

Related Concepts

- For each time instant *i*, let *Di* be a set of features of dataset at that instant, the time series of features is represented as S=D1, D2,..., Dn
- Define a **pattern** $s=s_1 \dots s_p$ as a nonempty sequence over $(2^L \{\phi\}) \cup \{*\}$
- |s| denotes the length of s, called the period of s
- A **subpattern** of a pattern $s=s_1 \dots s_p$ is a pattern $s'=s'_1 \dots s'_p$ such that s and s' have the same length, and $s'_i \subseteq s_i$ for every position i where $s'_i \neq *$

11	/19	/2002
----	-----	-------

Efficient Mining of Partial Periodic Patterns in Time Series Database

5

Problem Definition

■ The **frequency_count** and **confidence** of a pattern *s* in a time series *S*=*D*₁, *D*₂,..., *D*_n are defined as

 $frequency_count(s) = |\{i \mid 0 \le i < m, and the string s is true in D_i|s|+1,..., D_i|s|+|s| \}|$

 $conf(s) = \frac{frequency_count(s)}{s}$

m is the maximum number of periods of length |s| contained in the time series (i.e., *m* is the positive integer such that $m |s| \le n < (m+1) |s|$)

11/19/2002

Efficient Mining of Partial Periodic Patterns in Time Series Database

Outline

- Definitions related to partial periodicity
- Algorithms for mining partial periodicity in regard to both single and multiple periods
- Implementation of the max-subpattern tree
- Comparison of the performance of the algorithms above
- Conclusion

Single-period Apriori Method

- Apriori Property: If one subset of an itemset is not frequent, then the itemset itself cannot be frequent. (This allows us to use frequent itemsets of size i as filters for candidate itemsets of size i+1)
- Property 3.1 [Apriori on Periodicity]: Each subpattern of a frequent pattern of period p is itself a frequent pattern of period p

11/19/2002

11/19/2002

7

Single-period Apriori Method	Concepts of Sin subpattern Hit	
 Algorithm 3.1: Find all partial periodic patterns for a given period <i>p</i> satisfying a given confidence threshold <i>min_conf</i> in time-series <i>S</i>, based on the Apriori property 3.1 Find <i>F</i>₁, the set of frequent 1-patterns of period <i>p</i>, by accumulating the frequency count for each 1-pattern in each whole period segment and selecting among them whose frequency count is no less than min_conf x m, where <i>m</i> is the maximum number of periods Repeat the same procedure as the first step to find all frequent <i>i</i>-patterns of period <i>p</i>, for <i>i</i> from 2 to <i>p</i>, until the candidate frequent <i>i</i>-pattern set is empty 	• Candidate frequent maximal pattern whice For example: $C_{max} = a$ • A subpattern of C_{max} is of <i>S</i> if it is the maximative the hit set, <i>H</i> , of a time subpatterns of C_{max} in • Property 3.2 [The boother size of <i>H</i> is $ H \le$ the total number of per-	
11/19/2002 Efficient Mining of Partial Periodic 9 Patterns in Time Series Database	11/19/2002 Efficient M Patterns in	
 Single-period Max-subpattern Hit Set Method Algorithm 3.2: Find all the partial periodic patterns for a given period p in a time-series S, based on the max-subpattern hit- set, for a given min_conf threshold Using Step 1 of Algorithm 3.1 to find F1 of period p; form the candidate max-pattern C_{max} from F1 Scan S once again; during the scan, for each period seg- ment, do: If there is no max-subpattern, then add it into the hit set buffer; otherwise, add one to the count of the max-subpattern After the scan, derive the frequent patterns from the hit set; how to implement this procedure will be discussed later 	 Comparison b Algorithms 3.1 Scan Algorithm 3.1 requires worst case Algorithm 3.2 only Space Algorithm 3.1 need Algorithm 3.2 need 	

ngle-period Max-Set Method

t max-pattern (C_{max}) is the ch derive from F_1

 $a\{b_1, b_2\}cd *$

- is hit in a period segment Si nal subpattern of C_{max} in S_i ; me series S is the set of all hit n S
- ound of hit set] The bound for $\leq \min\{m, 2^{|F^1|} - 1\}$, where *m* is periods in S

Mining of Partial Periodic in Time Series Database 10

Single Hit Se

- Algorithi period p set, for a
 - Using the ca
 - Scan ment. the hi max-
 - After set; h later

between the 1 and 3.2

- quires to scan **S** up to **p** times in
- nly requires to scan it 2 times
- ed $2^{|F1|} 1$

11/19/2002

ed min{ $m, 2^{|F1|} - 1$ }

Question

- Can we extend the idea of Apriori to computing partial periodicity among different periods, that is, to use the patterns of small periods *p* as filters for candidate patterns of periods of the form *kp* for an integer k>1?
- Then the most direct way is to repeatedly apply the single-period algorithm for each period in the range

11/19/2002

Efficient Mining of Partial Periodic Patterns in Time Series Database

13

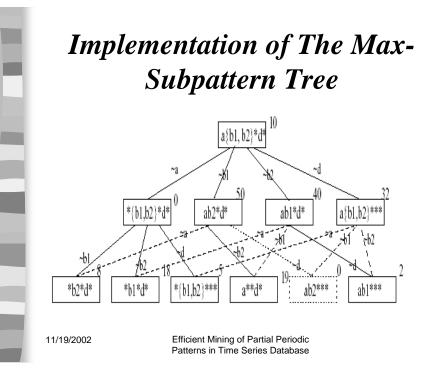
Mining Partial Periodicity with Multiple Periods

- Algorithm 3.4 [Shared mining of multiple periods]: Shared mining of all the partial periodic patterns for a set of periods in a given *min_conf* threshold
 - For **all** periods p_i in the range of interest, scan S once first, then find $F_1(p_j)$ of period p_i , using the same step 1 as in Algorithm 3.1. For each set of frequent 1-patterns of period p_i , form the candidate max-pattern, $C_{\max}(p_j)$, from $F_1(p_j)$
 - For all periods *p_i* in the range of interest, scan *S* once again, then do the same step 2 as Algorithm 3.2
- The total number of time-series scans is 2 for multiple periods; but it will require more space in the processing

Mining Partial Periodicity with Multiple Periods

- Algorithm 3.3 [Looping over single period computation]: Find all the partial periodic patterns for a set of periods in a given range of interest, *p*₁, ..., *p*_k, in the time-series *S*, with the given min_conf threshold
 - Apply algorithm 3.2 on each period P_j in the range of interest (p₁, ..., p_k)
- This algorithm require to scan the time-series S for
 2 x k times, so when the number of periods k is large, we still need a good number of scans; how to improve it?

11/19/2002


Efficient Mining of Partial Periodic Patterns in Time Series Database

Outline

- Definitions related to partial periodicity
- Algorithms for mining partial periodicity in regard to both single and multiple periods
- Implementation of the max-subpattern tree
- Comparison of the performance of the algorithms above
- Conclusion

14

11/19/2002

Build a Max-Subpattern Tree

- Take the candidate max-pattern C_{max} as the root node, where each subpattern of C_{max} with one non-* letter missing is a direct child node of the root
- Each node has a "count" field (registers the number of hits of the current node), a parent link (nil for root), and a set of child links; each child link points a child and is associated with a corresponding missing letter.
- A node with only 2 non-* letters will not have any children

11/19/2002

Efficient Mining of Partial Periodic Patterns in Time Series Database 18

Insertion in the Max-sp tree

- Algorithm 4.1: Insert a max-sp *w* found during the scan of *S* into the max-sp tree *T*
 - Starting from the root of the tree, find the corresponding node by checking the missing non-* letters in order
 - If the node w is found, increase its count by 1. Otherwise, create a new node w (with count 1) and its missing ancestor nodes (only those on the path to w, with count 0), and insert them into the corresponding places of the tree

For example 4.1

Derivation of Frequent Patterns from Max-sp tree

- Algorithm 4.2: The derivation of the frequent *k*-patterns for all *k*, given a max-sp tree *T*, by an Apriori-like technique
 - The set of frequent 1-patterns *F*₁ is derived in the first scan of Algorithm 3.2
 - After the second scan of Algorithm 3.2, we get the max-sp tree *T*. The set of frequent *k*-patterns (*k* >1) is derived by for i:= 2 to |*F*₁| do {
 - Derive candidate patterns with L-length i from frequent patterns with L-length (i-1)
 - Scan tree T to find frequent counts of these candidate patterns and eliminate the non-frequent ones.

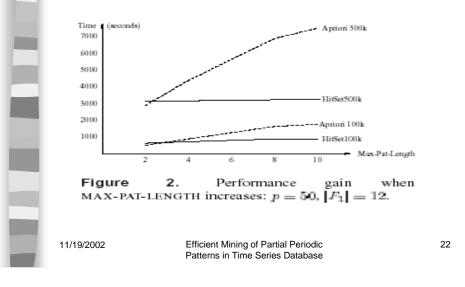
Frequency count=count of node+counts of reachable ancestors

11/19/2002

Efficient Mining of Partial Periodic Patterns in Time Series Database

11/19/2002

19

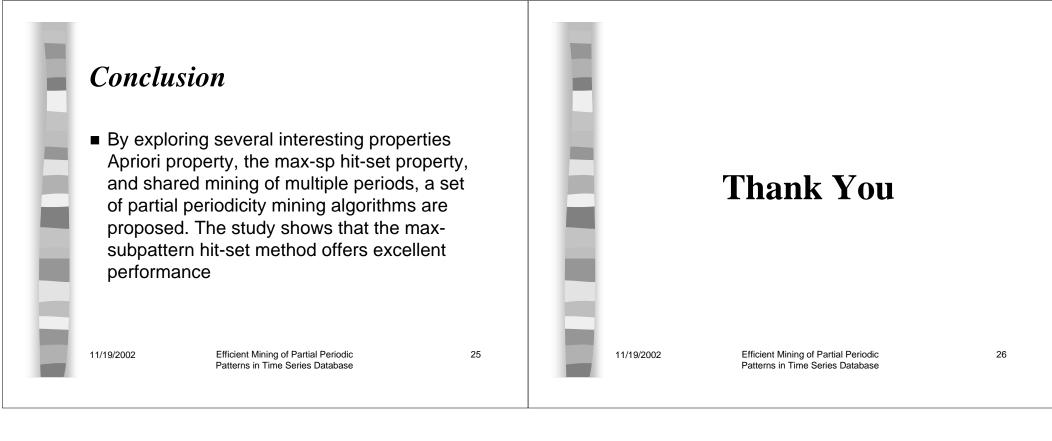

Outline

- Definitions related to partial periodicity
- Algorithms for mining partial periodicity in regard to both single and multiple periods
- Implementation of the max-subpattern tree
- Comparison of the performance of the algorithms above
- Conclusion

11/19/2002

Efficient Mining of Partial Periodic Patterns in Time Series Database 21

Performance of The Algorithms



Performance of The Algorithms

- The running time of max-sp hit-set is almost constant for the length of the time series being 100,000 and the other being 500,000; Apriori is almost linear in the same conditions
- No matter for Mining partial periodicity with single or multiple periods, max-sp hit-set requires much less times of scans

Outline

- Definitions related to partial periodicity
- Algorithms for mining partial periodicity in regard to both single and multiple periods
- Implementation of the max-subpattern tree
- Comparison of the performance of the algorithms above
- Conclusion

