optimal fitting of the multiple vantage point
tree in the memory
Although the deterministic multiple vantage point tree im-
proves the memory usage of the randomized space covering
vantage point tree, it is still possible that the tree may not
fit in the main memory. If this is indeed the case, we try to
place a connected subtree (which includes the root) to the
memory. The search again is performed starting with the
root. When an internal node whose children are not rep-
resented in the memory is reached, the search is done in a
brute force manner on the set of points represented by that
node.
Clearly it is of interest to obtain the best subtree for op-
timizing the query performance of the data structure. For
that we use the following 0 − 1 programming formulation
[10].
Given a Multiple Vantage Point tree T and a node i, let Si

be the number of points in the neighborhood represented by
i. During a search, when a node j is reached, its children
i, i + 1, . . . are considered for further search in linear order;
i.e. we first check whether the query fits in the neighborhood
of i, then we check i + 1 and so on until a suitable vantage
point i + h is found. Let S′

i+h be the number of points in
the neighborhood represented by node i + h which are not
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in the neighborhoods represented by i, i + 1, . . . , i + h − 1.

Our 0−1 programming formulation sets the probability that
node i + h is reached during a search to S′

i+h/ℓ. If the
children of the node i + h are not placed in the memory, i.e.
if node i+h is on the cut-set, the time needed for performing
a search on the neighborhood represented by this node is
Si+h. Thus the expected contribution of node i + h to the
query time is Si+h · S′

i+h/ℓ.

Let bi be a binary variable, which takes the value 1 if vertex
i is in the cut-set and is 0 otherwise. Our goal is to min-
imize the expected running time of the brute-force search
performed for each query; i.e. our objective function is
f(T ) =

P

∀i biSiS
′
i subject to the following constraints.

For any pair of consecutive sibling nodes i and i+1, we must
have bi = bi+1.
We should not exceed the memory M dedicated to the cut-
set; thus

P

∀i biSi ≤ M.
Finally, at least one node in every path from the root to a
leaf in T must include one vertex in the cut-set. Thus for
any such path P we have

P

i∈P bi = 1.

A 0− 1 assignment to bi’s that minimize the objective func-
tion will minimize the expected query time while fitting the
data structure in the main memory.

6. PRELIMINARY EXPERIMENTS
In this section we aim to provide some insight into the com-
parative performance of our k-nn classifier, both in terms
of accuracy and efficiency. We applied our classifier to five
types of bioactivities [11]: (i) being antibiotic, (ii) being a
bacterial metabolite, (iii) being a human metabolite, (iv)
being a drug, and (v) being drug-like.

The first data set we used is the complete small molecule col-
lection from [4], which includes 520 antibiotics, 562 bacterial
metabolites, 958 drugs, 1202 drug-like compounds, and an
additional 1104 human metabolites. The total number of
the compounds in the data set is 4346. Each compound
in the data set is represented with a descriptor array of 62
dimensions, which is a combination of 30 inductive QSAR
descriptors [4] and 32 physicochemical properties such as
molecular weight, number of specific atoms (O, N, S), acid-
ity, density, etc. This data set was used for testing the
classification accuracy of k-nn approach. A second data set
which enriches the first data set by the addition of 20000
additional drug like compounds was later used for testing
performance of DMVP tree.
For each bioactivity, a wL1 distance is determined to estab-
lish a model for compound classification w.r.t. this bioac-
tivity using our k-nn method. Note that the descriptors of
each compound are normalized according to the observed
maximum and minimum values in the data set in order to
remove the bias to parameters with larger values.

The comparative results of the four classification methods,
namely k-nn, LDA,MLR and ANN are provided in Table 1.
For each bioactivity, we provide the sensitivity, specificity
and accuracy obtained by each classifier. We demonstrate
the performance of our k-nn classifier only for k = 1; i.e.
given a query compound, our classifier returns the bioac-
tivity of its nearest neighbor in the training data set. It is
possible to set k > 1, however it requires determining the
best k value, as well as the best method for assigning the
bioactivity of the query compound such as majority rule or
distance weighted majority rule. In order to keep our clas-

sifier simple, we set k = 1.

We constructed the wL1 measure for three different values of
C - the upper bound on the sum of weights, i.e.,

Pn
i=1

wi ≤
C. Setting C = ∞ removes the restriction on the sum of
weights and thus computes the wL1 distance that achieves
the best classification. We also set C to 3 and 10 to restrict
the number of non-zero weights, with the aim of focusing
only on the C most relevant descriptors to the bioactivity
of interest. As the resulting non-zero weights turned out
to be equal to or very close to 1, these two classifiers are
quite similar to those described in recent papers (e.g. [20;
9]) that focus on determining the most relevant descriptors
for modeling a bioactivity of interest.
We used MOE(Molecular Operating Environment) PLS mod-
ule for MLR classification and SNNS (Stuttgart Neural Net-
work Simulator) with default parameters (52 nodes and 420
connection network) for ANN classification. LDA classifica-
tion is performed through the use of standard C libraries for
matrix operations.

For each bioactivity, a training data set comprising of 70
percent of both the active and the inactive compounds are
formed via random selection. The remaining compounds
are used as the test data set. Each training data set is used
for building the four classifiers corresponding to the related
bioactivity and the test data is used for the evaluating their
performance.

For each bioactivity/classifier pair we report the following
test results: The number of true positives (T P), the number
of true negatives (T N), the number of false positives (F P),
the number of false negatives (F N), sensitivity
(T P/(T P+F N)), specificity (T N/(T N+F P)), accuracy
((T N+T P)/(T P+T N+F P+F N)), positive predictive
value (T P/(T P+F P)), negative predictive value
(T N/(T N+F N)).
Our similarity search data structure for computing the near-
est neighbor of the query compound is quite efficient, espe-
cially when compared to brute force search. We tested our
data structure under the wL1 distance computed for each
of the five bioactivities, on both of the data sets. The cru-
cial parameter that determines the performance of our data
structure is the pruning it achieves for any given query com-
pound. Thus we determined the percentage of compounds
pruned in the second training data set (the first training
data set enriched with 20000 drug like compounds), aver-
aged over all compounds in the test data set. On a 32GB
Sun Fire V40Z server (with 2.4 Ghz AMD 64bit Opteron
processor) the respective pruning ratios are as follows. We
achieved (i) 84.4% pruning for being antibiotic, (ii) 84.5%
pruning for being bacterial metabolite, (iii) 86.1% pruning
for being human metabolite, (iv) 81.7% pruning for being
drug, and (v) 81% pruning for being drug-like. This is sig-
nificant improvement over brute force search.

As a result our k-nn classifier turns out to be very fast. On
the first data set, the running time of our k-nn classifier aver-
aged over all 4346 compounds (training+test data sets) and
all five bioactivities is 0.3 milliseconds on the above server.
In contrast the ANN classifier requires 39.7 milliseconds on
the same data set. On the second data set (which simply
has additional 20000 compounds in the data structure) the
running time of our k-nn classifier increases only to 1.3 mil-
liseconds (again averaged over the 4346 compounds from the
first data set and five bioactivities), still 30 times better than
the ANN trained over a much smaller set.
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Model T P T N F P F N SPEC SENS ACCUR PPV NPV
Antibacterial Model, C=∞ Train 269 2610 69 95 .97 .74 .95 .8 .96

Test 117 1119 28 39 .98 .75 .95 .81 .97
Antibacterial Model, C=10 Train 224 2538 141 140 .95 .62 .91 .61 .95

Test 92 1085 62 64 .95 .59 .90 .60 .94
Antibacterial Model, C=3 Train 201 2526 153 163 .94 .55 .90 .57 .94

Test 75 1074 73 81 .94 .48 .88 .51 .93
Antibacterial Model, LDA Train 364 0 2679 0 0.00 1.00 0.12 0.12 -

Test 156 0 1147 0 0.00 1.00 0.12 0.12 -
Antibacterial Model, MLR Train 194 564 2115 170 0.21 0.53 0.25 0.08 0.77

Test 61 1129 18 95 0.98 0.39 0.91 0.77 0.92
Antibacterial Model, ANN Train 294 2651 27 70 0.99 0.81 0.97 0.92 0.97

Test 129 1132 16 27 0.99 0.83 0.97 0.89 0.98
Bacterial Metabolite Model, C=∞ Train 311 2537 112 83 .96 .79 .94 .74 .97

Test 135 1091 44 33 .96 .80 .94 .75 .97
Bacterial Metabolite Model, C=10 Train 220 2436 213 174 .92 .56 .87 .51 .93

Test 98 1038 97 70 .91 .58 .87 .50 .94
Bacterial Metabolite Model, C=3 Train 152 2376 273 242 .90 .39 .83 .36 .90

Test 80 1018 117 88 .90 .48 .84 .41 .92
Bacterial Metabolite Model, LDA Train 240 2587 62 154 0.98 0.61 0.93 0.79 0.94

Test 90 1088 47 78 0.96 0.54 0.90 0.66 0.93
Bacterial Metabolite Model, MLR Train 301 2525 124 93 0.95 0.76 0.93 0.71 0.96

Test 119 1073 62 49 0.95 0.71 0.91 0.66 0.96
Bacterial Metabolite Model, ANN Train 338 2597 52 55 0.98 0.86 0.96 0.87 0.98

Test 159 1076 59 10 0.95 0.94 0.95 0.73 0.99
Drug Model, C=∞ Train 474 2158 214 197 .91 .71 .86 .69 .92

Test 204 928 88 83 .91 .71 .87 .70 .92
Drug Model, C=10 Train 349 2072 300 322 .87 .52 .80 .54 .87

Test 151 861 155 136 .85 .53 .78 .49 .86
Drug Model, C=3 Train 305 2026 346 366 .85 .45 .77 .47 .85

Test 126 846 170 161 .83 .44 .75 .43 .84
Drug Model, LDA Train 0 2372 0 671 1.00 0.00 0.78 - 0.78

Test 0 1014 2 287 0.99 0.00 0.78 0.00 0.78
Drug Model, MLR Train 279 2234 138 392 0.94 0.42 0.83 0.67 0.85

Test 109 951 65 178 0.94 0.38 0.81 0.63 0.84
Drug Model, ANN Train 489 2178 194 182 0.92 0.73 0.88 0.72 0.92

Test 177 978 39 110 0.96 0.62 0.89 0.82 0.90
Druglike Model, C=∞ Train 674 2043 158 168 .93 .80 .89 .81 .92

Test 281 866 77 79 .92 .78 .88 .0.78 .92
Druglike Model, C=10 Train 560 1959 242 282 .89 .67 .83 .70 .87

Test 239 842 101 121 .89 .66 .83 .70 .87
Druglike Model, C=3 Train 467 1813 388 375 .82 .55 .75 .55 .83

Test 197 275 168 163 .82 .55 .75 .54 .83
Druglike Model, LDA Train 683 1917 284 159 0.87 0.81 0.85 0.71 0.92

Test 295 801 142 65 0.85 0.82 0.84 0.68 0.92
Druglike Model, MLR Train 665 1951 250 177 0.89 0.79 0.86 0.73 0.92

Test 282 812 131 78 0.86 0.78 0.84 0.68 0.91
Druglike Model, ANN Train 734 2086 114 107 0.95 0.87 0.93 0.87 0.95

Test 334 891 52 27 0.94 0.93 0.94 0.87 0.97
Human Metabolite Model, C=∞ Train 773 2270 0 0 1.00 1.00 1.00 1.00 1.00

Test 331 972 0 0 1.00 1.00 1.00 1.00 1.00
Human Metabolite Model, C=10 Train 772 2266 4 1 .99 .99 .99 .99 .99

Test 330 972 0 1 1.00 0.99 .99 1.00 .99
Human Metabolite Model, C=3 Train 772 2270 0 1 1.00 0.99 .99 1.00 .99

Test 330 972 0 1 1.00 0.99 .99 1.00 .99
Human Metabolite Model, LDA Train 773 2270 0 0 1.00 1.00 1.00 1.00 1.00

Test 331 972 0 0 1.00 1.00 1.00 1.00 1.00
Human Metabolite Model, MLR Train 773 2270 0 0 1.00 1.00 1.00 1.00 1.00

Test 331 972 0 0 1.00 1.00 1.00 1.00 1.00
Human Metabolite Model, ANN Train 773 2270 -0 0 1.00 1.00 1.00 1.00 1.00

Test 331 972 0 0 1.00 1.00 1.00 1.00 1.00

Table 1: Binary classification of the bioactivities of the test set according to four classification methods: k-nn, LDA, MLR,
ANN.
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7. CONCLUSION
We have demonstrated that our k-nn classifier with respect
to wL1 distance obtains better accuracy than the LDA and
MLR, sometimes significantly so. It is comparable to the
ANN classifier in terms of accuracy and is superior in the
sense that it is capable of determining a real valued level
of bioactivity rather than giving a simple YES or NO an-
swer. k-nn approach also provides insights into the level of
bioactivity or the importance of the descriptors with respect
to bioactivity. Analysis of the relative weights of the de-
scriptors for the 5 different bioactivity model demonstrated
certain characteristics of these activities. Our models ver-
ify that bacterial metabolites and antimicrobial drugs are
significantly overlapping which can be attributed to their
similar origin. We also observe that human metabolites dis-
play distinctive properties compared to the other 4 bioactiv-
ities. Another important observation is that QSAR models
for drugs and human metabolites are dominated by few de-
scriptors that are correspondingly favored by the drug de-
velopers and natural evolution. The distribution of the val-
ues for these descriptors may be an important factor for
the overlaps among different bioactivities used in our ex-
periments. Overall results of the k-nn classification method
bring more insight into the nature and structural dominants
of the studied classes of small molecules and if necessary,
can help rationalizing the design and discovery of novel an-
timicrobials and human therapeutics with metabolite-like
chemical profiles [11].

Our classifier is faster compared to alternative approaches,
thanks to the DMVP tree data structure we develop for fast
similarity search. Our DMVP tree data structure improves
the existing vantage point tree data structures in multiple
ways. It provides a deterministic selection of the optimal
vantage points in each level as well as providing the optimal
cut of the tree so as to fit it in the available memory. Our
data structure can be applied to any metric distance includ-
ing the wLp distance for any p and the Tanimoto distance.
It performs very well in practice, achieving fast similarity
search and classification.
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