
Mining Segment-Wise Periodic Patterns in Time-Related Databases

Jiawei Han Wan Gong Yiwen Yin
Intelligent Database Systems Research Laboratory, School of Computing Science

Simon Fraser University, Burnaby, BC, Canada V5A 1S6
E-mail: fhan, wgong, yiwenyg@cs.sfu.ca

Abstract

Periodicity search, that is, search for cyclicity in
time-related databases, is an interesting data min-
ing problem. Most previous studies have been on
�nding full-cycle periodicity for all the segments
in the selected sequences of the data, that is, if
a sequence is periodic, all the points or segments
in the period repeat. However, it is often use-
ful to mine segment-wise or point-wise periodicity
in time-related data sets. In this study, we in-
tegrate data cube and Apriori data mining tech-
niques for mining segment-wise periodicity in re-
gard to a �xed length period and show that data
cube provides an e�cient structure and a conve-
nient way for interactive mining of multiple-level
periodicity.

Introduction
Periodicity search, that is, search for cyclic patterns
in time-related data sets, is an important data mining
problem with many applications. Most previously stud-
ied methods on periodicity pattern search are on mining
full-cycle periodicity in the sense that every point in the
period contribute to the part of the cycle, such as all
the days in the year contribute (approximately) to the
season cycles of the year. However, there exists another
kind of periodicity, which we call segment-wise period-
icity in the sense that only some of the segments in a
time sequence have cyclic behavior. For example, Laura
may read Vancouver Sun at 7:00 to 7:30 every weekday
morning but may do all sorts of things afterwards; Com-
pany W's stock may rise almost every Wednesday but
could be unpredictable at other time slots (see Figure
1); and Jack may work regularly (full-cycle periodic-
ity) during working hours but he can only be found at
9:00{10:00 every Monday morning (segment-wise peri-
odicity). These examples show that segment-wise peri-

The research was supported in part by the research grants
from the Natural Sciences and Engineering Research Coun-
cil of Canada, Networks of Centres of Excellent Program of
Canada, MPR Teltech Ltd., and B.C. Advanced Systems
Institute.
Copyright c
1998, American Association for Arti�cial Intel-
ligence (www.aaai.org). All rights reserved.

Time
Week -Two Week -Three Week-Four Week-Four Week-Five Week-SevenWeek-SixWeek -One

Stock
Price

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

Figure 1: A segment-wise periodic pattern: This stock
goes up every Wednesday.

odicity is a looser kind of periodicity than the full-cycle
periodicity but exists popularly in the real world. It is
useful to mine such kind of periodicity in many appli-
cations.
Although there are many methods for mining full-

cycle periodicity (Loether & McTavish 1993), most of
such methods are either inapplicable or prohibitively
expensive at mining segment-wise periodicity due to the
fact that the mixture of periodic and non-periodic seg-
ments in the same period will make the mining much
di�cult or costly. For example, FFT (Fast Fourier
Transformation) cannot be applied to mining segment-
wise periodicity because it treats the time-series as an
inseparable
ow of values. Some periodicity detection
methods may detect segment-wise periodicity if the ac-
tivities for each possible combination of slots are sep-
arated and examined independently. For example, one
may �nd Laura's newspaper reading behavior if one
examines each half-hour (on the hour) slot separately.
However, there are a huge number of possible combina-
tions of such segments in a time-related database, and it
is very expensive to mine such patterns independently
using the conventional periodicity detection methods.
In this paper, we develop an e�cient method for

mining multiple-level segment-wise periodicity in time-
related database by integration of three techniques: (1)

data cube structure (Chaudhuri & Dayal 1997), (2) a
bit-mapping technique, and (3) the Apriori mining tech-
nique (Agrawal & Srikant 1994). It shows that data
cube structure provides an e�cient and e�ective struc-
ture not only for on-line analytical processing (OLAP)
but also for on-line analytical mining.
Notice although the problem of mining segment-wise

periodicity shares some similarity with that of mining
cyclic association rules (Ozden, Ramaswamy, & Silber-
schatz 1998), our study is not con�ned to perfect cyclic-
ity but allows periodicity with certain con�dence. Fur-
thermore, the introduction of data cubes and bit-map
techniques improves the e�ciency of periodicity mining.
The remaining of the paper is organized as follows.

In Section 2, concepts related to segment-wise period-
icity are introduced. In Section 3, methods for mining
segment-wise periodicity in regard to a given length pe-
riod are studied. In Section 4, we discuss the extension
of the methods. We conclude our study in Section 5.

Segment-wise periodicity: Basic
concepts

Given a time series, we denote the ith time as ti, i � 0,
which can be referenced as i � t, where t is the time unit
referring to the time granularity. We use Ti to denote
the ith time unit. That is, Ti is mapped to the time
interval [ti; ti+1), where i � 0. For any time series,
the ith and the jth time units are called similar with
respect to a time-related attribute if the time-related
attribute values at these two time units fall into the
same category according to a given concept hierarchy.
A cycle is formed if, throughout the whole time series
being examined, there exist (with certain high proba-
bility) equally-spaced similar measures of some time-
related attribute. A periodic pattern is the union of a
set of cycles with equal periodic interval. Formally, we
have,

De�nition 1 For any given time series whose size is
n, if 9p; o 2 Z+ (i.e., positive integer), 0 � p < n
and 0 � o < p and if 8s 2 Z+; 0 � s � n=p, the
(p � s + o)th time units are all similar with respect to
the time series, we call this a cycle, denoted by C =
(p; o; V), where p is the length or period of the cycle,
o the o�set indicating the �rst time at which the cycle
occurs, and V the concept category of the values that
form the cycle. 2

When the length of the cycle is known, the cycle can
be denoted in a shorter term as C = (o; V).

Example 1 Suppose we have a time series whose sequence,
after mapping the values into their corresponding categories,
is 132113412341. Since starting at o�set 1, every fourth
position in the sequence repeats the value 3, there is a cycle
which can be denoted as (4, 1, 3) or *3**. Similarly, we
have cycles (4, 3, 1) and (6, 2, 2). 2

De�nition 2 For any given time series whose size is
n, if for some p;m 2 Z+, 0 � p < n and m > 0, 9
m cycles Ci of period p, 0 � i < m, then what these

m cycles formed is a periodic pattern with period p.
The pattern is denoted by P = (p;m; C), where C =
f(oi; Vi)jCi = (p; oi; Vi) 8 0 � i < mg. If the number of
cycles in a pattern equals to the pattern length, we refer
to such a pattern as a complete periodic pattern
which can be represented by the pattern sequence itself.
The general type of periodic pattern is consequently re-
ferred to as partial periodic pattern. 2

Example 2 The sequence given in the previous example
has pattern sequences *3*1 and **2***, where pattern *3*1
is the union of cycles (4, 1, 3) and (4, 3, 1). The pat-
terns *3*1 and **2*** in the previous example can thus be
denoted by (4; 2; f(1; 3); (3; 1)g) and (6; 1; f(2; 2)g) respec-
tively. Since not every time unit in these patterns has a
cycle, they are partial periodic patterns. If, presumably,
we found a pattern (3, 3, f(0, 1), (1, 2), (2, 3)g), whose
corresponding sequence string is 123, we would call such a
pattern a complete pattern. 2

Notice that the periodicity de�ned above refers to
perfect periodicity in a time series in the sense that all
of the corresponding time units in the series are similar.
This is the ideal case. In practice, most people tolerate
misses. For example, when we say that Jack reads New
York Times every day, we often mean that he does it
almost every day. Therefore, the concept of con�dence
of periodicity should be introduced.

De�nition 3 A time series contains a cycle C =
(p; o; V) with a con�dence
 if there are
 � S time
units with the period p and the o�set o which have the
value V , where S is the number of periods in the series.

2

Notice that a perfect cycle in a time series as de�ned
by De�nition 1 implies
 = 1. Similarly, we can de�ne
con�dence for full and partial periodic pattern. Usu-
ally, a user or an expert may provide a minimum con-
�dence threshold, min conf, to indicate the minimum
strength of the periodicity to be mined. The mining of
segment-wise periodicity is to �nd all partial and com-
plete periodic patterns satisfying the speci�ed minimum
con�dence threshold in a time-series database.

Data cube-based mining of �xed-length
segment-wise periodicity

In this section, we discuss how to construct data cubes
with a given period length (e.g., per year, per day) from
a time-series database and how to use such cubes for
mining segment-wise periodicity.

Data cube construction: Reference cube
and working cube

Example 3 A sales database contains the sales informa-
tion of a company from January 1993 to December 1993,
and there are four attributes: location, product, pro�t and
time. The �rst two, location and product, are non-time-
related, pro�t is time-related, and the time granularity is
month. Suppose we would like to search for quarterly peri-
odicity with respect to the pro�t in 1993. The con�dence
threshold is set as 0.75. The concept hierarchies for time,

location, and product are respectively: month ! quarter
! year, city ! country ! region, and product-name
! product-type. Moreover, pro�ts can be generalized into

several intervals based on an automatically generated nu-
merical hierarchy (Han & Kamber 1998). 2

To facilitate periodicity mining, we construct two
data cubes, reference cube and working cube, as follows.
First, a set of objects are collected based on the min-

ing query. Associated with each object is a time series of
a time-related attribute (e.g., pro�t). A reference cube
is built with the time-related attribute (e.g., pro�t) as
its measure, and with time and the remaining attributes
as its dimensions. In most cases, the reference cube is
a minimally generalized cube: the concepts of the time
dimension are at a user-preferred �nest time granular-
ity; similarly for other dimensions in the reference cube.
Figure 2 shows an instance of a reference cube referring
to the sales database.

Dec-93Nov-93Oct-93Feb-93Jan-93

lo
ca

ti
on

Time

pro
duct

Paris

N.Y.

Singapore

.

.

.

.

.752

759

746

501

1189

637 804

837

1185

471 1294

1152

1319

1047

1188

46

638 588

789

545

.
 .

Tents

. .
. .

 . .

Chicago

Alert Device

Carry-Bags

measurement (profit)

Figure 2: A reference cube of Example 3

The reference cube provides an e�cient structure to
access and index the minimally generalized data. More-
over, each single-dimensional slice of the cube along the
time dimension represents one time series. For exam-
ple, the shaded slice shown in Figure 2 is the time series
with respect to hChicago, Carry Bagsi. This structure
facilitates the retrieval of time series. With one scan
through the original relation, each tuple in the task-
relevant data set can be mapped to exactly one cell in
the reference cube, and all the task-relevant data are
transferred into the cube.
Secondly, from the reference cube we construct a

working cube which includes the dimensions of all non-
time-related attributes in the reference cube (location,
product), folds the time-related measure (pro�t) into an
interval-based (pro�t) dimension, and folds the time di-
mension into two: time-index dimension and period-
index dimension. All the dimension values are gen-
eralized to their desired levels according to their cor-
responding concept hierarchies. The levels chosen are
based on the granularity at which the user would like
to discover and view the periodic patterns. A 3-D slice
of the working cube generated from the reference cube
in Figure 2 is shown in Figure 3, where the location

and product dimensions take the value pair hChicago,
Carry Bagsi. Notice since each cell needs only a bit (ex-
istent, nonexistent), each slice of the working cube can
be implemented as a bit-array, except the last slice, pe-
riod index = all, which contains the number of nonzero
bits of all the other period-index slices and each cell is
an integer.

mo1 mo2 mo3

4000-5000 (5)

3000-4000 (4)

2000-3000 (3)

0-1000 (1)
-1000-0 (0)

1000-2000 (2)

1 1

1

time-index (period = quarter)

Q1

Q2

Q3

Q4

ALL

period-index

profit

product = carry-bag
location = Chicago

Figure 3: A T-slice of the working cube generated from
the reference cube.

As shown in Figure 3, the time dimension in the ref-
erence cube is reshaped in the working cube into two
dimensions: One, time-index, refers to the o�set in a
given period such as quarter, and the other, period-
index, serves as a dimension for indexing the periods.
Thus the working cube includes �ve dimensions: (1) lo-
cation, (2) product, (3) pro�t, (4) time-index, and (5)
period index.
In general, a working cube consists of the following

dimensions: time-index, period-index, time-related at-
tribute, and one or more non-time-related attributes. A
T-slice is a slice of the working cube which includes
the complete time plane and the entire domain of the
time-related attribute dimension. It represents the time
series information of one object and can be encoded by
a bit-array. Our segment-wise periodicity mining will
be focused on the examination of the working cube and
its T-slices.

Mining segment-wise periodic patterns

The mining of segment-wise periodic patterns proceeds
as follows. First, the one-cycle periodic patterns is
mined based on the occurrence frequency of a pattern
in the working cube: a pattern V is a one-cycle pattern
at time index ti if its occurrence probability at ti is not
smaller than the minimum con�dence threshold. Sec-
ond, for k � 1, the (k + 1)-cycle periodic patterns are
mined by growing the k-cycle periodic patterns based
on a method similar to the Apriori principle developed
at mining association rules, i.e., a (k+1)-cycle is a can-
didate pattern if all of its k-cycle subsets are k-cycle
patterns. All the (k + 1)-cycle candidates can be veri-
�ed by scanning the working cube once.
The mining process is illustrated as below.

Algorithm 1 (Mining Periodicity Patterns) Find the
complete set of periodic patterns with period p (given) and
con�dence threshold
 in a time series database.

Input: (1) non-time-related attributes A1, . . . , An; (2)
time-related attribute AT ; (3) time attribute, T , bounded
by a time interval; (4) time granularity, g, and a given
period, p, where gjp (p is a multiple of g); (5) a time hi-
erarchy and concept hierarchies associated with all task-
relevant attributes; and (6) con�dence threshold,
.

Output: The set of periodic patterns with a period p in
the time series.

Method: � Step 1: Construction of a reference cube: Con-
struct the reference cube, based on task-relevant data.
The cube has a time dimension, T , the relevant non-
time-related attributes, A1, . . . , An, and the time-
related attribute, AT as the measure. Notice that nec-
essary generalization may have been performed for gen-
erating the reference cube using the available concept
hierarchies.

� Step 2: Construction of the working cube: Transform
the reference cube into a working cube, which preserves
non-time-related dimensions A1, . . . , An, converts the
time-related attribute, AT , into an interval-based di-
mension, and converts the time dimension T , into a
time index dimension and a period index dimension,
based on the period p. Each cube cell is boolean ex-
cept that each cell on the aggregation plane (where
period index = all) is an integer, count.

� Step 3: Mining periodic patterns: For each time series,
represented by a T-slice, do the following.
P1 = FindOneCyclePatterns();
FOR (i = 2; i < p & Pi�1 6= ;; i++) f

CPi := FormCandidatePatternSet(i);
Pi := CheckPatternExistence(CPi);

g
/* END FOR */
RETURN Periodic pattern set P :=

Sp

i=1
Pi. 2

The three functions in Step 3 are explained below.
FindOneCyclePatterns �nds frequent 1-cycles in the
working cube W [Time;Period;Value]. A one-cycle pe-
riodic pattern is detected if there is a cycle C = (p; o; V)
with a con�dence no less than min conf, where p is the
cycle length (i.e. period), o the o�set, and V the value.
In a T-slice of the working cube, the time index cor-

responds to the o�set o, the size of the time index cor-
responds to the period p, and the size of period index
is the total number of periods occurring in the time
series. An event is frequent if it occurs no less fre-
quent than min conf � jperiod indexj. This process
is performed by scanning once only the slice where pe-
riod index = all and checking whether the count is no
less than min conf � jperiod indexj.

Example 4 The one-cycle patterns of Example 3 can be
computed by searching through the slice period index = all
of the T-slice of the working cube (Figure 4). Since the
number of periods (quarters) = 4, and min conf= 0.75, any
summary cell with a count no less than 4 � 75% = 3 will
pass the test. Three cells: (month = 1, pro�t = 1), (month
= 2, pro�t = 1), and (month = 3, pro�t = 2), pass the cycle
test. That is, C0 = (3, 0, 1), C1 = (3, 1, 1), and C2 = (3,

mo1 mo2 mo3

4000-5000 (5)

3000-4000 (4)

2000-3000 (3)

0-1000 (1)
-1000-0 (0)

1000-2000 (2) 4

time-index (period = quarter)

profit period-index = all

location = Chicago
product = carry-bag

1

3 3

1

Figure 4: A slice where \period index = all"

2, 2). The output from the algorithm is thus P1 = fP 1

0 =
(3; 1; f(0; 1)g); P 2

0 = (3; 1; f(1; 1)g); P 3

0 = (3; 1; f(2; 2)g)g. 2

FormCandidatePatternSet
�nds frequent i-cycle candidates in the working cube
W [T ime; Period; V alue] from a set of frequent (i� 1)-
cycles.
We observe an interesting property for cycle growth

which is similar to the Apriori property at mining as-
sociation rules (Agrawal & Srikant 1994): if a k-cycle
is frequent (i.e., passing the min conf threshold), all of
its j-itemset for j < k must be frequent as well. This
leads to the following algorithm which forms the can-
didate i-cycle patterns, denoted by CPi, from a set of
(i � 1)-cycle patterns (Pi�1). The procedure contains
two phases: a join phase and a prune phase. The join
is done on the (i � 1)-cycle pattern set Pi�1 to form a
candidate i-cycle pattern set CP i. The prune phase dis-
cards those candidate patterns in CP i that have some
(i � 1)-cycle subpatterns which are not in Pi�1. This
is shown in the example below.

Example 5 We continue working on the 1-cycle peri-
odic patterns, P1, obtained in Example 4. The join
of P1 and P1 yields 2-cycle candidate patterns CP 2

0 =
(3; 2; f(0; 1); (1; 1)g), CP 2

1 = (3; 2; f(0; 1); (2; 2)g), and
CP 2

2 = (3; 2; f(1; 1); (2; 2)g). (Note: none of these candi-
dates will be pruned since all of their 1-cycle subpatterns
are actual patterns). Suppose the 2-cycle periodic patterns
found after veri�cation are P 2

0=CP
2

1 and P 2

1=CP
2

2 . The
only candidate 3-cycle periodic pattern formed from P 2

0 and
P 2

1 is then CP 3

0=(3, 3, f(0,1),(1,1),(2,2)g). This candidate
is eliminated by pruning because a subpattern of CP 3

0 , (3, 2,
f(0,1), (1,1)g), does not belong to the set of 2-cycle patterns.

2

CheckPatternExistence checks the working cube to
verify whether the pattern posted in the i-cycle candi-
date set is frequent.
After deriving the i-cycle candidate patterns, we

check whether such candidates form real i-cycle pat-
terns in the working cube. This is done by checking
whether the number of simultaneous occurrences of the
i-cycles in a candidate pattern in a T-slice exceeds the
minimum con�dence threshold. When a pattern is con-
�rmed, all of its subpatterns are eliminated from the
pattern lists of fewer cycles.

Since the candidate pattern list can be encoded as a
bit plane in the time-series slice of the working cube,
the veri�cation process can be implemented e�ciently:
For each period-index slice, a bit-and of the two planes
will verify which candidate pairs are valid on a par-
ticular period-index plane. It takes only jperiod indexj
bit-and operations plus the pair-counting and threshold
checking to accomplish it.
Our performance study (not included here for lack

of space) shows that our method is more e�cient than
either (1) using Apriori only without exploring the bit-
array cube structure or (2) using the cube structure but
not exploring the Apriori principle.

Discussion

Mining multiple-level cyclic patterns

With the reference cube structure, the method can be
easily extended to mining cyclic patterns at multiple
levels of abstraction.
For the non-time-related dimensions, such as location

and product, a multi-level reference cube can be built by
incorporation of multiple levels of granularities in cube
construction. Such a reference cube consists of a group
of cuboids, each representing a combination of particu-
lar levels of location and product. One may mine cyclic
patterns for each combination of city and product and
then roll-up to �nd patterns for each country and prod-
uct category. The same is true for the time dimension.
One may drill along the time hierarchy to mine cyclic
patterns from quarterly to monthly, weekly, or yearly.
This notion of multi-level mining can be extended to
time-related measure, such as pro�t, in the reference
cube. Drilling can be performed on the time-related
measures to mine periodicity at multiple granularities.
Notice that for time-related measures, there is an in-

teresting relationship among di�erent levels of granu-
larity under the same con�dence threshold: if a pattern
is cyclic with a certain period p, the pattern must be
cyclic with the same period p at a rougher scale. For
example, if the sales pro�t for shoes in Paris in 1993
counted in the unit of thousands forms a cyclic pat-
terns by quarter, then the same pro�t, when counted
in tens of thousands, still forms a cyclic pattern. This
property can be used to �rst explore the periodicity at
a rough scale, and then progressively drill-down on the
discovered periodic patterns to see whether they are still
periodic at a re�ned scale. Drilling can be performed
e�ciently with the data cube structure.

Mining cyclic patterns with arbitrary
length of periods

Mining cyclic patterns under a given period covers a
large number of applications since people often like
to mine periodic patterns for natural periods, such as
annually, quarterly, monthly, weekly, daily, or hourly.
However, the periodicity may appear at some unex-
pected periods, such as every 11 years, or every 13

hours. It is interesting to provide facilities to mine pe-
riodicity for all the possible periods.
One simple extension to our technique for mining

segment-wise periodicity for arbitrary length of periods
is to repeatedly apply our algorithm for a growing se-
quence of periods. That is, one may put the algorithm
in a for-loop and set the for-loop index as the period p
from 1 up to the entire length of the time series. This
technique, though straightforward, may require a lot of
processing power.
If the con�dence threshold is 1 (perfect periodicity),

many properties explored in (Ozden, Ramaswamy, &
Silberschatz 1998) can be adopted to reduce the search
e�ort. For example, if a time series is periodic with a
period of p, it is periodic for any multiples of p. This im-
plies that one may search for segment-wise periodicity
from small periods up, cross-out all the multiples of a
period along the way to reduce the search e�ort. Unfor-
tunately, such nice properties do not exist for imperfect
cycles. More sophisticated techniques are needed to be
developed to reduce the search space.

Conclusions
Segment-wise periodicity, which counts the cyclicity be-
havior of every possible time segment in a time-related
database, represents a more general notion than the full
periodicity studied popularly on time-related data.
In this paper, we developed a e�cient method for

mining segment-wise periodicity with a �xed length pe-
riod, which exploring data cube, bit-arrray, and the
Apriori mining techniques. The method constructs
working cubes from a time-series reference cube based
on the given period and the dimensions to be analyzed.
The working cube can be implemented using a bit-array
technique and the mining adopts an Apriori-like, level-
wise mining technique. Our study shows that data cube
provides an e�cient structure and a convenient way for
interactive mining of multiple-level periodicity.
It is important to extend the method for mining

segment-wise periodicity for arbitrary length period. A
study of this extension will be reported in a coming
paper.

References
Agrawal, R., and Srikant, R. 1994. Fast algorithms for
mining association rules. In Proc. 1994 Int. Conf. Very
Large Data Bases, 487{499.

Chaudhuri, S., and Dayal, U. 1997. An overview of
data warehousing and OLAP technology. ACM SIGMOD
Record 26:65{74.

Han, J., and Kamber, M. 1998. Data Mining: Concepts
and Techniques. in preparation.

Loether, H. J., and McTavish, D. G. 1993. Descriptive and
Inferential Statistics: An Introduction. Allyn and Bacon.

Ozden, B.; Ramaswamy, S.; and Silberschatz, A. 1998.
Cyclic association rules. In Proc. of 1998 Int. Conf. Data
Engineering (ICDE'98), 412{421.

