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Course Content

¢ Introduction to @ta Mining
¢ Data warbousing and OLAP
« Data cleaning
« Data mining operations
« Data summarization
@&
¢ Classification and prediction
¢ Clustering
¢ Web Mining
¢ Similarity Search

« Other topics if time permits
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Chapter 6 Objectives

Understand association analysis in large
datasets and get a brief introduction to the
different types of association rule mining
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What is association rule mining?

* How do we mine single-dimensional boolean associatipns?

* How do we mine multilevel associations?
* How do we mine multidimensional associations?

» Can we constrain the association mining?
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What Is Association Mining?

« Assaociation rule mining searches for
relationships between items in a dataset
- Finding association, correlation, or causal structurgs
among sets of items or objects in transaction
databases, relational databases, and other informdtion
repositories.
- Rule form: Body - Head [support, confidence].
« Examples:
- buys(x, “bread”)- buys(x, “milk”) [0.6%, 65%)]
- major(x, “CS”) " takes(x, “DB")- grade(x, “A”) [1%, 75%)]
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Association Rule Mining
mining association rules Partitioning
(Agrawal et. al SIGMOD93) (Navathe et. al VLDB95)
Hash-based Multilevel AR. Generalized A.R.
(Han et. al. VLDB95) || (Srikant et. Al. VLDB95)

(Park et. al SIGMOD95)
Quantitative A.R. Incremental mining Parallel mining
(Srikant et. al SIGMOD96) || (Cheung et. al ICDE96)| | (Agrawal et. al TKDE96)

Distributed mining
(Cheung et. al PDIS96;
A.R. with recurrent items
(Zaiane et. al ICDE’'00)
And many many others:

Spatial AR; Sequence Associations;AR for multimedia; AR
in time series;AR with progressive refinementgtc.
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Basic Concepts

A transaction is a set of items: Tzl ... i}

a
T O1, wherel is the set of all possible items {i,, ...i}
D, the task relevant data, is a set of transactions.

An association rule is of the form:
P=>Q, where FJ1,Q0I, and mQ =

010r. Osmar R. Zaiane, 1999 Principles of Knowledge Discovery in Databases Universiy of Aberta g - 7

Basic Concepts (con't)

P=>Q holds inD with supports
and
P=>Q has a confidenaein the transaction sét.

Support(P»Q) = Probability(P1Q)
Confidence(P» Q)=Probabity(Q/P)
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A set of items is referred to as itemset
An itemset containing k items is call&dtemset

An items set can also be seen as a conjunction of {mmas
predicate)

Support and Confidence

* Supportof P=P, 0P,0...0P,inD
- o(PD) is the percentage of transactions T
in D satisfying P.(number of T by cardinality db).
» Confidenceof a rule P- Q
-¢(P - Q/D) ratioo((POQ)/ D) bya(P/D)
¢ Thresholds:
— minimum supporto’
—minimum confidencg’
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Strong Rules

* Frequent (or large) predicateP in set D
— support of P larger than minimum support,
* Rule P- Q (c%) isstrong
— predicate (P1Q) is frequent (or large),
— cis larger than minimum confidence.
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Different Kinds of Association Rules

. Boolean vs. Quantitative Associations
- Association on discrete vs. continuous data
— Ex. Age(X,30-45)0 IncomdX, 50K-75K) = Buys(X, SUVcar)

» Boolean Association Rules
» Quantitative Association Rules
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Different Kinds of Association Rules

- Single dimension vs. multiple dimensional associations
- Based on the dimensions in data involved.

- One predicate then single dimension. More predicates then
multi-dimensions.

- Ex. Buyy(X, bread) Buys(X, milk)
Age(X,30-45) O IncomegX, 50K-75K) = Buy(X, SUVcar)

» Single-dimensional Association Rules
» Multi-dimensional Association Rules
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Different Kinds of Association Rules

- Single level vs. multiple-level analysis
- Based on the level of abstractions involved.
- Find association rules at different levels of abstraction.
- Ex. BuygX, bread)=> Buys(X, milk)
BuygX, Wheat Bread¥» Buyg(X, Formost 2% milk)

B
~
\/V& —

» Single-level Association Rules
» Multi-level Association Rules

Universiy of Aberta g 13
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Different Kinds of Association Rules

- Single occurrence vs. multiple occurrences
- One item may occur more than once in the transaction.
- Not the presence of the item isgortant but its frequency.
- Ex. BuygX, bread, 2 BuygX, milk, 1)
)

» Single-occurrence-items Association Rules
» Recurrent-items Association Rules
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Different Kinds of Association Rules

- Simple vs. constraint-based
- Constraints can be added on the rules to be discovered

- Association vs. correlation analysis
- Association does not necessarily imply correlation.

P(AB)

=1? ? ?
P(A)P(B) 1? >1? <1~

0Dr. Osmar R. Zaiane, 1999 Principles of Knowledge Discovery in Databases.

Universiy of Aberta g - 16]

g
Association Rules Outlinq;\%)/
QRS

What is association rule mining?

How do we mine single-dimensional boolean associati

L=

How do we mine multilevel associations?
How do we mine multidimensional associations?

Can we constrain the association mining?
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How do we Mine Association Ruleg

* Input
— A database of transactions

— Each transaction is a list of items (Ex. purchased b
customer in a visit)

« Findall rules that associate the presence of one set o
items with that of another set of items.

— Example98% of people who purchase tires and au|
accessories also get automotive services done

— There are no restrictions on the number of items in|
the head or body of the rule.

0Dr. Osmar R. Zaiane, 1099 Principles of Knowledge Discovery in Databases.
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Rule Measures: Support and Confiden

Customer
buys both

Find all the ruleX & Y = Z with
minimum confidence and support

— supports, probability that a
transaction contains {X, Y, Z}

— confidenceg, conditional
probability that a transaction

Customer
huys bread

Customer
buys milk

having {X, Y} also contain&.

Transaction ID |ltems Bought| Let minimum support 50%, and
2000 A,B,C minimum confidence 50%, we
1000 AC have
4000 A,D — A =2 C (50%, 66.6%)
5000 B.E,F - C 2 A (50%, 100%)
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Mining Association Rules

Transaction ID |Items Bought Min. support 50%
2000 ABC Min. confidence 50%

1000 AC
4000 AD

’ Frequent Itemset[Support

5000 B.E,F A} 75%

{B} 50%

{c} 50%

For ruleA = C: {A.C} 500

support = supportd, C}) = 50%

confidence = supportf, C})/support({A}) = 66.6%
The Apriori principle:

Any subset of a frequent itemset must be frequent.
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Mining Frequent ltemsets: the
Key Step

0 Find thefrequent itemsetshe sets of items that have
minimum support

OA subset of a frequent itemset must also be a frequent item
i.e., if {AB} is a frequent itemset, bottA} and {B} should be
frequent itemsets

O Iteratively find frequent itemsets with cardinalitpm 1 tok
(k-temset}

[0 Use the frequent itemsets to generate association rul

bet,

ES.
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The Apriori Algorithm

C, Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items};

for (k= 1;L,!=0; k++) do begin
C,., = candidates generated frar
for eachtransactiort in databaselo

increment the count of all candidates in
C,., thatare contained in

L., = candidates i, ; with min_support
end

return O, L,;
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The Apriori Algorithm -- Example

Database D itemset|sup.| | fitemset[sup.
TID [ltems C,| {1} 2 {1} 2
100({13 4 {2} S || {23 3
200(235 |[ScanD 3 | 3 (3} 3
300(1235 {4} 1 {5} 3
40025 {5} 3
Cz itemset|sup C2 Iteimiset
L, |itemset|sup {12y |1 Scan D i 2
13} | 2 s} | 2 {13}
(23} | 2 |— |y |1 {15}
s | 3 23| 2 {23}
@35} | 2 {25} | 3 {2 5}
351 | 2 {3 5}
Gslitemset|  scan D Lslitemsetisup| ote: (1,2,311,2,5)
{235} {235}| 2 and {1,3,5} notin G
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Generatig Association Rules
from Frequent Itemsets

*Only strong association rules are geted.
*Frequent itemsets satisfy minimuompgort threshold.
*Strong AR atisfy minimum onfidence threshold.

Support(A1B)

*Confidence(A>B) = Prob(B/A) = Support(A)

For eachfrequent itemsef, generate ation-empty subsets 6f
For every non-empty subsetof f do

output rules=>(f-s) if support€)/supporté) = min_confidence
end

£Dr. Osmar R. Zaiane, 1999
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Improving efficiency of Apriori
* Reducing the number of scans
(there are k DB scans for k-itemsets)
« Eliminating scans by indexing(Hashing)

* Reducing sizes and number of transactions
(no need for non frequent items)

« Partitioning

£10r. Osmar R. Zaiane, 1999 Principles of Knowledge Discovery in Databases
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Optimization: Direct Hash and Pruning

« DHP: Direct Hash and Pruning ( Park, Chen andsY@MoD'95).
— Reduce the size of candidate sets to minimize the cost
— Reduce the size of the transaction database as well

¢ Using a hash table to keep track the counts @fraset. Using the
counts to prun€, (C, is usually the largest)

¢ An item in transactiomn can be trimmed it if does not appear in 3

leastk of the candidat&-itemsets irt.
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Optimization: The Partitioning Algorithnm

« Partition (Savasere, Omiecinski, & Navathe, VLDB'95).
— Divide database into partitions.
— A frequent item must be frequent in at least one partition.
— Process one partition in main memory at a time:
« For each partition, generate frequent itemsets using the
Apriori algorithm
« also formtidlist for all item sets to facilitateorinting in
the merge phase
— After all partitions are processed, the local frequent itemset$
are merged into global frequent sets; support can be
computed from thé&dlists.
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Optimization:Sampling and Itemset Countipg

¢ Sampling (Toivonen. VLDB'96).

— A probabilistic approach finds association rules in about on¢

pass.
¢ Dynamic Itemse€ounting (Brin et. al. SIGMOD’97)
— Reducing the number of scans over the transactions by stal
to countiemsets dynamically during scans
— Using data structure to keep track ofinters and reordering
items to reduce increment costs
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Incremental Update of Discovered Rulgs

« Partitioned derivation and incremenggpldating.
¢ A fast updating algorithm, FUP (Cheung et al.’96)
— View a database: originBIB [J incrementablb.
— A k-temset(for anyk),
* frequent in DB O dbif frequent in bottDB anddb.
* non frequentin DB O dbif also in bothDB anddb.
— For those only frequent BB, merge corresponding counts in
db.
— For those only frequent ifb, searchDB to update their
itemset counts.
 Similar methods can be adopted fatairemoval andpdate.
¢ Principles applicable to distributed/parallel mining.
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Parallel and Distributed Mining

« PDM (Park et al.’95):

— Use a hashing technigueHP-like) to identify candidatk-
itemsets from the localdabases.

« Count Distribution (Agrawal & Shafer'96):

— An extension of the Apriori algorithm.

— May require a lot of messages in count exchange.
« FDM (Cheung et al.’96).

— Observation: If an itemsetis globally large, there exists
partition Di such thaiX and all its subsets are locally largeDat

— Candidate sets are those which are also local candidates ir}

ting

some

component dtabase, plus some message passing optimizal'ons.
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What is association rule mining?
How do we mine single-dimensional boolean associati

How do we mine multilevel associations?

How do we mine multidimensional associations?
Can we constrain the association mining?

£0r. Osmar R. Zaiane, 1999 Principles of Knowledge Discovery in Databases. Universiy of Aberta g - 31]

Multiple-Level Association Rules

¢ ltems often form hierarchy.

¢ ltems at the lower level are
expected to have loweugport.

« Rules regarding itemsets at

approprate levels could be quite
useful.

¢ Transaction database can be

encoded based on dimensions TID | ltems

white

and levels T1 | {111,121, 211, 221}
« Itis smart to explore shared | 12| {111,211, 222, 323}
multi-level mining (Han & T3 | {112,122, 221, 411}

T4 | {111,121}
T5 | {111,122, 211, 221, 413

Fu,VLDB'95).
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Mining Multi-Level Associations

« A top_down, progressive deepening approach.
— First find high-level strong rules:
milk —» bread [20%, 60%].
— Then find their lower-level “weaker” rules:
2% milk - wheat bread [6%, 50%].
« Variations at mining multiple-level association rules.
— Level-crossed association rules:
2% milk — Wonderwheatbread
— Association rules with multiple, alternative hierarchies:
2% milk - Wonderbread

£Dr. Osmar R. Zaiane, 1999

Multi-Level Mining: Progressive
Deepening

« A top-down, progressive deepening approach:
— First mine high-level frequent items:
milk (15%), bread (10%)
— Then mine their lower-level frequent itemsets:
2% milk (5%), wheat bread4%)

When one threshold set for all levels; if support too high thg
possible miss meaningful associations at low leveljppsrt
too low the possible generation of uninteresting rules
« Different minimum support threshold across
multi-levels lead to different algorithms.

Principles of Knowledge Discovery in Databases Universiy of Aberta g - 33
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Approaches to Mining Multi-level
Association Rules

¢ Uniform minimum support for all levels
— Same suppod for all levels
— Avoid examining itemsets containing items
whose ancestor is not frequent.
— Simpler, but it is unlikely that lower level
items are as frequent as higher level items.

0Dr. Osmar R. Zaiane, 1099 Principles of Knowledge Discovery in Databases.
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T% — Level-cross filtering by single item

Approaches to Mining Multi-level

Association Rules
¢ Reduced minimum support at lower levels
Examine only those descendents whose ancestor’'s
support is frequent or non-negligible (controlled).

— Level-by-level independent
Full depth search

A specific association is examined from a more general
=> items are examined only if parents are frequent.

— Level-cross filtering by k-itemsets

Frequency of ancestry examined for k-itemsets and not just items

0Dr. Osmar R. Zaiane, 1099 Principles of Knowledge Discovery in Databases.
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* What is association rule mining?
* How do we mine single-dimensional boolean associati
* How do we mine multilevel associations?

How do we mine multidimensional associations?

« Can we constrain the association mining?

bNns?
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Mining Multi-Dimensional Associations

- Multi-dimensional vs. transaction-based associations
- Multi-dimensional (linking different attributes)
* major(x, “cs”) ” region(x, “oxford”)- gpa(x,“good”).
- Transactin-based (linking theasne kind of attributes)

« takes(x, “chemistry”) ~ takes (x, “biology”). takes(x, “bio-
chemistry”).

- Multi-level association (drilling on any dimension)
- Lower levels often adopt lowenin_supporthresholds.

« Method:
- Construct dta cube (with @unt/frequency aggregated)

- Perform level-wise/dimension-wise search in tadube
(Kamber et al., KDD'97).
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Categorical and Quantitative

In a multidimensional context there are:
«Categorical dimensions (attributes)
*Ex. Occupation, Location, etc.

*Quantitative dimensions (attribut
*Ex. Price, Age, etc.

Apriori, as it is, does not handle quantitative data.
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Quantitative Association Rules

RecordID|[Age|Married|NumCars
100 |{23| No 1
200 25| Yes 1
300 |29| No 0
400 34| Yes 2
500 38| Yes 2
Sample Rules Support|Confidence
<age:30..39> and <married: yes> ==><numCars:2> | 40% | 100%
<NumCars: 0..1> ==> <Married: No> 40% | 66.70%
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Mapping Quantitative to Boolean

* One possible solution is to map the problem to the
Boolean association rules:
— discretizing a norategorical attribute to intervals
« Age [20,29], [30,39)]....
— forming Boolean records
« categorical attributes: each value becomes one item
» non-categorical attributes: each interval becomes one item

RecordID|Age|Married|NoCars
100 23| No 1 %
500 38| Yes 2
ReclID| Age: | Age: |Married:|Married:|Cars:|Cars:|Cars:
20..29(30..39 Yes No 0 1 2
100 1 0 0 1 0 1 0
500 0 1 1 0 0 0 1
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Mining Quantitative Association Rul

¢ Problems with the mapping
— too few intervals: lost information
— too low support: too many rules
¢ Solutions

— using the supports of an itemset and its
generalizations to determine the intervals

— Binning (equi-width,equi-dept,distance based)

— using interest measure to control the number of
association rules
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* What is association rule mining?

* How do we mine single-dimensional boolean associatipns?

¢ How do we mine multilevel associations?
¢ How do we mine multidimensional associations?

Can we constrain the association mining?
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Restricting Association Rules

*Useful for interactive and ad-hoc mining
*Reduces the the set of association rules discovered and confihes
them to more relevant rules.

« Before mining

v Knowledge type constraints: classification, etc.

v’ Data constraints: SQL-like querieBNIQL)

v" Dimension/level constraints: relevance to some dimensions
and some concept levels.

« While mining

v Rule constraints: form, size, and content.

v Interestingness constraints: support, confidence, correlation
« After mining

v" Querying association rules
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Rule Constraints in Association Mini
¢ Two kind of rule constraints:
— Rule form constraints: meta-rule guided mining.

* P(x,y) " Q(x,w)- takes(x, “database systems”).
— Rule content constraint: constraint-based query
optimization (where and having clauses), et al., SIGMOD'98).
+ sum(LHS) < 100 A min(LHS) > 20 ‘oant(LHS) > 3~ sum(RHS) > 1000
* l-variable vs. 2-variable constraintgLakshmanan, et al.
SIGMOD'99):
— 1-var: A constraint confining only one side (L/R) of the rule, €
as shown above.
— 2-var: A constraint confining both sides (L and R).
¢ sum(LHS) < min(RHS) * max(RHS) < 5* sum(LHS)
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Constrained Association Query
Optimization Problem

« Given a set of constraints C, the algorithm should:

— Find only the frequent sets that satisfy the given
constraints C

— Find all frequent sets that satisfy the given constraints C|
¢ A naive solution:
— Apply Apriori for finding all frequent sets, and then test
them for constraint satisfaction one by one.
 Better approach:

— Comprehensive analysis of the properties of constraints
and try topush them as deeply as possible insitlee
frequent set computation.
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Presentation of Association Rul@sole Form
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Visualization of Association Rule in Plane Forn
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Visualization of Association Rule Using Rule Gra
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