
1

Finding Generalized Projected Clusters in 
High Dimensional Spaces

Charu C. Aggarwal and Philip S. Yu

CMPUT695 Principles of Knowledge Discovery in Data

Instructor: Dr. Osmar R. Zaïane
Nov. 5, 2002

Presented by: Yaling Pei

2

Outline

• Motivation

• Dimension reduction

• Algorithm overview

• Experimentation

• Conclusions

3

Data Clustering Analysis

• Partitioning a set of data into groups
– Intra-class similarity is maximized

– Inter-class similarity is minimized

• Applications in practical problems

• Clustering methods have been studied extensively

• Many well known clustering algorithms

4

Challenges

Most clustering algorithms do not work 
efficiently in higher dimensional space

• Inherent sparsity of the points

• Dimensionality curse
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Objective

• Provide a general framework and algorithms 
in which clusters can be constructed in any 
arbitrarily projected space of lower 
dimensionality

• Cluster high-dimensional data in a more 
meaningful way.
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Feature selection method
• Finding the particular dimensions on which the 

points in the data are correlated

• Pruning away remaining dimensions (noise)

• Problem ÆLoss of information
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Axis Parallel Projection Methods
• Data points are projected to subspaces along axis

• Finding Locally dense subspace
– each dimension is relevant to at least one of the clusters

In reality, Clusters tend to exist in arbitrarily 
oriented subspace
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Basic Idea

• Construct the covariance matrix (C) for the dataset
– C is symmetric

– Entry (i, j) = covariance between dimensions i and j

• Find eigenvalues and eigenvectors of C
– Eigenvectors define an orthonormal system 

– Eigenvalues denote the spread along newly defined 
dimensions 
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Singular Value Decomposition-SVD

• SVD:  C = PûPT

• C - symmetric covariance matrix

• û - diagonal matrix

• �i - eigenvalues of C

• P - matrix with orthonormal eigenvectors

P ∆
1λ

2λ

dλ

dd × dd × dd × dd ×

TPC

11

Subspace selection

• Large eigenvalues correspond to eigenvectors 
with the maximum spread or variance

• We choose dimensions with the least spread 
to form subspace for each cluster

Subspace with maximum point 
distribution is  complementary 
to subspace with the least 
spread
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Applying SVD
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ORCLUS

• Arbitrarily ORiented projected CLUSter generation

• SVD is used for dimension reduction

• Clustering by combining partitioning method and 
hierarchical method

• Extended CF-vector (ECF-vector) is used to ensure 
scalability for very large databases

• Two input parameters
– Number of clusters, k

– Dimensionality of subspace for clustering, l
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Concepts

• Centroid of a cluster
– Algebraic average of all the points in the cluster

• Distance between two points x1 and x2

– Euclidean distance metric

• Dimensionality of the dataset |D| 

• Initial seeds - a set of points {si | i=1, 2, … k0}
– k0 > k
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Generalized projected cluster

• Subspace 0 – a set of vectors

• Cluster C – a set of data points in subspace 0

• Points in C are closely clustered in the subspace 
defined by the vectors in 0

• Projected energy of C in 0
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Data Clustering

• Basic idea

Select a set of initial points as seeds,

iteratively find each cluster in reduced 

dimensions and merge closest clusters 

till k clusters are found.

Dimensionality is reduced gradually.
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Data clustering – Procedure
1. Initially, partition the dataset into k0 clusters by 

assigning each point to its closest seed

2. Each seed is replaced by the centroid of the newly 
created cluster

3. Find subspace for each cluster (SVD)

4. Merge clusters by a factor of . < 1 and reduce 
dimensionality of current cluster by a factor of� < 1

Same number of iterations to reduce

k0 Æ k and|D|Æ l
Terminate
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Merging

• Goal – find clusters with least projected energy

• Each cluster is associated with its own subspace

• Merge clusters Ci and Cj when projected energy of

is the smallest
– Find least spread subspace for points in 

– Find the centroid of               and compute projected energy

• times pair-wise comparisonC ik
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Problems with merging

• Not feasible with very large database
– work explicitly with the set of current clusters

– Covariance matrix calculation is I/O intensive

• Solution

Extended cluster feature vectors
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Scalability for very large databases

• Cluster Feature vector (CF-vector)

• Extended CF-vector (ECF-vector)
– Specific to a given cluster C

– Containing (d2 + d + 1) entries

¾ECF1C is set of  d2 entries Æ

¾ECF2C is set of d entries Æ

¾ECF3C is the number of points in the cluster

¾ECFC = (ECF1C ,  ECF2C ,  ECF1C)
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How Does Extended CF-vector work?

• Covariance matrix can be derived directly from 
the ECF-vector

• Satisfying additive property
– The ECF-vector for              is equal to the sum of the 

corresponding ECF-vectors of C1 and C2

ji CC ∪

ECF-vectors are maintained for each cluster 
instead of

the current clusters associated with each seed.
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Outlier Handling

• Point P is in the cluster having seed si

• Sj is the nearest other seed to seed si in subspace 0i

• P is an outlier if its projected  distance to si, dp> ds

• Discard a certain percentage of the seeds in each 
iteration, for which the clusters contain very few 
points
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Time and Space Complexity

• Time
– Depends on the initial number of seeds k0

– Total run time

• Space
– ECF-vector cuts down the space needs considerably

– Overall space requirement

– Independent database size
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Improving running speed

• Progressive sampling techniques

• Assign each seed only a randomly sampled subset 
of the points in each iteration

• CPU time is saved considerably in the first few 
iterations if k0 is much larger than k

• Not much information loss due to increased 
sample size 
– Sample size is increased by a factor of .
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Confusion Matrix

• contains information about actual and predicted 
classifications done by a classification system

• One entry is significantly larger than the others in 
each row and column ÆClustering well

CBCA
Input cluster

Output cluster

280C2

235C1
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Experiment Results (1)

• Data – generated based on heuristics

• Failure of axis-parallel projections
– Reducing l worsened cluster quality

Table 1: Axis parallel projections, l=14, N=10,000 Table 2: Axis parallel projections, l=6, N=10,000
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Experiment Results (2)
• ORCLUS

– Initial seeds: k0 = 15 * k

– Good confusion matrix when l = 2 to l = 8

– l = 6 Æ Best performance achieved

Table 4: ORCLUS, l=6, N=100,000Table 3: ORCLUS, l=6, N=10,000
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Running Time 
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Comments
• Make use of inter-attribute correlations
• Cluster results are sensitive to input parameters
• No convenient method for the selection of l
• Tradeoff between accuracy and efficiency –k0

• Future work
– Apply it for effective high dimensional data visualization.

(d2 + d)/2

Extended CF-vector: (d2 + d + 1) entries
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