CLOSET:An Efficient Algorithm for Mining Frequent Closed Itemsets

Jian Pei, Jiawei Han and Runying Mao

# The shortcomings of the frequent pattern mining

- There may exist a large number of frequent itemsets in a transaction database, especially when the support threshold is low;
- There may exist a huge number of association rules. It it hard for users to comprehend and manipulate a huge number of rules.

# An interesting alternative

mining the complete set of frequent itemsets and their associations.

only mining the frequent closed itemsets and their corresponding association rules.

# A simple example

| Transaction ID | Items in transaction |
|----------------|----------------------|
| 10             | a1,a2,a3a100         |
| 20             | a1,a2,a3a50          |

The minimum support threshold is 1; The minimum confidence threshold is 50%

# The comparison of the two mining methods

| Traditional Method                   | FCI Method                        |
|--------------------------------------|-----------------------------------|
| ≈10 <sup>30</sup> Frequent itemsets: | Only two FCI:                     |
| (a1),(a100),                         | (a1, a2,a50)                      |
| (a1,a2)(a99,a100)                    | (a1,a2,a100)                      |
| (a1,a2,a100)                         | One association rule: $\setminus$ |
| a tremendous member of               | (a1,a2,a50) <b>→</b>              |
| association rules                    | (a51,a52,a1                       |
|                                      |                                   |

#### DEFINITION 2 (Conditional Database)

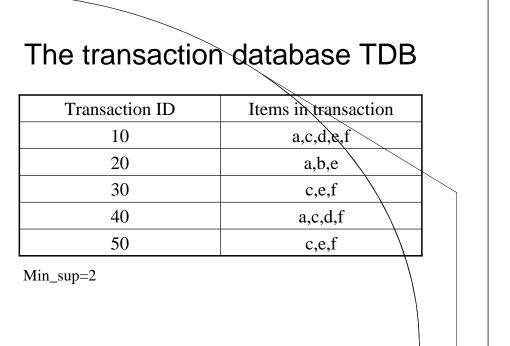
 Given a transaction database TDB. Let k be a frequent item in TDB. The k-conditional database, denoted as TDB|k, is the subset of transactions in TDB containing k, and all the occurrences of infrequent items, item k, and items following k in the f\_list are omitted.

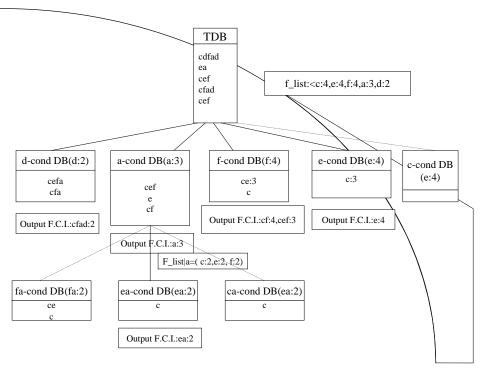
#### DEFINITION 1 (Frequent Closed Itemset)

- An itemset X is a closed itemset if there exists no itemset X' such that 1> X' is a proper superset of X ;
  2>every transaction containing X also contains X';
- A closed itemset X is frequent if its support passes the given support threshold.

### An important Lemma

• Given a transaction database TDB, a support threshold min\_sup, and f\_list=(i1,i2,...,in), the problem of mining the complete set of frequent closed itemsets can be divided into n sub-problems: The jth problem( $1 \le j \le n$ ) is to find the complete set of frequent closed itmesets containing i n+1-j but no i k (for n+1-j < k \le n)





# Optimization 1

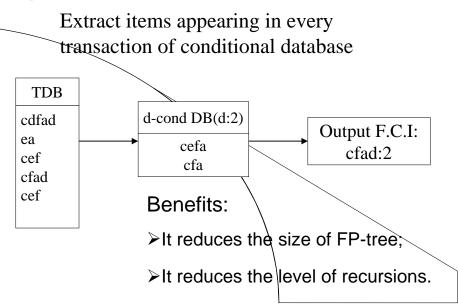
Compress transactional and conditional database using an FP-tree structure

#### **Benefits**

➢FP-tree compresses database for frequent itemset mining.

➤Conditional databases can be derived from FP-tree efficiently.

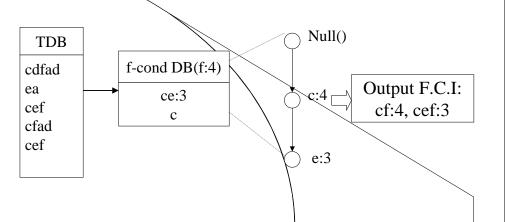
# **Optimization 2**



# Lemma 2

If an itemset Y is the maximal set of items appearing in every transaction in the X-conditional database, and X ∪ Y is not subsumed by some already found frequent closed itemset with identical support, then X ∪ Y is a frequent closed itemset.

## Optimization 3 Directly extract frequent closed itemsets from FP-tree



#### DEFINITION 3 (k-single segment itemsets)

• Let k be a frequent item in the X-conditional database. If there is only one node N labeled k in the corresponding FP-tree, every ancestor of N has only one child and N has (1)no child, (2)more than one child, or (3)one child with count value smaller than that of N, then the k-single segment itemset is the union of itemset X and the set of items including N and N's ancestors(excluding the root).

## Lemma 3

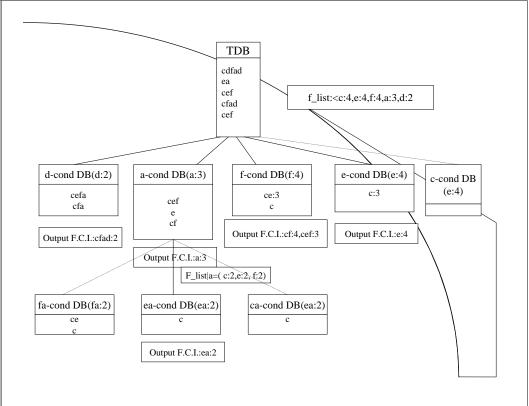
• The i\_single segment itemset Y is a frequent closed itemset if the support of i within the conditional database passes the given threshold and Y is not a proper subset of any frequent closed itemset already found.

# **Optimization 4**

Prune search branches

## Lemma 4

Let X and Y be two frequent itemsets with the same support. If  $X \subset Y$ , and Y is closed, then there exist no frequent closed itemset containing X but not Y-X



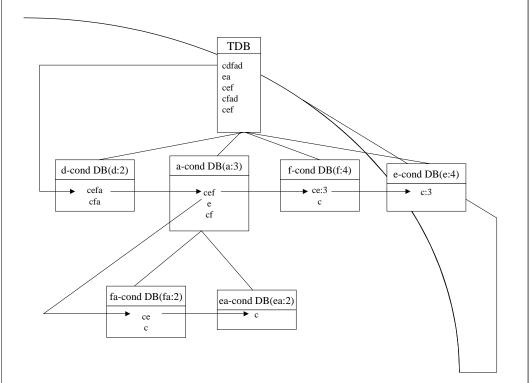
# The Algorithm of CLOSET

- Initialization. Let FCI be the set of frequent closed itemset. Initialize 0→FCI;
- Find frequent items. Scan transaction database TDB, compute frequent item list;
- Mine frequent closed itemsets recursively. Call CLOSET(0, TDB, f\_list, FCI).

## Subroutine CLOSET(X,DB,f\_list,FCI)

- 1.Let Y be the set of items in f\_list such that they appear in every transaction of DB, insert X ∪ Y to FCI if it is not a proper subset of some itemset in FCI with same support;//Applying Optimization2
- 2.Build FP-tree for DB, items already be extracted should be excluded;//Applying Optimization
- 3.Apply Optimization3 to extract frequent closed itemsets if it is possible;
- 4.Form conditional database for every remaining item in f\_list, at the same time, compute local frequent item lists for these conditional databases;

#### Scaling up CLOSET in large database Subroutine CLOSET(X,DB,f\_list,FCI) • 5.For each remaining item I in f\_list, starting from When the transaction database is large, it is unrealistic to construct a main memory-based FP-tree. the last one, call CLOSET(iX, DB|i, f\_list, FCI). If iX is not a subset of any frequent closed itemset already found with the same support count, where DB<sub>i</sub> is the i-conditional database with respect to DB and f\_list is the corresponding frequent item Construct conditional list.//Applying Optimization4 Construct disk-based database without FP-tree FP-tree



## Performance Study Reduction of the szie of itemsets

|            |        |           |             | _ |
|------------|--------|-----------|-------------|---|
| Support    | #F.C.I | #F.I      | <u>#F.I</u> |   |
|            |        |           | #F.C.I      |   |
| 64179(95%) | 812    | 2,205     | 2.72        |   |
|            |        |           |             |   |
| 60801(90%) | 3,486  | 27,127    | 7.78        |   |
|            |        |           | \\          |   |
| 54046(80%) | 15,107 | 533,975   | 35.35       |   |
|            |        |           |             |   |
| 47290(70%) | 35,875 | 4,129,839 | 115.12      |   |
|            |        |           |             |   |

