

- Introduction
- Related Work
- WaveCluster Theory Overview
- WaveCluster Clustering Method
- Experimental Evaluations and Conclusions
- Questions and discussion

By Alex Strilets, December 1, 2000 CMPUT 695 Knowledge Discovery in Databases

Introduction

- Huge amount of spatial data accumulated from satellite images, medical equipment, GIS systems, etc.
- Characteristics of good clustering algorithm
 - good time efficiency
 - ability to identify clusters of arbitrary shapes (nested within one another, have holes, etc)

Introduction

- handling noise and outliers
- insensitive to the ordering of input data
- do not make any assumption about the number of clusters present
- ability to classify objects at a different level of accuracy

Introduction

- Wave Cluster Algorithm Characteristics
 - capable of finding arbitrary shape cluster such as concave or nested clusters
 - does not assume any specific shape of clusters
 - prior knowledge about number of clusters is not required
 - not sensitive to outliers and ordering of input data
 - efficient on large databases O(N)

WaveCluster Theory Overview

• Consider a set of following numbers: 64, 48, 16, 32, 56, 56, 48, 24

Example

1.		_															
le		64		48		16		32		56		56		48		24	
		56		24		56		36		8		-8		0		12	
		40		46		16		10		8		-8		0		12	
		43		-3	-3		16		10		8 -		8 0			12	
	67	4	51		19		35		53		53		45		21		
	59	1	27		53		33		8		-8		0		12		
	40 43		43	16 16		10 10		8 8		-8 -8		0		12			
	43	43 0											0		12		
59	59)	27	,	27		53	;	53	3	45	5	21	l	٦		
59	27	27 5		3 33		6 0			0		0		12		1		
43	43	;	16	5	10)	0		0		0		12	2			
43	0		16	5	10)	0		0		0		12	2			

WaveCluster Theory Overview

- Function f(x) is scaling function if it can be expressed as a liner combination of f(2x-k)
 - Example: Haar function: 1 on [0,1), 0 –elsewhere f(x) = f(2x) + f(2x-1)
- For each *j* let V*j* be a vector space of 2^j function *f*^j_i defined as *f*(2^jx-i)
 - $V0 \{f(x)\}, V1\{f(2x), f(2x-1)\}, V2 \{f(4x), f(4x-1), f(4x-2), f(4x-3)\}$

WaveCluster Theory Overview

- Wavelet space W^{j} defined as an orthogonal complement of V^{j} in V^{j+1}
 - Lets w(x) be defined as 1 on [0,1/2), -1 on [1/2,1), 0 elsewhere
 - V1 = {f(2x), f(2x-1)} = V0 xW0, were V0={f(x)} and W0={w(x)}, because <f,w>=0 and every element of V1 space can be represented as a liner combination of elements from V0 and W1 space:

 $f(2x) = \frac{1}{2}f(x) + \frac{1}{2}w(x), f(2x-1) = \frac{1}{2}f(x) - \frac{1}{2}w(x)$

WaveCluster Clustering Algorithm: Quantization Example of W⁴ wavelet space function

WaveCluster Clustering Algorithm: Quantization

• In our example above set of numbers can be represented via scale functions:

And decomposed into:

$$\frac{48f_0^0 - 3w_0^0 + 16w_0^1 + 10w_1^1 + 8w_0^2 - 8w_1^2 + 0w_2^2 + 12w_3^2}{6w_1^2 + 12w_3^2}$$

WaveCluster Clustering Algorithm

- Given a set of spatial objects o_i , $1 \le i \le N$ detect cluster and assign labels to the objects based on the cluster they belong to
 - Quantize feature space, then assign object to the units
 - Apply wavelet transform on the feature space
 - Find connected components in the transformed feature space at different levels
 - Assign labels to the units
 - Make the lookup table
 - Map each object to the clusters

WaveCluster Clustering Algorithm: Quantization

- Divide each dimension d into m equal intervals, let s_i be the size of each unit in idimension
- An object o_k corresponding to the feature vector $F_k=(f_1, f_2, ..., f_d)$ will be assign to the unit $M_j=(v_1, v_2, ... v_d)$ if for all *i*: 1 <= i <= d $(v_i-1)s_i <= f_i < v_i s_i$

WaveCluster Clustering Algorithm: Transform

- Applying wavelet transform on each unit M_i result in new transformed feature space T_k
- Each connected component is a set of units from T_k and is considered a cluster
- Corresponding to each resolution level *r* there will be a set of clusters *C_r*
- Use some other well-know algorithms to find connected components in transformed feature space

WaveCluster Clustering Algorithm: Label and Lookup Table

- Assign each point in the transformed feature space to one cluster
- Clusters found in the transformed feature space are based on the wavelet coefficients
- WaveCluster algorithm makes lookup table to map units in the transformed feature space to the units in the original feature space
- Label each point in the original feature space with label of the unit that it belongs to

