

Visualizing Association Mining Results through Hierarchical Clusters

Steven Noel Vijay Raghavan and C.-H.Henry Chu

Presenter:Minawaer.Nulahemaiti

05/11/2002

*Motivation

1

3

- Web: a vast library without an index.
- Search engines rank their results in a keywords-based approach.
- Google is link-based search engines, results of it are still display as ranked lists
- Simple linear lists can't adequately capture many of the complex hyperlink relationships among web pages
- Information visualization can help making complex relationships more readily understandable.
- The visualization techniques is enable users to recognize patterns in web link structure, thus helping to alleviate cyberspace information overload.

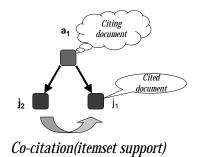
HPresentation Outline

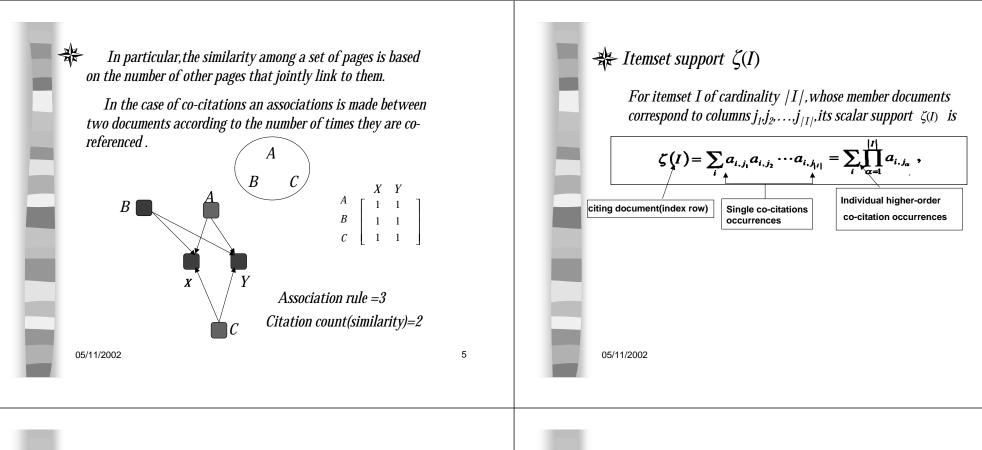
■*Definition*

畿

Co-citation : A co-citation between two documents is the citing (or hypertext linking) of the two documents by another one.

Co-citations reduce complex citation or hyperlink graphs to simple scalar similarities between documents or Web pages.





The new distances we propose are thus a hybrid between standard pairwise distances and higher-order distances.

The itemset support feature summation is:

$$s_{j,k} = \sum_{\{I \mid j,k \in I\}} \zeta(I$$

This yields the similarity $s_{j,k}$ between documents j and $k_{,,}$ where $\zeta(I)$ is the support of itemset I.

A nonlinear transformation $T[\zeta(I)]$ to be applied to the itemset supports $\zeta(I)$ before summation.

The transformation **T** is super-liner(asymptotically increasing more quickly than linearly), so as to favor large itemset supports

Itemset supports

 $s_{j,k} = \sum_{k} T_{k} |\zeta|^{2}$ (1) A nonliner transformation

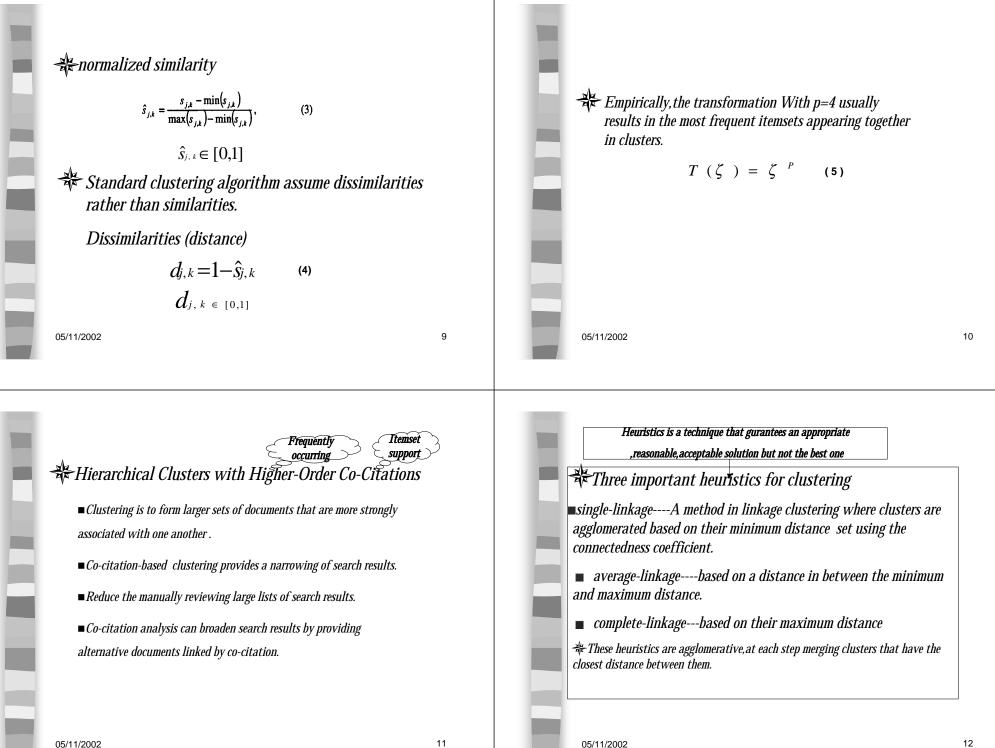
Reducing computational complexity for higher-order distances by exclude itemsets whose support < minsup.

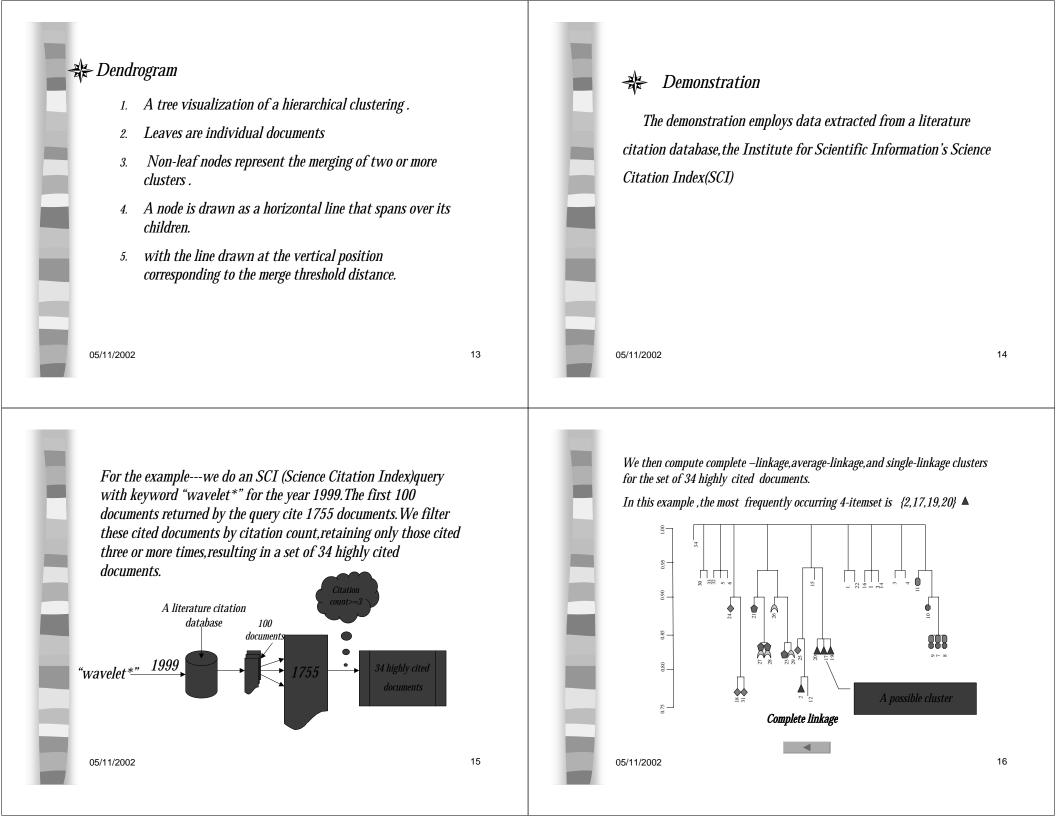
$$s_{j,k} = \sum_{\{l|j,k\in I,\zeta(l)\ge m\}} T[\zeta(I)].$$
⁽²⁾

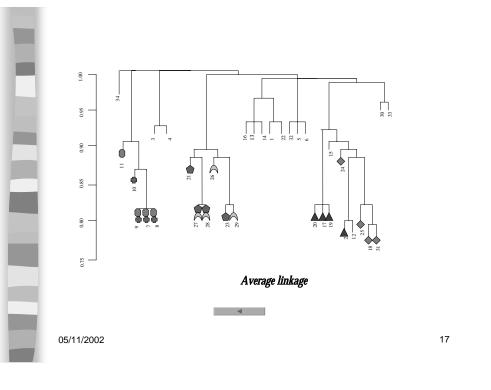
05/11/2002

7

8

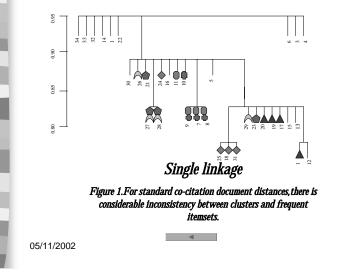






For single linkage, there is even less cluster/itemset consistency. The itemset {2,17,19,20} is possible within a cluster only by including 8 other documents.

We interpret this as being largely caused by single linkage chaining.



As a comparison with standard pairwise distances, Figure 2 shows complete-linkage clusters computed with our hybrid pairwise/higher-order distance.

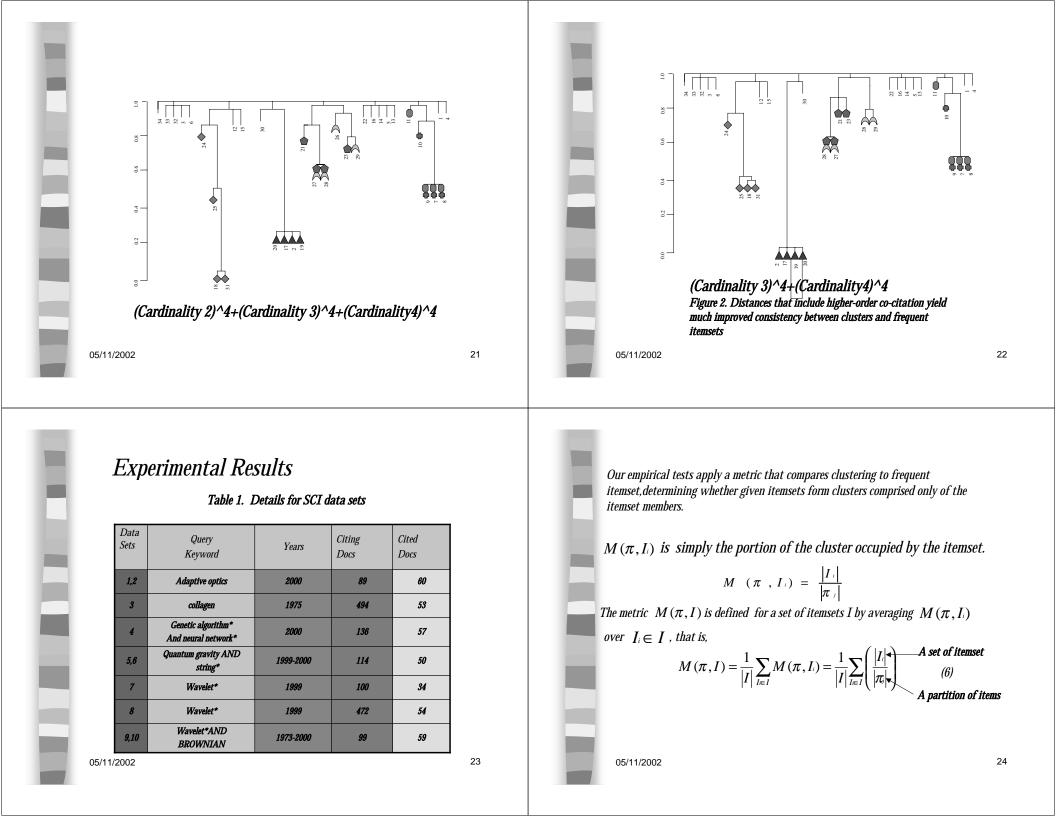
It considers three separate cases, each case being taken over multiple values of itemset cardinality X.

The three cases are x=2,3; x=2,3,4; x=3,4 Here the itemset supports

are nonlinearly transformed by $T[\zeta(I)] = \zeta(I)]^{4}$, with distances computed via (1), (2), (3) and (4).

The most frequent itemset{2,17,19,20} form a cluster for the two cases x=2,3,4 and x=3,4.

For the case=2,3 lower order supports are generally larger than high-order supports, and thus tend to dominate the summation(1).



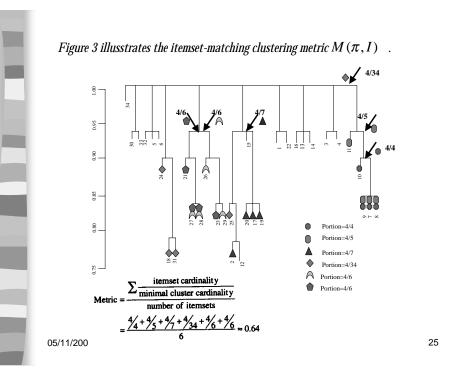


Table 2. Itemset cardinalities and support nonlinearities for hybrid pairwise/higher-order distance

Data Sets	[Itemset Cardinality,Support Nonlinearity]
1	[3,4],[3,6],[4,4],[4,6]
2,6	[3,4],[4,4],[4,6]
3, 5, 7, 8, 9, 10	[3,4],[4,4]
4	[3,4],[3,6],[4,4]

[3,4],[4,4] represent (Cardinality 3)^4+(Cardinality 4)^4

05/11/2002

Table 3. Clustering metric comparisons for standard pairwise (P. W.) Provide the standard pairwise (P. W.)	
versus higher-order (H.O.) distance	

Data set	<i>H.O.=P.W.</i>	H.O.>P.W.	H.O. <p.w.< th=""><th>Cases</th></p.w.<>	Cases
1	6	16	14	36
2	7	15	5	27
3	0	18	0	18
4	1	24	2	27
5	3	13	2	18
6	2	22	3	27
7	2	16	0	18
8	5	13	0	18
9	3	14	1	18
10	0	18	0	18
Totals	29	169	27	225

For the majority of the test case, metric values were higher for our hybrid distances, indicating better consistency clusters and frequent itemsets.

T he results show that excluding itemset supports below minsup generally has little effect on clustering results, particular for smaller values of minsup.

We consider a clustering metric value greater than about 0.7 to be a good match. This corresponds to a frequent itemset comprising on average about 70% of a cluster that contains all its member.

Date set	(minsup2)= (minsup 0)	(minsup2)> (minsup 0)	(minsup2)< (minsup 0)	Cases
3	18	0	0	18
5	18	0	0	18
8	18	0	0	18
9	18	0	0	18
10	11	0	7	18
Totals	83	0	7	90

 Table 4. Clustering metrics for hybrid distances with full computational complexity (minsup 0) versus hybrid distances with reduced complexity(minsup 2)

05/11/2002

29

Summary and Conclusions

■ *The hybrid distance are computationally feasible via fast algorithms for computing frequent itemsets.*

■ The hierarchical clustering dendrogram for association mining visualization enables quick comprehension of complex distance relationships among items.

■ As a more basic contribution, this work represents a first step towards the unification of association mining and clustering visualization.

05/11/2002

