CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling

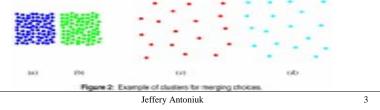
George Karypis, Eui-Hong (Sam)Han, Vipin Kumar

Presented By: Jeff Antoniuk Nov 20, 2000

Jeffery Antoniuk

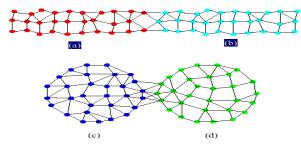
1

Chameleon


- Introduction/Motivation
- Definitions
 - K-nearest neighbor, relative inter-connectivity, relative closeness
- 2 Phase Algorithm
- Comparisons
- Conclusions
- Discussion

Jeffery Antoniuk

2


Introduction/Motivation

- Created to address short-comings of previous clustering algorithms
 - a. don't use internal information within clusters
 - b. merge based on only the min distance between representative points (ex CURE)

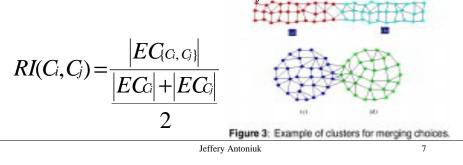
Introduction/Motivation (Cont.)

 c. merge based on aggregate interconnectivity between pairs of clusters (ex ROCK)

Introduction/Motivation (Cont.)

- Merging decisions based on:
 - Relative interconnectivity
 - Relative closeness
- Dynamically adapts to differing internal characteristics of candidate clusters

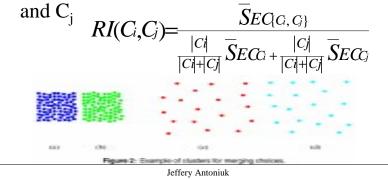
Jeffery Antoniuk


K-nearest Neighbor

- Uses K-nearest neighbor sparse graph representation
- Vertex data item
- Edge between K most similar data items
- Edge Weight similarity measure

Relative Inter-Connectivity

5


 Absolute inter-connectivity between C_i and C_j normalized wrt internal interconnectivity of C_i and C_j

Relative Closeness

Jeffery Antoniul

• Absolute closeness between C_i and C_j normalized wrt the internal closeness of C_i

6

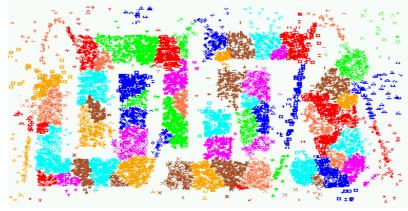
Algorithm – Phase I

- Purpose partition data set into a number of sub-clusters to allow for dynamic modeling
- Algorithm
 - Starts all points belong same cluster
 - Repeatedly selects largest sub-cluster and bisects on min edge-cut where cluster size is > 25%
 - Terminates largest sub-cluster contains less than MINSIZE vertices

Jeffery Antoniuk

Algorithm – Phase I (Cont.)

- MINSIZE user specified parameter
- Smaller than the largest cluster expected to find in data set
- Sufficiently large to allow evaluation of relative closeness and relative interconnectivity
- 1% 5%


9

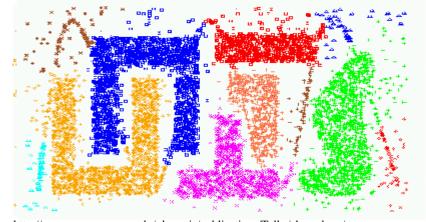
11

Jeffery Antoniuk

10

Algorithm – Phase I (Cont.)

http://www-users.cs.umn.edu/~karypis/publications/Talks/chameleon/ Jeffery Antoniuk


Algorithm – Phase II

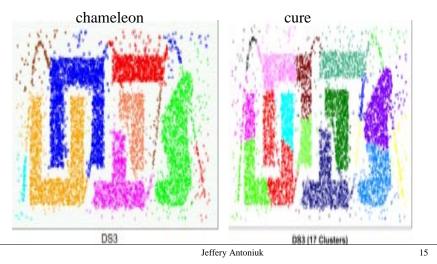
- Purpose merge sub-clusters using dynamic modeling
- Agglomerative hierarchical clustering
- Merges most similar pairs of sub-clusters based of relative inter-connectivity and relative closeness i.e. dynamic portion

Algorithm – Phase II (Cont.)

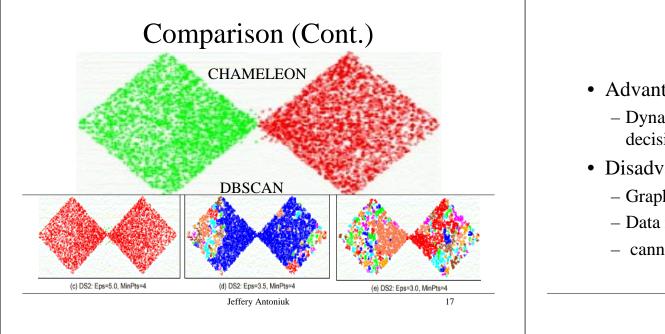
- Merging decisions based on 2 possible schemes
 - 1. $RI(C_i, C_j) \ge T_{RI}$ and $RC(C_i, C_j) \ge T_{Rc}$
 - 2. Maximize
 - $RI(C_i, C_j) * RC(C_i, C_j)^{\alpha}$
 - Method used in experiments

Algorithm – Phase II (Cont.)

Jeffery Antoniuk


http://www-users.cs.umn.edu/~karypis/publications/Talks/chameleon/

14


Comparison

Jeffery Antoniuk

13

Conclusion

- Advantages
 - Dynamic model reduces noise, poor merging decisions, considers shape of cluster
- Disadvantages
 - Graph must fit memory
 - Data item similarity measure required
 - cannot undo merge

Jeffery Antoniuk

18

Conclusion (Cont.)

- Major contributions
 - Agglomerative hierarchical clustering: Chameleon
 - Dynamic modeling
 - Relative inter-connectivity
 - Relative closeness

Bibliography

http://www-users.cs.umn.edu/~karypis/publications/Talks/chameleon/

George Karypis, Eui-Hong (Sam)Han, Vipin Kumar, CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling, Computer, Vol. 32, No. 8, August 1999

19