
Mining Frequent Patterns without
Candidate Generation

a paper by Jiawei Han, Jian Pei and Yiwen Yin
School of Computing Science

S imon Fraser University
Presented by Maria Cutumisu

Department of Computing Science
University of Alberta

This paper proposes:

� A novel frequent pattern tree
structure: FP-tree

� An efficient FP-tree-based
mining method: FP-growth

This approach is very efficient
due to:

� Compression of a large
database into a smaller data
structure

� Pattern fragment growth mining
method

� Partitioning-based divide-and-
conquer search method

FP-tree: Design and Construction

� To ensure that the tree structure
is compact, only frequent
length-1 items will have nodes
in the tree

� More frequently occurring nodes
will have better chances of
sharing nodes than the others

Example: a transaction database

f, c, a, m, pa, f, c, e, l, p,
m, n

500

c, b, pb, c, k, s, p400

f, bb, f, h, j, o300

f, c, a, b, ma, b, c, f, l, m, o200

f, c, a, m, pf, a, c, d, i, m, p100

(Ordered)
Frequent Items

Items BoughtT ransaction ID

The corresponding FP-tree

T ransactions
sharing an identical
itemset can be
merged into one
with the number of
occurrences
registered as count.

An FP-tree is a tree structure
which consists of:

� One root labeled as "null"
� A set of item prefix sub-trees with

each node formed by three fields:
item-name, count, node-link

� A frequent-item header table with
two fields for each entry: item-
name, head of node-link

FP-tree construction algorithm

� Input: a transaction database DB
and a minimum support threshold ε

� Output: Its frequent pattern tree,
FP-tree

� Method: The FP-tree is constructed
in the following steps:

1. Scan DB once:

� Collect the set of frequent items
F and their supports

� Sort F in support descending
order as L, the list of frequent
items

2. Create a root of an FP-tree, T,
and label it as "null"

� For each transaction Trans in DB do
the following:
� select and sort the frequent items

in T rans according to the order of
L

� let the sorted frequent item list in
T rans be [p|P], where p is the
first element and P is the
remaining list. Call
insert_tree([p|P], T)

Note: insert_tree([p|P], T) is
performed as follows:

� IF T has a child N such that
N.item_name=p.item_name, then
increment N's count by 1

� ELSE create a new node N, and let its
count by 1, its parent link be linked to T,
and its node-link be linked to the nodes
with the same item_name via the node-
link structure

� IF P is nonempty, call insert_tree(P,N)
recursively

Analysis

� Two scans of the DB are necessary:
the first collects the set of frequent
items and the second constructs the
FP-tree.

� The cost of inserting a transaction
T rans into the FP-tree is
O(|Trans|), where |Trans| is the
number of frequent items in T rans.

� FP-tree contains the complete
information for frequent pattern mining.

� The size of the FP-tree is bounded by the
size of the database, but due to frequent
items sharing, the size of the tree is
usually much smaller than its original
database.

� High compaction is achieved by placing
more frequently items closer to the root
(being thus more likely to be shared).

FP-growth: the FP-tree-based
mining method

� Starts from a frequent length-1
pattern

� Examines only its conditional
pattern base

� Constructs its FP-tree
� Performs mining recursively on

the tree

FP-growth algorithm

� Input: FP-tree constructed using
DB and a minimum support
threshold ε

� Output: The complete set of
frequent patterns

� Method: Call FP-growth (FP-
tree, null)

P rocedure FP-growth (Tree, α)

� IF T ree contains a single path P
� THEN for each combination β of the nodes in

the path P DO generate pattern β ∪ α with
support = minimum support of nodes in β

� ELSE for each ai in the header of T ree DO
� generate pattern β = ai ∪ α with ai.support;
� construct β 's conditional pattern base and

FP-tree Treeβ
� IF T reeβ <> void THEN Call FP-

growth(Treeβ, β)

Analysis of the FP-growth
algorithm

� Finds the complete set of frequent
itemsets

� Efficient because:
� it works on a reduced set of pattern bases
� it performs mining operations less costly than

generation and test:
� prefix count adjustment
� counting
� pattern fragment concatenation

Search technique: partitioning-
based divide-and-conquer

� Used instead of the Apriori-l ike
bottom-up generation of
frequent itemsets combinations

� Reduces the size of the
conditional pattern base
generated at the subsequent
level of search and of its
corresponding FP-tree

� T ransforms the problem of
finding long frequent patterns to
looking for shorter ones and
then concatenating the suffix.

� Employs the least frequent
items as suffix, which offers a
good selectivity.

Performance comparison with
other algorithms

� T reeProjection is the supporting
algorithm of another novel tree
structure: lexicographic tree

� Comparative analysis of the FP-
growth with Apriori and
T reeProjection algorithms show
that FP-growth outperforms both
of them

Improvements: how to design a
disk-resident FP-tree

� Cluster FP-tree nodes by path and by
item prefix sub-tree

� B+-tree for FP-tree not fitting into main
memory

� Group access mode mining to reduce the
I/O cost

� Release space of the conditional pattern
base or conditional FP-tree after usage

� Remove the node-links of the FP-tree

Performance improvements

� Materialization of an FP-tree
� Incremental updates of an FP-

tree
� FP-tree mining with item

constraints
� FP-tree mining of other frequent

patterns

Advantages of the FP-growth
mining method:

� Efficient and scalable for both long and
short frequent patterns; the running
memory requirements of FP-growth
increase linearly when the support
threshold goes down

� An order of magnitude faster than the
Apriori algorithm

� Faster than recently reported new
frequent pattern mining methods

Drawbacks:

� The tree does not achieve maximal
compactness all the time.

� For the databases with mostly short
transactions, the reduction ratio of
the tree in respect to the database
is not very high.

� The FP-tree does not always fit into
the main memory.

Conclusions

� FP-growth method has satisfactory
performance when tested in large
industrial databases

� It is open to a lot of research issues
� Due to compression, sometimes large

databases (order of gigabytes) containing
many long patterns may generate FP-
trees which fit in main memory

