Automatic Subspace Clustering of High Dimensional Data for Data Mining Applicatyions

Li Cheng

10/12/00

CLIQUE clustering algorithm

Background

The Contribution of CLIQUE

 Automatically find *subspaces* with high-density clusters in high dimensional attribute spaces

Some Definitions:

 A cluster is a maximal set of connected dense units in K-dimensions.

Two K-dimensional units u_1 , u_2 are connected if they have a common face, or if there exists other K-dim unit u_i , such that u_1 , u_i and u_2 are connected consequently.

 A region in K dimensions is an axisparallel rectangular K-dimensional set.

3

What is CLIQUE

- The basic idea is similar to <u>APRIORI</u>, the association rule algorithm.
 - ◆ A bottom-up scheme.
 - The Monotonicity Lemma
 - Prune to eliminate some outlines that their "support" is too small. The threshold here called "optimal cut point i"

lext

10/12/00

CLIQUE clustering algorithm

Flow Chart of CLIQUE

- Bottom-up to find dense units
- Further Prune subspaces using MDL principle
- Generating Minimal number of Regions, each region cover one cluster
 - Firstly, greedily find a number of maximal rectangles
 - Generate a minimal cover

10/12/00

CLIQUE clustering algorithm

Apriori algorithm

fiamsaction Data : {1,4,5},{1,2},{3,4,5},{1,2,4,5} L₁ = {{1},{2},{3,{4},{4}} $\underbrace{C_{arresian Product}}{(2,4),{1,4},{1,5},{1,2,{5},{4,5}}$ {2, = {{1,2},{1,4},{1,5},{4,5}} $\underbrace{Z_{4}, \{2,3\}, \{4,5\}}{\{4,5\}}$ $\underbrace{U_{2} = \overline{\{1,2\}, \{1,4\}, \{1,5\}, \{4,5\}}}{\{4,5\}, \{1,2,5\}, \{1,4,5\}}$ $\underbrace{U_{3} = \overline{\{1,2\}, \{1,2,5\}, \{1,4,5\}}}{\{4,5\}, \{4,5\}}$ $\underbrace{U_{3} = \{1,4,5\}}{\{5,5\}, \{1,4,5\}, \{1,5\}, \{2,5\}, \{2,4,5\}, \{3,5\}, \{4,5\}, \{3,5\}, \{4,5\}, \{$

Reproduced from http://www.scs.carleton.ca/~kimasaki/DataMining/summary/

Basic Idea of CLIQUE

Monotonicity:

If a collection of points S is a cluster in a Kdimensional space, then S is also part of a cluster in any (k-1) dimensional projections of this space.

Prune subspaces using MDL principle

 Partitioning of the subspaces into selected and prune sets

0

CLIQUE clustering algorithm

10

Flow Chart of CLIQUE (Cont.)

An Example:

11

Comparison with Birch, DBScan and PCA (SVD)

Table 2: DBSCAN experimental results.

Dim. of Dim. of No. of Clusters

clusters dusters found

Concludes that CLIQUE performs better than Birch, DBScan and SVD

data

Table 1: BIRCH experimental results. Dim. of Dim. of No. of Clusters Due clusters data datare clusters found identified 5 5 5 5 5 20 5 5 5 5 20 5 5 3 5 20 5 5 3,4,5 0 30 5 5 3,4 0 50 5 3 0 5

Table 3: SVD decomposition experimental results.

Dim. of data (d)	Din. of dasters	No. of dusters	r4/8	$\tau_{(d-\delta)}$	7(4-
10	5	5	0.647	0.647	0.93
20	5	5	0.606	0.827	0.96
30	5	5	0.563	0.858	0.97
40	5	5	0.557	0.897	0.98
50	5	5	0.552	0.919	0.96

10/12/00

CLIQUE clustering algorithm

15

True chatters

identified.