

The Classification Algorithms Used

- 1. Decision Tree Algorithm (ID3)
 - The learning and classification steps are generally fast.
- 2. Neural Network with Back propagation
 - High tolerance to noisy data.

Dec 6 2000

```
CMPUT 695
```

9

11

1

_					
	*	Results			
_					
			Global Features Visual only	Global Features Visual + age	Local features
	*	Neural Networks	40%	60%	50%
-		Decision Trees	55%	44%	66%
		The percentages of correct Classificatio			
_			Dec 6 2000	CMPUT 695	

Conclusions and Future Work		
 Conclusions Pre-Processing is an important and time consuming step in Image Mining Both global and local features are important in the classification of Mammograms. More domain knowledge is needed to obtain realistic attributes. 		
 Future Work		
 To work with Spiculated lesions 		
• To formulate the threshold value.		
 Dec 6 2000 CMPUT 695		

12