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Data Clustering Analysis

Partitioning a set of data into groups
— Intra-class similarity is maximized
— Inter-class similarity is minimized

Applications in practical problems
Clustering methods have been studied extensively
Many well known clustering algorithms

Challenges

Most clustering algorithms do not work
efficiently in higher dimensional space
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Objective

* Provide a general framework and algorithms
in which clusters can be constructed in any
arbitrarily projected space of lower
dimensionality

 Cluster high-dimensional data in a more
meaningful way.
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Feature selection method

 Finding the particular dimensions on which the
points in the data are correlated

* Pruning away remaining dimensions (noise)
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* Problem—> Loss of information

Axis Parallel Projection Methods

» Data points are projected to subspaces along axis

» Finding Locally dense subspace
— each dimension is relevant to at least one of the cluste

-
W
[ ¥ W

r e

In reality, Clusters tend to exist in arbitrarily
oriented subspace
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Basic Idea

» Construct the covariance matri@)(for the dataset
— C is symmetric
— Entry (i, j) = covariance between dimensions i and |

* Find eigenvalues and eigenvector<Cof
— Eigenvectors define an orthonormal system

— Eigenvalues denote the spread along newly defined
dimensions

Singular Value Decomposition-SVD

C — P A pPT

dxd dxd dxd dxd

SVD: C = P4PT

C - symmetric covariance matrix

A - diagonal matrix

A, - eigenvalues of C

P - matrix with orthonormal eigenvectors
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Subspace selection

» Large eigenvalues correspond to eigenvectors
with the maximum spread or variance

* We choose dimensions with the least spread
to form subspace for each cluster

. .~ Subspace with maximum point
\\\ " distribution is complementary
to subspace with the least
spread

%
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Applying SVD
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ORCLUS

Arbitrarily ORiented projected CLUSter generation
SVD is used for dimension reduction

Clustering by combining partitioning method and
hierarchical method

Extended CF-vector (ECF-vector) is used to ensure
scalability for very large databases

Two input parameters

— Number of clusterk

— Dimensionality of subspace for clusterihg,
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Concepts

Centroid of a cluster
— Algebraic average of all the points in the cluster

Distance between two pointgandx,

— Euclidean distance metric

Dimensionality of the dataséd||

Initial seeds - a set of points,{3=1, 2, ...k}

—ky> k
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Generalized projected cluster

Subspace — a set of vectors
ClusterC — a set of data points in subspace

Points inC are closely clustered in the subspace
defined by the vectors in

Projected energy & in ¢
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Data Clustering

» Basic idea

Select a set of initial points as seeds,
iteratively find each cluster in reduced
dimensions and merge closest clusters
till k clusters are found.

Dimensionality is reduced gradually.
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1. Initially, partition the dataset intg clusters by
2. Each seed is replaced by the centroid of the newly

3. Find subspace for each cluster (SVD)
4. Merge clusters by a factor @k 1 and reduce

Terminate

Data clustering — Procedure

assigning each point to its closest seed

created cluster

dimensionality of current cluster by a factorfiof 1
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Merging

Goal — find clusters with least projected energy
Each cluster is associated with its own subspace

Merge clusters; andC; when projected energy of
G OC is the smallest

— Find least spread subspace for pointC UC,
— Find the centroid ofC U C,

C, times pair-wise comparison
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» Not feasible with very large database

 Solution
and compute projected energy

Problems with merging

— work explicitly with the set of current clusters
— Covariance matrix calculation is 1/O intensive
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Scalability for very large databases

» Cluster Feature vector (CF-vector)

» Extended CF-vector (ECF-vector)
— Specific to a given clust&
— Containing ¢? + d + 1) entries

»ECF1C is set of d? entries > Zx (X;
»ECF2C is set of d entries > Zx

»ECF3C is the number of points in the cluster
»ECFC = (ECF1¢, ECF2¢, ECFI1°)
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How Does Extended CF-vector work?

» Covariance matrix can be derived directly from
the ECF-vector
» Satisfying additive property

— The ECF-vector foc 0c, s equal to the sum of the
corresponding ECF-vectors Gf andC,
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Outlier Handling dL/E
S .

PointP is in the cluster having seed
S is the nearest other seed to sged subspace,
P is an outlier if its projected distanceqal,> d,

Discard a certain percentage of the seeds in each
iteration, for which the clusters contain very few
points
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Time and Space Complexity

* Time
— Depends on the initial number of se&gls
— Total run time O(k2 +k, [N [8 + k2 [@°)

e Space
— ECF-vector cuts down the space needs considerably
— Overall space requiremero(kO [dl?)
— Independent database size

24




Improving running speed Outline
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Progressive sampling techniques

Assign each seed only a randomly sampled subse
of the points in each iteration

CPU time is saved considerably in the first few
iterations ifk, is much larger thak
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» Conclusions
Not much information loss due to increased
sample size
— Sample size is increased by a factow of
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Confusion Matrix Experiment Results (1)
contains information about actual and predicted » Data — generated based on heuristics
classifications done by a classification system  Failure of axis-parallel projections
One entry is significantly larger than the others in — Reducing worsened cluster quality
each row and colum# Clustering well
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Table 1: Axis parallel projectionk;14, N=10,000 Table 2: Axis parallel projectionk;6, N=10,000
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Experiment Results (2)

« ORCLUS
— Initial seedsk, =15 *k
— Good confusion matrix whdre 2 tol = 8
—| = 6 > Best performance achieved
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Table 3: ORCLUS|=6, N=10,000

Table 4: ORCLUSI=6, N=100,000
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Running Time
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Figuza 8: Scaling of runsing tima with datsts slas Fagure T: Sealing of nerming tima with ks
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Comments

Make use of inter-attribute correlations

Cluster results are sensitive to input parameters
No convenient method for the selection of
Tradeoff between accuracy and efficienclg,—

Future work
— Apply it for effective high dimensional data visualization.
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