
Bagging, Boosting, and C4.5

J. R. Quinlan
University of Sydney
Sydney, Australia 2006
quinlan@cs.su.oz.au

Abstract

Breiman's bagging and Freund and Schapire's
boosting are recent methods for improving the
predictive power of classi�er learning systems.
Both form a set of classi�ers that are combined
by voting, bagging by generating replicated boot-
strap samples of the data, and boosting by ad-
justing the weights of training instances. This
paper reports results of applying both techniques
to a system that learns decision trees and testing
on a representative collection of datasets. While
both approaches substantially improve predictive
accuracy, boosting shows the greater bene�t. On
the other hand, boosting also produces severe
degradation on some datasets. A small change
to the way that boosting combines the votes of
learned classi�ers reduces this downside and also
leads to slightly better results on most of the
datasets considered.

Introduction

Designers of empirical machine learning systems are
concerned with such issues as the computational cost
of the learning method and the accuracy and intel-
ligibility of the theories that it constructs. Much of
the research in learning has tended to focus on im-
proved predictive accuracy, so that the performance of
new systems is often reported from this perspective.
It is easy to understand why this is so { accuracy is a
primary concern in all applications of learning and is
easily measured (as opposed to intelligibility, which is
more subjective), while the rapid increase in comput-
ers' performance/cost ratio has de-emphasized compu-
tational issues in most applications.1

In the active subarea of learning decision tree classi-
�ers, examples of methods that improve accuracy are:

� Construction of multi-attribute tests using log-
ical combinations (Ragavan and Rendell 1993),
arithmetic combinations (Utgo� and Brodley 1990;

1For extremely large datasets, however, learning time
can remain the dominant issue (Catlett 1991; Chan and
Stolfo 1995).

Heath, Kasif, and Salzberg 1993), and counting op-
erations (Murphy and Pazzani 1991; Zheng 1995).

� Use of error-correcting codes when there are more
than two classes (Dietterich and Bakiri 1995).

� Decision trees that incorporate classi�ers of other
kinds (Brodley 1993; Ting 1994).

� Automatic methods for setting learning system pa-
rameters (Kohavi and John 1995).

On typical datasets, all have been shown to lead to
more accurate classi�ers at the cost of additional com-
putation that ranges from modest to substantial.
There has recently been renewed interest in increas-

ing accuracy by generating and aggregating multiple
classi�ers. Although the idea of growing multiple trees
is not new (see, for instance, (Quinlan 1987; Buntine
1991)), the justi�cation for such methods is often em-
pirical. In contrast, two new approaches for producing
and using several classi�ers are applicable to a wide va-
riety of learning systems and are based on theoretical
analyses of the behavior of the composite classi�er.
The data for classi�er learning systems consists of

attribute-value vectors or instances. Both bootstrap
aggregating or bagging (Breiman 1996) and boosting
(Freund and Schapire 1996a) manipulate the training
data in order to generate di�erent classi�ers. Bagging
produces replicate training sets by sampling with re-
placement from the training instances. Boosting uses
all instances at each repetition, but maintains a weight
for each instance in the training set that reects its
importance; adjusting the weights causes the learner
to focus on di�erent instances and so leads to di�er-
ent classi�ers. In either case, the multiple classi�ers are
then combined by voting to form a composite classi�er.
In bagging, each component classi�er has the same
vote, while boosting assigns di�erent voting strengths
to component classi�ers on the basis of their accuracy.
This paper examines the application of bagging and

boosting to C4.5 (Quinlan 1993), a system that learns
decision tree classi�ers. After a brief summary of both
methods, comparative results on a substantial num-
ber of datasets are reported. Although boosting gen-
erally increases accuracy, it leads to a deterioration on



some datasets; further experiments probe the reason
for this. A small change to boosting in which the vot-
ing strengths of component classi�ers are allowed to
vary from instance to instance shows still further im-
provement. The �nal section summarizes the (some-
times tentative) conclusions reached in this work and
outlines directions for further research.

Bagging and Boosting
We assume a given set of N instances, each belong-
ing to one of K classes, and a learning system that
constructs a classi�er from a training set of instances.
Bagging and boosting both construct multiple classi-
�ers from the instances; the number T of repetitions
or trials will be treated as �xed, although Freund and
Schapire (1996a) note that this parameter could be de-
termined automatically by cross-validation. The clas-
si�er learned on trial t will be denoted as Ct while C�

is the composite (bagged or boosted) classi�er. For any
instance x, Ct(x) and C�(x) are the classes predicted
by Ct and C� respectively.

Bagging

For each trial t = 1,2,...,T , a training set of size N
is sampled (with replacement) from the original in-
stances. This training set is the same size as the orig-
inal data, but some instances may not appear in it
while others appear more than once. The learning sys-
tem generates a classi�er Ct from the sample and the
�nal classi�er C� is formed by aggregating the T clas-
si�ers from these trials. To classify an instance x, a
vote for class k is recorded by every classi�er for which
Ct(x) = k and C�(x) is then the class with the most
votes (ties being resolved arbitrarily).
Using CART (Breiman, Friedman, Olshen, and

Stone 1984) as the learning system, Breiman (1996)
reports results of bagging on seven moderate-sized
datasets. With the number of replicates T set at 50,
the average error of the bagged classi�er C� ranges
from 0.57 to 0.94 of the corresponding error when a
single classi�er is learned. Breiman introduces the con-
cept of an order-correct classi�er-learning system as
one that, over many training sets, tends to predict the
correct class of a test instance more frequently than
any other class. An order-correct learner may not pro-
duce optimal classi�ers, but Breiman shows that aggre-
gating classi�ers produced by an order-correct learner
results in an optimal classi�er. Breiman notes:

\The vital element is the instability of the pre-
diction method. If perturbing the learning set
can cause signi�cant changes in the predictor con-
structed, then bagging can improve accuracy."

Boosting

The version of boosting investigated in this paper is
AdaBoost.M1 (Freund and Schapire 1996a). Instead
of drawing a succession of independent bootstrap sam-
ples from the original instances, boosting maintains a

weight for each instance { the higher the weight, the
more the instance inuences the classi�er learned. At
each trial, the vector of weights is adjusted to reect
the performance of the corresponding classi�er, with
the result that the weight of misclassi�ed instances
is increased. The �nal classi�er also aggregates the
learned classi�ers by voting, but each classi�er's vote
is a function of its accuracy.
Let wt

x denote the weight of instance x at trial t
where, for every x, w1

x
= 1/N . At each trial t =

1,2,...,T , a classi�erCt is constructed from the given in-
stances under the distribution wt (i.e., as if the weight
wt
x
of instance x reects its probability of occurrence).

The error �t of this classi�er is also measured with re-
spect to the weights, and consists of the sum of the
weights of the instances that it misclassi�es. If �t

is greater than 0.5, the trials are terminated and T
is altered to t-1. Conversely, if Ct correctly classi-
�es all instances so that �t is zero, the trials termi-
nate and T becomes t. Otherwise, the weight vec-
tor wt+1 for the next trial is generated by multiply-
ing the weights of instances that Ct classi�es correctly
by the factor �t = �t=(1 � �t) and then renormaliz-
ing so that

P
x
wt+1
x equals 1. The boosted classi�er

C� is obtained by summing the votes of the classi�ers
C1,C2,...,CT , where the vote for classi�er Ct is worth
log(1=�t) units.
Provided that �t is always less than 0.5, Freund and

Schapire prove that the error rate of C� on the given
examples under the original (uniform) distribution w1

approaches zero exponentially quickly as T increases.
A succession of \weak" classi�ers fCtg can thus be
boosted to a \strong" classi�er C� that is at least as
accurate as, and usually much more accurate than, the
best weak classi�er on the training data, Of course, this
gives no guarantee of C�'s generalization performance
on unseen instances; Freund and Schapire suggest the
use of mechanisms such as Vapnik's (1983) structural
risk minimization to maximize accuracy on new data.

Requirements for Boosting and Bagging

These two methods for utilizing multiple classi�ers
make di�erent assumptions about the learning system.
As above, bagging requires that the learning system
should not be \stable", so that small changes to the
training set should lead to di�erent classi�ers. Breiman
also notes that \poor predictors can be transformed
into worse ones" by bagging.
Boosting, on the other hand, does not preclude the

use of learning systems that produce poor predictors,
provided that their error on the given distribution can
be kept below 50%. However, boosting implicitly re-
quires the same instability as bagging; if Ct is the same
as Ct�1, the weight adjustment scheme has the prop-
erty that �t = 0.5. Although Freund and Schapire's
speci�cation of AdaBoost.M1 does not force termina-
tion when �t = 0.5, �t = 1 in this case so that wt+1 =
wt and all classi�ers from Ct on have votes with zero



C4.5 Bagged C4.5 Boosted C4.5 Boosting
vs C4.5 vs C4.5 vs Bagging

err (%) err (%) w-l ratio err (%) w-l ratio w-l ratio
anneal 7.67 6.25 10-0 .814 4.73 10-0 .617 10-0 .758
audiology 22.12 19.29 9-0 .872 15.71 10-0 .710 10-0 .814
auto 17.66 19.66 2-8 1.113 15.22 9-1 .862 9-1 .774
breast-w 5.28 4.23 9-0 .802 4.09 9-0 .775 7-2 .966
chess 8.55 8.33 6-2 .975 4.59 10-0 .537 10-0 .551
colic 14.92 15.19 0-6 1.018 18.83 0-10 1.262 0-10 1.240
credit-a 14.70 14.13 8-2 .962 15.64 1-9 1.064 0-10 1.107
credit-g 28.44 25.81 10-0 .908 29.14 2-8 1.025 0-10 1.129
diabetes 25.39 23.63 9-1 .931 28.18 0-10 1.110 0-10 1.192
glass 32.48 27.01 10-0 .832 23.55 10-0 .725 9-1 .872
heart-c 22.94 21.52 7-2 .938 21.39 8-0 .932 5-4 .994
heart-h 21.53 20.31 8-1 .943 21.05 5-4 .978 3-6 1.037
hepatitis 20.39 18.52 9-0 .908 17.68 10-0 .867 6-1 .955
hypo .48 .45 7-2 .928 .36 9-1 .746 9-1 .804
iris 4.80 5.13 2-6 1.069 6.53 0-10 1.361 0-8 1.273
labor 19.12 14.39 10-0 .752 13.86 9-1 .725 5-3 .963
letter 11.99 7.51 10-0 .626 4.66 10-0 .389 10-0 .621
lymphography 21.69 20.41 8-2 .941 17.43 10-0 .804 10-0 .854
phoneme 19.44 18.73 10-0 .964 16.36 10-0 .842 10-0 .873
segment 3.21 2.74 9-1 .853 1.87 10-0 .583 10-0 .684
sick 1.34 1.22 7-1 .907 1.05 10-0 .781 9-1 .861
sonar 25.62 23.80 7-1 .929 19.62 10-0 .766 10-0 .824
soybean 7.73 7.58 6-3 .981 7.16 8-2 .926 8-1 .944
splice 5.91 5.58 9-1 .943 5.43 9-0 .919 6-4 .974
vehicle 27.09 25.54 10-0 .943 22.72 10-0 .839 10-0 .889
vote 5.06 4.37 9-0 .864 5.29 3-6 1.046 1-9 1.211
waveform 27.33 19.77 10-0 .723 18.53 10-0 .678 8-2 .938

average 15.66 14.11 .905 13.36 .847 .930

Table 1: Comparison of C4.5 and its bagged and boosted versions.

weight in the �nal classi�cation. Similarly, an over�t-
ting learner that produces classi�ers in total agreement
with the training data would cause boosting to termi-
nate at the �rst trial.

Experiments

C4.5 was modi�ed to produce new versions incorpo-
rating bagging and boosting as above. (C4.5's facil-
ity to deal with fractional instances, required when
some attributes have missing values, is easily adapted
to handle the instance weights wt

x used by boosting.)
These versions, referred to below as bagged C4.5 and
boosted C4.5, have been evaluated on a representative
collection of datasets from the UCI Machine Learning
Repository. The 27 datasets, summarized in the Ap-
pendix, show considerable diversity in size, number of
classes, and number and type of attributes.
The parameter T governing the number of classi�ers

generated was set at 10 for these experiments. Breiman
(1996) notes that most of the improvement from bag-
ging is evident within ten replications, and it is inter-
esting to see the performance improvement that can be

bought by a single order of magnitude increase in com-
putation. All C4.5 parameters had their default values,
and pruned rather than unpruned trees were used to
reduce the chance that boosting would terminate pre-
maturely with �t equal to zero. Ten complete 10-fold
cross-validations were carried out with each dataset.2

The results of these trials appear in Table 1. For
each dataset, the �rst column shows C4.5's mean er-
ror rate over the ten cross-validations. The second
section contains similar results for bagging, i.e., the
class of a test instance is determined by voting multi-
ple C4.5 trees, each obtained from a bootstrap sample
as above. The next �gures are the number of com-
plete cross-validations in which bagging gives better or
worse results respectively than C4.5, ties being omit-
ted. This section also shows the ratio of the error rate
using bagging to the error rate using C4.5 { a value

2In a 10-fold (strati�ed) cross-validation, the training
instances are partitioned into 10 equal-sized blocks with
similar class distributions. Each block in turn is then used
as test data for the classi�er generated from the remaining
nine blocks.



chess

1 10 20 30 40 50

number of trials T

e
rr
o
r
(%
)

3

4

5

6

7

8

9

10

11

12 boosting
bagging

colic

1 10 20 30 40 50

number of trials T

e
rr
o
r
(%
)

14

15

16

17

18

19

20 boosting
bagging

Figure 1: Comparison of bagging and boosting on two datasets

less than 1 represents an improvement due to bagging.
Similar results for boosting are compared to C4.5 in
the third section and to bagging in the fourth.
It is clear that, over these 27 datasets, both bagging

and boosting lead to markedly more accurate classi-
�ers. Bagging reduces C4.5's classi�cation error by
approximately 10% on average and is superior to C4.5
on 24 of the 27 datasets. Boosting reduces error by
15%, but improves performance on 21 datasets and
degrades performance on six. Using a two-tailed sign
test, both bagging and boosting are superior to C4.5
at a signi�cance level better than 1%.
When bagging and boosting are compared head to

head, boosting leads to greater reduction in error and is
superior to bagging on 20 of the 27 datasets (signi�cant
at the 2% level). The e�ect of boosting is more erratic,
however, and leads to a 36% increase in error on the
iris dataset and 26% on colic. Bagging is less risky: its
worst performance is on the auto dataset, where the
error rate of the bagged classi�er is 11% higher than
that of C4.5.
The di�erence is highlighted in Figure 1, which com-

pares bagging and boosting on two datasets, chess and
colic, as a function of the number of trials T . For
T=1, boosting is identical to C4.5 and both are al-
most always better than bagging { they use all the
given instances while bagging employs a sample of
them with some omissions and some repetitions. As
T increases, the performance of bagging usually im-
proves, but boosting can lead to a rapid degradation
(as in the colic dataset).

Why Does Boosting Sometimes Fail?

A further experiment was carried out in order to bet-
ter understand why boosting sometimes leads to a de-
terioration in generalization performance. Freund and
Schapire (1996a) put this down to over�tting { a large
number of trials T allows the composite classi�er C�

to become very complex.
As discussed earlier, the objective of boosting is to

construct a classi�er C� that performs well on the
training data even when its constituent classi�ers Ct

are weak. A simple alteration attempts to avoid over-
�tting by keeping T as small as possible without im-
pacting this objective. AdaBoost.M1 stops when the
error of any Ct drops to zero, but does not address
the possibility that C� might correctly classify all the
training data even though no Ct does. Further trials
in this situation would seem to o�er no gain { they will
increase the complexity of C� but cannot improve its
performance on the training data.
The experiments of the previous section were re-

peated with T=10 as before, but adding this further
condition for stopping before all trials are complete.
In many cases, C4.5 requires only three boosted trials
to produce a classi�er C� that performs perfectly on
the training data; the average number of trials over
all datasets is now 4.9. Despite using fewer trials, and
thus being less prone to over�tting, C4.5's generaliza-
tion performance is worse. The over�tting avoidance
strategy results in lower cross-validation accuracy on
17 of the datasets, higher on six, and unchanged on
four, a degradation signi�cant at better than the 5%
level. Average error over the 27 datasets is 13% higher
than that reported for boosting in Table 1.
These results suggest that the undeniable bene�ts of

boosting are not attributable just to producing a com-
posite classi�er C� that performs well on the training
data. It also calls into question the hypothesis that
over�tting is su�cient to explain boosting's failure on
some datasets, since much of the bene�t realized by
boosting seems to be caused by over�tting.

Changing the Voting Weights

Freund and Schapire (1996a) explicitly consider the use
by AdaBoost.M1 of con�dence estimates provided by
some learning systems. When instance x is classi�ed
by Ct, let Ht(x) be a number between 0 and 1 that
represents some informal measure of the reliability of
the prediction Ct(x). Freund and Schapire suggest us-



ing this estimate to give a more exible measure of
classi�er error.
An alternative use of the con�dence estimateHt is in

combining the predictions of the classi�ers fCtg to give
the �nal prediction C�(x) of the class of instance x.
Instead of using the �xed weight log(1=�t) for the vote
of classi�er Ct, it seems plausible to allow the voting
weight of Ct to vary in response to the con�dence with
which x is classi�ed.
C4.5 can be \tweaked" to yield such a con�dence

estimate. If a single leaf is used by Ct to classify an
instance x as belonging to class k=Ct(x), let S denote
the set of training instances that are mapped to the
leaf, and Sk the subset of them that belong to class
k. The con�dence of the prediction that instance x
belongs to class k can then be estimated by the Laplace
ratio

Ht(x) =
N �

P
i2Sk

wt
i
+ 1

N �
P

i2S
wt
i
+ 2

:

(When x has unknown values for some attributes, C4.5
can use several leaves in making a prediction. A similar
con�dence estimate can be constructed for such situa-
tions.) Note that the con�dence measure Ht(x) is still
determined relative to the boosted distribution wt, not
to the original uniform distribution of the instances.
The above experiments were repeated with a mod-

i�ed form of boosting, the only change being the use
of Ht(x) rather than log(1=�t) as the voting weight of
Ct when classifying instance x. Results show improve-
ment on 25 of the 27 datasets, the same error rate on
one dataset, and a higher error rate on only one of
the 27 datasets (chess). Average error rate is approx-
imately 3% less than that obtained with the original
voting weights.
This modi�cation is necessarily ad-hoc, since the

con�dence estimate Ht has only an intuitive meaning.
However, it will be interesting to experiment with other
voting schemes, and to see whether any of them can
be used to give error bounds similar to those proved
for the original boosting method.

Conclusion
Trials over a diverse collection of datasets have con-
�rmed that boosted and bagged versions of C4.5 pro-
duce noticeably more accurate classi�ers than the stan-
dard version. Boosting and bagging both have a sound
theoretical base and also have the advantage that the
extra computation they require is known in advance
{ if T classi�ers are generated, then both require T
times the computational e�ort of C4.5. In these ex-
periments, a 10-fold increase in computation buys an
average reduction of between 10% and 19% of the clas-
si�cation error. In many applications, improvements of
this magnitude would be well worth the computational
cost. In some cases the improvement is dramatic { for
the largest dataset (letter) with 20,000 instances, mod-
i�ed boosting reduces C4.5's classi�cation error from
12% to 4.5%.

Boosting seems to be more e�ective than bagging
when applied to C4.5, although the performance of the
bagged C4.5 is less variable that its boosted counter-
part. If the voting weights used to aggregate compo-
nent classi�ers into a boosted classi�er are altered to
reect the con�dence with which individual instances
are classi�ed, better results are obtained on almost all
the datasets investigated. This adjustment is decid-
edly ad-hoc, however, and undermines the theoretical
foundations of boosting to some extent.
A better understanding of why boosting sometimes

fails is a clear desideratum at this point. Freund and
Schapire put this down to over�tting, although the
degradation can occur at very low values of T as shown
in Figure 1. In some cases in which boosting increases
error, I have noticed that the class distributions across
the weight vectors wt become very skewed. With the
iris dataset, for example, the initial weights of the three
classes are equal, but the weight vector w5 of the �fth
trial has them as setosa=2%, versicolor=75%, and vir-
ginica=23%. Such skewed weights seem likely to lead
to an undesirable bias towards or against predicting
some classes, with a concomitant increase in error on
unseen instances. This is especially damaging when,
as in this case, the classi�er derived from the skewed
distribution has a high voting weight. It may be possi-
ble to modify the boosting approach and its associated
proofs so that weights are adjusted separately within
each class without changing overall class weights.
Since this paper was written, Freund and Schapire

(1996b) have also applied AdaBoost.M1 and bagging
to C4.5 on 27 datasets, 18 of which are used in this
paper. Their results con�rm that the error rates of
boosted and bagged classi�ers are signi�cantly lower
than those of single classi�ers. However, they �nd bag-
ging much more competitive with boosting, being su-
perior on 11 datasets, equal on four, and inferior on 12.
Two important di�erences between their experiments
and those reported here might account for this discrep-
ancy. First, Freund and Schapire use a much higher
number T=100 of boosting and bagging trials than
the T=10 of this paper. Second, they did not mod-
ify C4.5 to use weighted instances, instead resampling
the training data in a manner analogous to bagging,
but using wt

x as the probability of selecting instance x
at each draw on trial t. This resampling negates a ma-
jor advantage enjoyed by boosting over bagging, viz.
that all training instances are used to produce each
constituent classi�er.

Acknowledgements

Thanks to Manfred Warmuth and Rob Schapire for a
stimulating tutorial on Winnow and boosting. This
research has been supported by a grant from the Aus-
tralian Research Council.



Appendix: Description of Datasets

Name Cases Classes Attributes
Cont Discr

anneal 898 6 9 29
audiology 226 6 { 69
auto 205 6 15 10
breast-w 699 2 9 {
chess 551 2 { 39
colic 368 2 10 12
credit-a 690 2 6 9
credit-g 1,000 2 7 13
diabetes 768 2 8 {
glass 214 6 9 {
heart-c 303 2 8 5
heart-h 294 2 8 5
hepatitis 155 2 6 13
hypo 3,772 5 7 22
iris 150 3 4 {
labor 57 2 8 8
letter 20,000 26 16 {
lymph 148 4 { 18
phoneme 5,438 47 { 7
segment 2,310 7 19 {
sick 3,772 2 7 22
sonar 208 2 60 {
soybean 683 19 { 35
splice 3,190 3 { 62
vehicle 846 4 18 {
vote 435 2 { 16
waveform 300 3 21 {

References

Breiman, L. 1996. Bagging predictors. Machine
Learning, forthcoming.

Breiman, L., Friedman, J.H., Olshen, R.A., and Stone,
C.J. 1984. Classi�cation and regression trees. Bel-
mont, CA: Wadsworth.

Brodley, C. E. 1993. Addressing the selective supe-
riority problem: automatic algorithm/model class se-
lection. In Proceedings 10th International Conference
on Machine Learning, 17-24. San Francisco: Morgan
Kaufmann.

Buntine, W. L. 1991. Learning classi�cation trees. In
Hand, D. J. (ed), Arti�cial Intelligence Frontiers in
Statistics, 182-201. London: Chapman & Hall.

Catlett, J. 1991. Megainduction: a test ight. In
Proceedings 8th International Workshop on Machine
Learning, 596-599. San Francisco: Morgan Kaufmann.

Chan, P. K. and Stolfo, S. J. 1995. A comparative eval-
uation of voting and meta-learning on partitioned data.
In Proceedings 12th International Conference on Ma-
chine Learning, 90-98. San Francisco: Morgan Kauf-
mann.

Dietterich, T. G., and Bakiri, G. 1995. Solving mul-
ticlass learning problems via error-correcting output
codes. Journal of Arti�cial Intelligence Research 2:
263-286.

Freund, Y., and Schapire, R. E. 1996a. A decision-
theoretic generalization of on-line learning and an app-
lication to boosting.Unpublished manuscript, available
from the authors' home pages (\http://www.research.
att.com/orgs/ssr/people/fyoav,schapireg"). An ex-
tended abstract appears in Computational Learning
Theory: Second European Conference, EuroCOLT '95,
23-27, Springer-Verlag, 1995.

Freund, Y., and Schapire, R. E. 1996b. Experi-
ments with a new boosting algorithm. Unpublished
manuscript.

Heath, D., Kasif, S., and Salzberg, S. 1993. Learning
oblique decision trees. In Proceedings 13th Interna-
tional Joint Conference on Arti�cial Intelligence, 1002-
1007. San Francisco: Morgan Kaufmann.

Kohavi, R., and John, G. H. 1995. Automatic pa-
rameter selection by minimizing estimated error. In
Proceedings 12th International Conference on Machine
Learning, 304-311. San Francisco: Morgan Kaufmann,

Murphy, P. M., and Pazzani, M. J. 1991. ID2-of-3:
constructive induction of M-of-N concepts for discrim-
inators in decision trees. In Proceedings 8th Interna-
tional Workshop on Machine Learning, 183-187. San
Francisco: Morgan Kaufmann.

Quinlan, J. R. 1987. Inductive knowledge acquisition:
a case study. In Quinlan, J. R. (ed), Applications of
Expert Systems. Wokingham, UK: Addison Wesley.

Quinlan, J. R. 1993. C4.5: Programs for Machine
Learning. San Mateo: Morgan Kaufmann.

Ragavan, H., and Rendell, L. 1993. Lookahead feature
construction for learning hard concepts. In Proceedings
10th International Conference on Machine Learning,
252-259. San Francisco: Morgan Kaufmann.

Ting, K. M. 1994. The problem of small disjuncts: its
remedy in decision trees. In Proceedings 10th Canadian
Conference on Arti�cial Intelligence, 91-97.

Utgo�, P. E., and Brodley, C. E. 1990. An incre-
mental method for �nding multivariate splits for deci-
sion trees. In Proceedings 7th International Conference
on Machine Learning, 58-65. San Francisco: Morgan
Kaufmann.

Vapnik, V. 1983. Estimation of Dependences Based on
Empirical Data. New York: Springer-Verlag.

Zheng, Z. 1995. Constructing nominal X-of-N at-
tributes. In Proceedings 14th International Joint Con-
ference on Arti�cial Intelligence, 1064-1070. San Fran-
cisco: Morgan Kaufmann.


