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This paper proposes:

� A novel frequent pattern tree 
structure: FP-tree

� An efficient FP-tree-based 
mining method: FP-growth

This approach is very efficient 
due to:

� Compression of a large 
database into a smaller data 
structure 

� Pattern fragment growth mining 
method 

� Partitioning-based divide-and-
conquer search method 

FP-tree: Design and Construction

� To ensure that the tree structure 
is compact, only frequent 
length-1 items will have nodes 
in the tree

� More frequently occurring nodes 
will have better chances of 
sharing nodes than the others



Example: a transaction database
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An FP-tree is a tree structure 
which consists of:

� One root labeled as "null" 
� A set of item prefix sub-trees with 

each node formed by three fields: 
item-name, count, node-link

� A frequent-item header table with 
two fields for each entry: item-
name, head of node-link

FP-tree construction algorithm

� Input: a transaction database DB 
and a minimum support threshold ε

� Output: Its frequent pattern tree, 
FP-tree 

� Method: The FP-tree is constructed 
in the following steps:



1. Scan DB once:

� Collect the set of frequent items 
F and their supports 

� Sort F in support descending 
order as L, the list of frequent 
items

2. Create a root of an FP-tree, T, 
and label it as "null"

� For each transaction Trans in DB do 
the following:
� select and sort the frequent items 

in T rans according to the order of 
L

� let the sorted frequent item list in 
T rans be [p|P], where p is the 
first element and P is the 
remaining list. Call 
insert_tree([p|P], T)

Note: insert_tree([p|P], T) is 
performed as follows:

� IF T has a child N such that 
N.item_name=p.item_name, then 
increment N's count by 1 

� ELSE create a new node N, and let its 
count by 1, its parent link be linked to T, 
and its node-link be linked to the nodes 
with the same item_name via the node-
link structure

� IF P is nonempty, call insert_tree(P,N) 
recursively

Analysis

� Two scans of the DB are necessary: 
the first collects the set of frequent 
items and the second constructs the 
FP-tree. 

� The cost of inserting a transaction 
T rans into the FP-tree is 
O(|Trans|), where |Trans| is the 
number of frequent items in T rans. 



� FP-tree contains the complete 
information for frequent pattern mining. 

� The size of the FP-tree is bounded by the 
size of the database, but due to frequent 
items sharing, the size of the tree is 
usually much smaller than its original 
database.

� High compaction is achieved by placing 
more frequently items closer to the root 
(being thus more likely to be shared). 

FP-growth: the FP-tree-based 
mining method

� Starts from a frequent length-1 
pattern 

� Examines only its conditional 
pattern base

� Constructs its FP-tree 
� Performs mining recursively on 

the tree

FP-growth algorithm

� Input: FP-tree constructed using 
DB and a minimum support 
threshold ε

� Output: The complete set of 
frequent patterns

� Method: Call FP-growth (FP-
tree, null)

P rocedure FP-growth (Tree, α)

� IF T ree contains a single path P 
� THEN for each combination β of the nodes in 

the path P DO generate pattern β ∪ α with 
support = minimum support of nodes in β

� ELSE for each ai in the header of T ree DO
� generate pattern β = ai ∪ α with ai.support; 
� construct β 's conditional pattern base and  

FP-tree Treeβ
� IF T reeβ <> void  THEN Call FP-

growth(Treeβ, β)



Analysis of the FP-growth 
algorithm

� Finds the complete set of frequent 
itemsets 

� Efficient because:
� it works on a reduced set of pattern bases 
� it performs mining operations less costly than 

generation and test: 
� prefix count adjustment 
� counting 
� pattern fragment concatenation 

Search technique: partitioning-
based divide-and-conquer

� Used instead of the Apriori-l ike 
bottom-up generation of 
frequent itemsets combinations

� Reduces the size of the 
conditional pattern base 
generated at the subsequent 
level of search and of its 
corresponding FP-tree

� T ransforms the problem of 
finding long frequent patterns to 
looking for shorter ones and 
then concatenating the suffix.

� Employs the least frequent 
items as suffix, which offers a 
good selectivity. 

Performance comparison with 
other algorithms

� T reeProjection is the supporting 
algorithm of another novel tree 
structure: lexicographic tree

� Comparative analysis of the FP-
growth with Apriori and
T reeProjection algorithms show 
that FP-growth outperforms both 
of them 



Improvements: how to design a 
disk-resident FP-tree 

� Cluster FP-tree nodes by path and by 
item prefix sub-tree 

� B+-tree for FP-tree not fitting into main 
memory

� Group access mode mining to reduce the 
I/O cost 

� Release space of the conditional pattern 
base or conditional FP-tree after usage 

� Remove the node-links of the FP-tree

Performance improvements

� Materialization of an FP-tree 
� Incremental updates of an FP-

tree 
� FP-tree mining with item 

constraints 
� FP-tree mining of other frequent 

patterns 

Advantages of the FP-growth 
mining method:

� Efficient and scalable for both long and 
short frequent patterns; the running 
memory requirements of FP-growth 
increase linearly when the support 
threshold goes down

� An order of magnitude faster than the
Apriori algorithm 

� Faster than recently reported new 
frequent pattern mining methods 

Drawbacks:

� The tree does not achieve maximal 
compactness all the time. 

� For the databases with mostly short 
transactions, the reduction ratio of 
the tree in respect to the database 
is not very high. 

� The FP-tree does not always fit into 
the main memory. 



Conclusions

� FP-growth method has satisfactory 
performance when tested in large 
industrial databases 

� It is open to a lot of research issues
� Due to compression, sometimes large 

databases (order of gigabytes) containing 
many long patterns may generate FP-
trees which fit in main memory


