Personalization from Incomplete Data: What You Don't Know Can Hurt

Balaji Padmanabhan Zhiqiang Zheng Steven O. Kimbrough

Presented by Zhenchang Xing

Outline

- Introduction
- The Methodology
 - Data and Usage Metrics
 - Classification Models and Evaluation Criteria
- Results
- Conclusion

Introduction

- Personalization
 - In industry
 - In academia
- The problem?
 - Built on data collected by a single web site

Example Sessions

- User 1: Cheaptickets₁, Cheaptickets₂, Travelocity₁, Travelocity₂, Expedia₁, Expedia₂, Travelocity₃, Travelocity₄, Expedia₃, Cheaptickets₃
 Assume that this user bought a ticket at Cheaptickets
- User 2: Expedia₁, Expedia₂, Expedia₃, Expedia₄
 Assume that this user bought at Expedia₄

Expedia Sees

- User1: Expedia₁, Expedia₂, Expedia₃
 No buying
- User2: Expedia₁, Expedia₂, Expedia₃, Expedia₄
 Buying at Expedia

Sites Visited in a Session

Definitions

- Site-Centric Data
 - web log + user demographics
- User-Centric Data
 - 'Complete' version of usage data, Purely hypothetical
- Session-Level Prediction
 - Whether the remainder of a current user's session will result in a purchase
- User-Level Prediction
 - Whether a given user at a given point in time will make a purchase at the site during some future session

Outline

- Introduction
- The Methodology
 - Data and Usage Metrics
 - Classification Models and Evaluation Criteria
- Results
- Conclusion

The Methodology

- Starting with raw data provided by MediaMetrix
- Construct site-centric and user-centric data from raw userlevel browsing data
- Preprocessing for two-level prediction tasks
 - Preprocessing for Session-Level Prediction
 - Preprocessing for User-level Prediction
- Build 4 different classifiers for two-level predictions based on two types of preprocessed datasets (40% training set, 60% evaluation)
- Compare the performance of 8 pairs of classification models quantitatively and qualitatively

Raw Data

- Raw data provided by Media Metrix
 - 20,000 user's web browsing behavior over 6 months
 - 30GB and 4 million user sessioins
 - User demographics
 - Transaction history over the entire period
 - Sites categories: book, music, travel, auction, general shopping mall (310,323 user sessions, 135 web sites)
- The tracking software installed on the client machine

Construct site-centric data and user-centric data

Cheaptickets₁, Cheaptickets₂, Travelocity₁, Travelocity₂, Expedia₁, Expedia₂, Travelocity₃, Travelocity₄, Expedia₃, Cheaptickets₃

- Site-Centric Data
 - Cheaptickets₁, Cheaptickets₂, Cheaptickets₃
 - Travelocity₁, Travelocity₂, Travelocity₃, Travelocity₄
 - Expedia₁, Expedia₂, Expedia₃
- User-Centric Data

Usage Metrics

- Current visit summaries, e.g. time spent in current session
- Historical summaries, e.g. average time spent per session in the past
- User demographics, e.g. name, gender

Site-Centric Data Preprocessing for Session-Level Prediction

• Consider a single session of length 5

 $- < p_1, p_2, p_3, p_4, p_5 >.$

- This single sessions generates 5 records for prediction
 - 1. A session that began with p_1 resulted in the user booking at a subsequent point.
 - 2. A session that began with p_1 , p_2 resulted in booking at a subsequent point.
 - 3. A session that began with p_1 , p_2 , p_3 resulted in booking at a subsequent point.
 - 4. A session that began with p_1 , p_2 , p_3 , p_4 did *not* result in booking at a subsequent point.
 - 5. A session that began with p_1 , p_2 , p_3 , p_4 , p_5 did *not* result in booking at a subsequent point.

Site-Centric Data Preprocessing for Session-Level Prediction-cont'

- Probabilistic Sampling
 - A session of length k on average provides $\alpha^{\ast}k$ records
- Probabilistic Clipping
 - Every sampled session is clipped probabilistically based on its length and divided into two parts
 - The first part will be used to compute usage metrics
 - The second part will be used to determine whether a purchase occurred
 - Heuristic, such as user time spent under secure-mode
- Usage Metrics
 - 6 demographic + 5 Historical + 4 Current
 + 1 Site Category

Site-Centric Data Preprocessing for Session-Level Prediction-cont'

- Consider a single session of length 5
 - $< p_1, p_2, p_3, p_4, p_5 >.$
- Sample rate = 0.4 Clipping point 1 and 3
 - 1. A session that began with p_1 resulted in the user booking at a subsequent point.
 - 3. A session that began with p_1 , p_2 , p_3 resulted in booking at a subsequent point.

User-centric data preprocessing for Session-Level Prediction

- Probabilistic Clipping augmented with what else sites the user visited
 - User session: $C_1, C_2, T_1, T_2, E_1, E_2, T3, T4, E_3, C_3$
 - Site-Centric data for site E: E_1 , E_2 , E_3
 - User-Centric data for site E: C₁, C₂, T₁, T₂, E₁, E₂, T3, T4, E₃, C₃
 - Clipping point: E₁
 - User-Centric clipping point: C₁, C₂, T₁, T₂, E₁
- Usage metrics
 - 17 Historical + 8 Current additional metrics

Data Preprocessing for User-level Prediction

- For user U and web site E
 - N user sessions in raw data involving E
 - C₁, C₂, T₁, T₂, E₁, E₂, T3, T4, E₃, C₃
 - N site-centric sessions for E: s₁, s₂, ... s_n
 E₁, E₂, E₃
 - N user-centric sessions for E: u₁, u₂, ... u_n
 C₁, C₂, T₁, T₂, E₁, E₂, T3, T4, E₃, C₃
 - N summary records at the end of each session
- Usage Metrics
 - Site-Centric sessions: 6 demographic + 5 Historical
 + 1 Site Category
 - User-centric sessions: 6 demographic + 17 Historical
 + 1 Site Category

Outline

- Introduction
- The Methodology
 - Data and Usage Metrics
 - Classification Models and Evaluation Criteria
- Results
- Conclusion

Classification Models

- 4 Classification Models
 - Liner regression (linear)
 - Logistic regression (log-linear)
 - Classification tree (non-linear)
 - Neural network (non-linear)
- The reason to choose
 - Data-driven
 - Linear, log-linear and non-linear

Evaluation Criteria

- Quantitative Comparison
 - Prediction accuracy
 - Limitation: unequal priors
 - Lift curves
 - Binary prediction
 - Classification models provide a kind of probability or confidence measure in the predicted value
- Qualitative Insights Analysis
 - Consistency
 - Contradiction
 - Incompleteness

An Example of Lift Curves

The Methodology

- Starting with raw data provided by MediaMetrix
- Construct site-centric and user-centric data from raw userlevel browsing data
- Preprocessing for two-level prediction tasks
 - Preprocessing for Session-Level Prediction
 - Preprocessing for User-level Prediction
- Build 4 different classifiers for two-level prediction based on two types of preprocessed datasets (40% training set, 60% evaluation)
- Compare the performance of 8 pairs of classification models quantitatively and qualitatively

Outline

- Introduction
- The Methodology
 - Data and Usage Metrics
 - Classification Models and Evaluation Criteria
- Results
- Conclusion

Prediction Accuracy: Site-Level Prediction

Classification Method	Run	Overall Prediction Accuracy		Booking Class Prediction Accuracy	
		Site-centric	User-centric	Site-centric	User-centric
Linear Regressions	1	86.2%	86.5%	0.6%	0.8%
	2	87.3%	87.9%	1.9%	2.3%
	3	87.6%	87.8%	0.9%	1.2%
	4	87.2%	87.5%	1.6%	2.2%
	5	86.8%	87.1%	1.5%	2.0%
Logit Models	6	87.6%	88.4%	2.1%	4.8%
	7	88.3%	88.7%	1.9%	4.0%
	8	89.6%	90.2%	2.4%	5.4%
	9	88.7%	89.1%	2.2%	4.5%
	10	87.9%	88.2%	2.5%	5.9%
Classification Trees	11	89.3%	90.2%	9.6%	13.3%
	12	88.7%	89.6%	5.1%	10.3%
	13	89.2%	89.7%	5.9%	11.1%
	14	88.9%	89.8%	7.9%	12.2%
	15	89.3%	89.9%	6.3%	11.9%
Neural Network	16	90.9%	91.1%	11.4%	19.7%
		t	-8.114		-5.106
		р	7.23E-07		0.0001

Method	Run	Overall Pred. Accuracy		Booking Class Pred. Accuracy	
		s-centric	o-centric	s-centric	u-centric
Linear	1	88,2%	88,4%	5.30%	6.40%
Regressions	2	87.2%	87.6%	5.40%	7.30%
	3	87,4%	87.9%	5,40%	6.60%
	4	87.9%	88.3%	5.20%	6.90%
	5	88.2%	88.5%	5.50%	7,70%
Logit Models	6	38.40%	88.60%	11.70%	13.80%
	7	88.00%	88,30%	11.80%	14,70%
	8	\$8,20%	88.40%	12.20%	13.60%
	- 9	38,30%	88.60%	11.50%	13,90%
	10	38.60%	88.89%	12.00%	14.20%
Classification	11	38.80%	89.50%	18,40%	23.00%
Trees	12	38.60%	89.20%	16.20%	22.40%
	13	38.90%	89.70%	19.30%	24.50%
	14	38.60%	89,30%	17.80%	23.30%
	15	88,70%	80,30%	17,70%	23,70%
Neural Net	16	\$8.70%	80.00%	20.60%	29,30%
		t	-7.10463		-6.5993
		D	5.96E-00		5.50E-06

Prediction Accuracy: User-Level Prediction

Lift Curves: Session-Level Prediction

Lift Curves: User-Level Prediction

Qualitative Insight Analysis

- Consistency
 - Purchase in the past highly positively correlated with potential current session purchase
- Contradiction
 - Using site-centric data, total time spent at a current session is highly important, but this effect does not hold for user-centric data
- Incompleteness
 - Purchase at *any* site are very significant across all models

Conclusion

- Models built from complete data (usercentric) significantly outperform ones derived from incomplete data (site-centric)
- Potentially erroneous conclusions can be drawn from incomplete data
- The effects may vary based on different tasks considered