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Abstract
The potentially catastrophic impact of an epidemic
specially those due to bioterrorist attack, makes de-
veloping effective detection methods essential for
public health. Current detection methods trade
off reliability of alarms for early detection of out-
breaks. The performance of these methods can be
improved by disease-specific modeling techniques
that take into account the potential costs and effects
of an attack to provide optimal warnings and the
cost and effectiveness of interventions. We study
this optimization problem in the framework of se-
quential decision making under uncertainty. Our
approach relies on estimating the future benefit of
true alarms and the costs of false alarms. Using
these quantities it identifies optimal decisions re-
garding the credibility of outputs from a traditional
detection method at each point in time. The key
contribution of this paper is to apply Partially Ob-
servable Markov Decision Processes (POMDPs) on
outbreak detection methods for improving alarm
function in the case of anthrax. We present empir-
ical evidence illustrating that at a fixed specificity,
the performance of detection methods with respect
to sensitivity and timeliness is improved signifi-
cantly by utilizing POMDPs in detection of anthrax
attacks.

1 Introduction
The very real threat of bioterrorism has accelerated the crit-
ical need for timely detection of outbreaks. As a result, the
need for precise modeling and analysis of decisions faced by
surveillance systems for providing the optimal warnings is
becoming more acute. In the particular case of an anthrax
attack, delays of hours in making a decision to intervene
can lead to hundreds of lives lost [Kaufmann et al., 1997;
Wagner et al., 2001] and millions of dollars of additional ex-
penses. Current studies of surveillance systems have demon-
strated that a good detection algorithm can discover a dis-
ease outbreak before individual cases are diagnosed clini-
cally. However, making a decision as to whether the partial
information from a surveillance system reflects a real out-
break, is a challenge. Detection methods generally use a

threshold which can be tuned to increase sensitivity. How-
ever, improvement in sensitivity usually occurs at the cost of
lower specificity, and surveillance systems with low speci-
ficity generate many false alarms, which may ultimately be
ignored by public health personnel. At a specificity of 0.9,
[Buckeridge et al., 2006] show syndromic surveillance de-
tected anthrax outbreaks on average one day before clinical
case finding confirmed the outbreaks. This specificity is con-
sidered relatively low since it corresponds to 1 false alarm
every 10 days.

The sequential nature of the detection problem, the time-
criticality of decision making under these uncertain condi-
tions, and the high risk of delays suggest strongly the need
for a formal decision model to guide public health responses
to the results of detection methods. Examples of decisions
raised in response to anomalies in surveillance data include:
whether to wait or to collect more data; whether to examine
additional information resources; or whether to confirm an
outbreak after receiving an alarm.

In this paper, we address precise modeling and analysis of
decisions faced by surveillance systems for providing optimal
warning of an epidemic. As a specific example we consider
anthrax outbreaks. Our approach to this problem is motivated
by a principal observation that quantifying the potential costs
and effects of an attack and the cost and effectiveness of in-
terventions can be used as important criteria for optimizing
the alarm function. We formulate the decision making prob-
lem for anthrax outbreak detection in POMDPs [Kaelbling et
al., 1998]. In decision theoretic planning, POMDPs are well
known as the most realistic model for decision making un-
der uncertainty in dynamic systems. They have been widely
proposed in modeling decision making in various domains
such as medical decision making, mining engineering, and
robotics [Cassandra, 1998]. Our POMDP model of a surveil-
lance system accounts for the normal situation and different
states of the attack after anthrax release until the time that an
attack can be detected through clinical diagnosis of affected
individuals. The result of a detection method is used to pro-
vide observations to the POMDP model as noisy information
about these true but unobservable states. The POMDP model
performs further analysis on these results and optimizes the
appropriate strategy to take in response to the output from
the detection method. The enhanced detection approach de-
scribed here can be coupled with any traditional outbreak de-



tection method to optimize the way that the surveillance sys-
tems process alarm function.

2 Background
The objective of detection algorithms in public health sur-
veillance systems is to recognize from input data (e.g. med-
ical visits, absenteeism from work, drug consumption), the
occurrence of an event such as an epidemic. A detection
method may be as simple as comparing the amplitude of
the signal with a threshold. If this value is above the pre-
specified threshold, then the algorithm indicates an alarm for
a detected outbreak. The accuracy of a detection method is
reported using various ratios such as sensitivity and speci-
ficity. Sensitivity is the probability of an alarm given an out-
break, P(A|O) = n(A,O)

n(O) . Specificity is the probability of no

alarm given that there is no outbreak, P(A−|O−) = n(A−,O−)
n(O−) .

Timeliness is also treated as a property of a detection method.
Timeliness can be measured by: detection time - time of event
onset. Both sensitivity and timeliness of a method are usually
improved by adjustment of its threshold and at the expense of
specificity.

Popular methods for outbreak detection include simple and
exponential weighted moving averages, applied either di-
rectly to the data or to residuals obtained by comparing ob-
served data to expected data [ Thacker, and Berkelman, 1998;
Box, and Jenkins, 1976; Reis and Mandl, 2003]. A funda-
mental challenge of detection systems is that if we increase
the sensitivity of the system and improve the timeliness of
detection, then the number of false alarms will increase. Un-
fortunately, these systems have low sensitivity during the
first few days after a release of anthrax [Reis et al., 2003;
Buckeridge et al., 2006].

3 Partially Observable Markov Decision
Processes

In this section we review the POMDP framework and illus-
trate solving sequential decision problems in POMDPs. For-
mally, a POMDP is defined by the following components: a
finite set of hidden states S, a finite set of actions A, a finite set
of observations Z, a transition function T : S×A×S→ [0,1],
such that T (s,a,s′) is the probability that the POMDP agent
will end up in state s′ after taking action a while in state
s, an observation function O : A× S× Z → [0,1], such that
O(a,s′,z) gives the probability that the agent receives obser-
vation z after taking action a and reaching state s′, an initial
belief state b0, which is a probability distribution over the set
of hidden states S and a reward function R : S×A× S → ℜ,
such that R(s,a,s′) is the immediate reward received when the
agent takes action a in hidden state s and ends up in state s′.
Additionally, there can be a discount factor, γ ∈ (0,1), which
is used to give less weight to rewards received further in the
future.

3.1 Solving POMDPs
The goal of a POMDP agent is to find a long term plan or
policy for acting in such a way as to maximize the total ex-
pected reward received. The best such plan is called an opti-
mal policy or an optimal solution for the POMDP. The agent

in a POMDP does not have knowledge of the hidden states,
it only perceives the world through noisy observations as de-
fined by the observation function O. Hence, the agent must
keep a belief state b, which is a vector of length |S| specifying
a probability distribution over hidden states. The elements of
this vector, b(i), specify the conditional probability of the de-
cision making agent being in state si, given the initial belief b0
and the history (sequence of actions and observations) experi-
enced so far. After taking action a and receiving observation
z, the POMDP agent updates its belief state b′ using Bayes’
Rule:

b′(s′) = P(s′|b,a,z)

=
O(a,s′,z)∑s∈S b(s)T (s,a,s′)

P(z|a,b)

A policy is a mapping from the continuous space of all
possible beliefs to actions, π : B → A. The amount of total
expected reward that a decision maker can accumulate over
its lifetime following a policy π is called the value function of
π. Most POMDP algorithms are based on estimating a value
function. A value function V π of the policy π defines the
value for each belief state under policy π. The optimal value
V ∗(b), assigned to each belief state b, is the expected value of
the total reward the agent can obtain in the future, given that
its starting point is b. The optimal policy π∗ in particular is
the one that maximizes the total expected future reward:

π∗(b) = arg max π E[
h−1

∑
t=0

γtrt+1|b] (1)

Finding optimal policies for POMDPs is generally diffi-
cult. The problem is that there are an infinite number of
belief states b, so solving the above equation in exact form
is very difficult. Recently, algorithms have been proposed
which take advantage of the fact that, for most POMDP prob-
lems, a large part of the belief space is not experienced by
the POMDP agent and the actual belief states have a sparse
probability distribution. Such approaches, which are known
as point-based methods [Pineau et al., 2003], consider only a
finite set of belief points and plan for those points only. These
algorithms have been used to solve POMDP problems that are
orders of magnitude large or more difficult than the problems
solvable by exact solution methods.

4 POMDP Anthrax Detection
The epidemic curve for anthrax by days after exposure is
assumed to be < 1 day, 0% of cases; 1 day, 5%; 2 days,
20%; 3 days, 35%; 4 days, 20%; 5 days, 10%; 6 days,
5%; and 7 or more days, 5% [Messelson et al., 1994;
Benenson et al., 1995]. The mean time for clinical detec-
tion of anthrax is estimated to be between 3-4 days following
a release of 0.1 kg of anthrax spore in an urban area [Adamou
et al., 2006] and [Buckeridge et al., 2006]. Therefore, if a
surveillance system takes longer than 3-4 days to detect an
outbreak, then the system may not be very helpful. There
is always a small probability of starting an outbreak. In a
normal situation (no outbreak) we assume a probability of an
attack P = 0.01. We use this prior knowledge in the transition



function of the model which is discussed later in this section.
Here we build the model and its parameters based on expert
opinions, and the results from simulation studies in the litera-
ture for anthrax attacks. Figure 1 depicts the POMDP model
we designed for this problem.

Figure 1: The POMDP model for anthrax outbreak detection.

The economical impact of an attack used in our POMDP
model is based on the analysis reported in [Kaufmann et al.,
1997]. Figure 2 shows the cumulative economic impact of
a large release of aerosolized B.anthracis created from this
analysis. The authors considered the impact of an attack on a
suburb of a major city, with 100,000 people exposed in the
target area. In their calculations, they considered costs of
deaths, the costs of hospitalizations, and the costs of outpa-
tient visits. The rewards and costs are related to:

• Cost of a single false positive and false negative;

• Cost of intervention (depends on the population size,
cost per person, and implementation time);

• Cost of a single day delay;

• Detection benefit = the number of death × future earn-
ings + number of hospital days × cost of 1 hospital day
+ number of outpatient visits× cost of 1 outpatient visits
intervention costs;

• Intervention costs = cost per person × number of cases
seeking care
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Figure 2: The estimate of accumulative preventable loss for detec-
tion of anthrax per day after a release.

4.1 Model Parameters
• The state space: we propose to consider a state space

consisting of six states: NoOutbreak, Day1, Day2,
Day3, Day4, and OutbreakDetected to reflect the as-
sumption that at an outbreak will be detected clinically
within 5 days.

• The action space: we consider 4 possible strategies
available at each time. These are declare an outbreak

as a safe but very expensive option; a somewhat cheaper
option of more systematic studies to gather extra infor-
mation from external sources ( for example more patient
files in emergency departments); more investigation can
take up to a few hours of a human expert to review care-
fully data already in hand ; and the last option is not to
do anything and wait. The space of actions is based on
standard strategies in epidemiology [Gregg, 1996] and
discussions with epidemiologists.

• The observation space: at each instant of time (a day),
we perceive observations from a detection method which
reflect an alarm condition. These observations which are
dependent on the underlying state of the model are some
informative statistics output from detection algorithm.
The output of a detection system includes a sequentially
updated probabilistic assessment of the threats being
monitored. The distribution of p-value, one-step-ahead
daily forecast of respiratory syndrome counts, and cu-
mulative sum for detection of positive deviation in the
forecast residuals are commonly available assessments
in detection algorithms. In this model, we have consid-
ered two observations, suspicious and non-suspicious to
reflect the binary output received from a detection algo-
rithm.

• Transition functions: at any state of the model we as-
sume that if the controller chooses to confirm an out-
break, then it returns to the NoOutbreak state. There is
a small chance of moving to the first day of an attack
from the NoOutbreak state under any action. We con-
sider the probability of P = 0.01 for this case. The tran-
sition through consequent days of an outbreak by choos-
ing to wait is performed naturally. A systematic study
may take 1 day to give some probability of an attack
and the investigation option takes only a few hours of a
human expert. Human decision makers are subject to bi-
ases that lead to suboptimal decisions, especially when
they are dealing with rare events, uncertainty, and high
cost options. Therefore, the systematic study and the
investigation options can reduce the uncertainty about
the state of the outbreak by only a small amount. This
amount increases as the the outbreak progresses. After
comprehensive discussions with domain experts we de-
cide to consider an extra 10 percent sensitivity for the
investigation action and an extra 30 percent sensitivity
for the systematic study. This means that the probabil-
ity of the attack being detected after an investigation on
day1 will be 0.1 and after systematic study this would be
0.3.

• Observation functions: as the outbreak progresses the
detection method provides more reliable information on
whether or not there is an outbreak. At any outbreak
state, for defined observation suspicious, the observa-
tion function is defined by the sensitivity of the detec-
tion method used. For the second observation the noise
is defined as 1− speci f icity at normal states.

• Reward-Cost functions: There is a reward/cost asso-
ciated with each action at each underling state of the
system. In the NoOutbreak state, if we choose not to



do anything, we do not incur any cost. For other situa-
tions we use previous studies modeling anthrax [Braith-
waite et al., 2006; Kaufmann et al., 1997] to incorpo-
rate more realistic information to the model. We have
used the difference between preventable losses in each
day and in the consecutive day presented in Figure 2 as
the reward for declaring an outbreak on each day of the
outbreak. For the investigation option we have assumed
that it takes almost half a day to perform this action.
Therefore, in this case we assigned half of the reward
for transiting to outbreak detected states from each day
of the outbreak. We also assumed that a systematic study
takes one day to perform. Therefore, we consider the re-
ward of the next day for transiting to outbreak detected
state up on taking this action. The penalty of not detect-
ing the outbreak and transition to the next state of the
outbreak is determined by the corresponding loss at that
state. There is a penalty equal to treatment expenses for
maximum number of people seeking care, for choosing
to confirm an outbreak from a clear states. In computing
the number of people seeking care and number of deaths.
we considered a population of 100,000 exposed, as in
[Kaufmann et al., 1997]. The authors modeled the costs
and benefits based on clinical and experimental findings
with respect to the disease progression and treatment op-
tions.

4.2 Related Work
We note that [Das et al., 2004] previously suggested the use
of POMDP belief states for a decision to signal an alarm in
surveillance systems. However, the authors did not explain
the design of the model components including the reward
function which motivates the progression of POMDP solution
methods. A simple 2-3 state POMDP introduced by the au-
thors can not explain the status of a surveillance system under
different diseases. Clearly, the reward function and the state
space definitions are domain dependent factors and have to
be estimated carefully for the disease monitored by the sur-
veillance systems. Probabilistic graphical models also have
been suggested in other related work in detecting epidemics.
[LeStrat et al., 1999] proposed detecting epidemic and non-
epidemic phases of influenza by HMMs using a mixture of
Gaussian distributions. [Rathet al., 2003] also proposed us-
ing a 2-state HMM, where non-epidemic rates are modeled
with an exponential distribution, and epidemic rates with a
Gaussian distribution.

5 Empirical evaluations
In our experimental setup we used a moving average method,
applied to residuals from a time-series model, to provide the
observation for the POMDP model. In this approach, the re-
sponse strategy at any point in time is derived from the pol-
icy obtained from solving the POMDP model described in
Section 4. This response is the one with minimum expected
amount of costs and maximum expected amount of possible
rewards. The exact solution methods were unable to solve this
POMDP. We have used a point-base approximation method
introduced in [Izadi et al., 2006] to solve this POMDP in a
few seconds.
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Figure 3: The timeliness of anthrax outbreak detection method with
and without using POMDPs: sensitivities during different days of
the outbreak for attacks that resulted in 10 additional visits.

Figure 3 and Figure 4 summarize our experimental results
utilizing the POMDP model. These figures illustrate the com-
parison between the moving average model with POMDP ap-
proach and the moving average alone. We considered two dif-
ferent scenarios based on the size of the outbreak: attacks that
resulted in 10 additional visits and the ones that resulted in 20
additional visits. The sensitivity of standard detection meth-
ods increases with the growth of the size of the outbreaks.
We considered a fixed specificity of 0.97 for all cases in both
scenarios. In our experiments, we measured the sensitivity
of both approaches in different days of the outbreaks. The
results for the moving average method alone were extracted
from the results in [Reis et al., 2003]. The results reported
for the case of POMDP are based on averages of 10 inde-
pendent runs of the POMDP generative model over 5000-day
time period. Over this period, we examined 257 outbreaks on
average.
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Figure 4: The timeliness of anthrax outbreak detection method with
and without using POMDPs: sensitivities during different days of
the outbreak for attacks that resulted in 20 additional visits.

The timeliness of different approaches with respect to the
actual days of the outbreak as shown in the figures 3 and 4,
confirms the improvement achieved by using POMDPs. All
outbreaks were detected by our approach prior to the fourth
day of the attacks when the size of the outbreak was larger
(day 4 in Figure 4). Of course not all outbreaks are detected
by the moving average methods at the specificity equal to 0.97
up to day 4. In the case with 10 additional visits, prior to
day 4, the moving average method can only detect the out-



breaks that can be detected on day 1 with the POMDP ap-
proach. The POMDP approach yielded much higher sensi-
tivity for both outbreak sizes, resulting in much better overall
performance.

6 Conclusion and future work
The events surrounding an outbreak due to bioterrorism will
unfold rapidly. The public health response must be formal-
ized in advance of an attack into a decision policy that can be
applied without bias or delay during a crisis. In this paper, we
discussed the development of an optimal surveillance alarm
function for an anthrax outbreak. The empirical evaluation of
our approach shows dramatic improvements over traditional
outbreak detection methods. Our promising results suggest
further directions for research, including consideration of out-
breaks due to other diseases. Infectious threats such as SARS
and human H5N1 influenza infections have prompted the de-
velopment of detection systems that respond in a timely way
to emerging epidemics, allowing authorities to respond at the
earliest possible stage. Worldwide developments concerning
biological weapons and terrorism are driving forces for im-
proving public health surveillance and outbreak response. It
is worth mentioning that our approach applies not only to sur-
veillance for outbreaks caused by terrorists, but also to natu-
rally occurring outbreaks both in the community and in hospi-
tals. In future work, we intend to apply our proposed model to
routinely encountered infectious diseases such as influenza.
Working with more frequent threats such as water contami-
nation or influenza makes this application potentially useful
for routinely encountered public health problems.
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