CMPUT695 Principles of Knowledge Discovery in Data

Finding Generalized Projected Clusters in High Dimensional Spaces

Charu C. Aggarwal and Philip S. Yu

Presented by: Yaling Pei

Instructor: Dr. Osmar R. Zaïane Nov. 5, 2002

Outline

- <u>Motivation</u>
- Dimension reduction
- Algorithm overview
- Experimentation
- Conclusions

Data Clustering Analysis

- Partitioning a set of data into groups
 - Intra-class similarity is maximized
 - Inter-class similarity is minimized
- Applications in practical problems
- Clustering methods have been studied extensively
- Many well known clustering algorithms

Challenges

Most clustering algorithms do not work efficiently in higher dimensional space

- Inherent sparsity of the points
- Dimensionality curse

3

1

Objective

- Provide a general framework and algorithms in which clusters can be constructed in any arbitrarily projected space of lower dimensionality
- Cluster high-dimensional data in a more meaningful way.

Outline

- Motivation
- Dimension Reduction
- Algorithm Overview
- Experimentation
- Conclusions

Feature selection method

- Finding the particular dimensions on which the points in the data are correlated
- Pruning away remaining dimensions (noise)

• Problem \rightarrow Loss of information

Axis Parallel Projection Methods

- Data points are projected to subspaces along axis
- Finding Locally dense subspace

- each dimension is relevant to at least one of the clusters

6

8

In reality, Clusters tend to exist in arbitrarily oriented subspace

7

Basic Idea

- Construct the covariance matrix (*C*) for the dataset
 - C is symmetric
 - Entry (i, j) = covariance between dimensions i and j
- Find eigenvalues and eigenvectors of C
 - Eigenvectors define an orthonormal system
 - Eigenvalues denote the spread along newly defined dimensions

Singular Value Decomposition-SVD

Subspace selection

- Large eigenvalues correspond to eigenvectors with the maximum spread or variance
- We choose dimensions with the least spread to form subspace for each cluster

Subspace with maximum point distribution is complementary to subspace with the least spread

Applying SVD

11

Outline

- Motivation
- Dimension reduction
- Algorithm overview
- Experimentation
- Conclusions

ORCLUS

- Arbitrarily ORiented projected CLUSter generation
- SVD is used for dimension reduction
- Clustering by combining partitioning method and hierarchical method
- Extended CF-vector (ECF-vector) is used to ensure scalability for very large databases
- Two input parameters
 - Number of clusters, k
 - Dimensionality of subspace for clustering, *l*

13

Concepts

- Centroid of a cluster
 - Algebraic average of all the points in the cluster
- Distance between two points x₁ and x₂
 Euclidean distance metric
- Dimensionality of the dataset |D|
- Initial seeds a set of points $\{s_i | i=1, 2, ..., k_0\}$ - $k_0 > k$

Generalized projected cluster

- Subspace ϵ a set of vectors
- Cluster C a set of data points in subspace ε
- Points in *C* are closely clustered in the subspace defined by the vectors in ε
- Projected energy of *C* in ε

$$R(C,\varepsilon) = \frac{\sum_{i=1}^{t} \{Pdist(x_{i}, X(C), \varepsilon)\}^{2}}{t}$$

15

Data Clustering

• Basic idea

Select a set of initial points as seeds, iteratively find each cluster in reduced dimensions and merge closest clusters till k clusters are found.

Dimensionality is reduced gradually.

Data clustering – Procedure

- 1. Initially, partition the dataset into k_0 clusters by assigning each point to its closest seed
- ► 2. Each seed is replaced by the centroid of the newly created cluster
 - 3. Find subspace for each cluster (SVD)
- -4. Merge clusters by a factor of $\alpha < 1$ and reduce dimensionality of current cluster by a factor of $\beta < 1$

Same number of iterations to reduce $k_0 \rightarrow k$ and $|D| \rightarrow l$

17

Merging

- Goal find clusters with least projected energy
- Each cluster is associated with its own subspace
- Merge clusters C_i and C_j when projected energy of $C_i \cup C_j$ is the smallest
 - Find least spread subspace for points in $C_i \cup C_j$
 - Find the centroid of $C_i \cup C_j$ and compute projected energy
- $C_2^{k_i}$ times pair-wise comparison

Problems with merging

- Not feasible with very large database
 - work explicitly with the set of current clusters
 - Covariance matrix calculation is I/O intensive
- Solution

Terminate

Extended cluster feature vectors

19

Scalability for very large databases

- Cluster Feature vector (CF-vector)
- Extended CF-vector (ECF-vector)
 - Specific to a given cluster *C*
 - Containing $(d^2 + d + 1)$ entries

►ECF1^C is set of d² entries → ∑_c x_i · x_j
►ECF2^C is set of d entries → ∑_c x_i
►ECF3^C is the number of points in the cluster
►ECF^C = (ECF1^C, ECF2^C, ECF1^C)

Outlier Handling

21

- Point *P* is in the cluster having seed s_i
- S_i is the nearest other seed to seed s_i in subspace ε_i
- *P* is an outlier if its projected distance to $s_{i,} d_p > d_s$
- Discard a certain percentage of the seeds in each iteration, for which the clusters contain very few points

How Does Extended CF-vector work?

- Covariance matrix can be derived directly from the ECF-vector
- Satisfying additive property
 - The ECF-vector for $C_i \cup C_j$ is equal to the sum of the corresponding ECF-vectors of C_1 and C_2

ECF-vectors are maintained for each cluster *instead of* the current clusters associated with each seed.

22

Time and Space Complexity

- Time
 - Depends on the initial number of seeds k_0
 - Total run time $O(k_0^3 + k_0 \cdot N \cdot d + k_0^2 \cdot d^3)$
- Space
 - ECF-vector cuts down the space needs considerably
 - Overall space requirement $O(k_0 \cdot d^2)$
 - Independent database size

Improving running speed

- Progressive sampling techniques
- Assign each seed only a randomly sampled subset of the points in each iteration
- CPU time is saved considerably in the first few iterations if *k*₀ is much larger than *k*
- Not much information loss due to increased sample size
 - Sample size is increased by a factor of $\boldsymbol{\alpha}$

25

Confusion Matrix

- contains information about actual and predicted classifications done by a classification system
- One entry is significantly larger than the others in each row and column →Clustering well

Input cluster Output cluster	C_A	C_B
C_1	35	2
<i>C</i> ₂	0	28

Outline

- Motivation
- Dimension reduction
- Algorithm overview
- Experimentation
- Conclusions

Experiment Results (1)

- Data generated based on heuristics
- Failure of axis-parallel projections – Reducing *l* worsened cluster quality

Input Clusters Output Clusters	^	в	c	ъ	I
1	639	178	0	0	131
2	0	931	549	455	29
3	121	35	663	265	90
4	50	228	138	3880	408
8	138	133	201	126	3413

Input Clusters Output Clusters	^	- B	0	Б	Е
1	367	362	261	208	268
3	70	835	631	1331	241
3	169	300	604	303	73
4	108	180	99	2001	138
8	331	384	141	304	1365

Table 1: Axis parallel projections, *l*=14, *N*=10,000

Table 2: Axis parallel projections, *l=6*, *N=10,000*

27

